Research

Reconstructing the ubiquitin network - cross-talk with other
systems and identification of novel functions
Thiago M Venancio, S Balaji, Lakshminarayan M Iyer and L Aravind

Address: National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland
20894, USA.

Correspondence: Thiago M Venancio. Email: venancit@ncbi.nlm.njh.gov. L Aravind. Email: aravind@ncbi.nlm.nih.gov

Published: 30 March 2009 Received: | December 2008

Genome Biology 2009, 10:R33 (doi:10.1186/gb-2009-0-3-r33) ii‘é:;i d'. '3ge£|;‘:2;y220%%9

The electronic version of this article is the complete one and can be
found online at http://genomebiology.com/2009/10/3/R33

© 2009 Venancio et al,; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: The ubiquitin system (Ub-system) can be defined as the ensemble of components
including Ub/ubiquitin-like proteins, their conjugation and deconjugation apparatus, binding
partners and the proteasomal system. While several studies have concentrated on structure-
function relationships and evolution of individual components of the Ub-system, a study of the
system as a whole is largely lacking.

Results: Using numerous genome-scale datasets, we assemble for the first time a comprehensive
reconstruction of the budding yeast Ub-system, revealing static and dynamic properties. We
devised two novel representations, the rank plot to understand the functional diversification of
different components and the clique-specific point-wise mutual-information network to identify
significant interactions in the Ub-system.

Conclusions: Using these representations, evidence is provided for the functional diversification
of components such as SUMO-dependent Ub-ligases. We also identify novel components of SCF
(Skp I -cullin-F-box)-dependent complexes, receptors in the ERAD (endoplasmic reticulum
associated degradation) system and a key role for Susl in coordinating multiple Ub-related
processes in chromatin dynamics. We present evidence for a major impact of the Ub-system on
large parts of the proteome via its interaction with the transcription regulatory network.
Furthermore, the dynamics of the Ub-network suggests that Ub and SUMO maodifications might
function cooperatively with transcription control in regulating cell-cycle-stage-specific complexes
and in reinforcing periodicities in gene expression. Combined with evolutionary information, the
structure of this network helps in understanding the lineage-specific expansion of SCF complexes
with a potential role in pathogen response and the origin of the ERAD and ESCRT systems.

Background regulation of several cellular processes. These modifications
Post-translational modification of lysine, serine, threonine,  range from linkages of low molecular weight moieties, such as
tyrosine, aspartate, arginine and proline residues in proteins hydroxyl, phosphate, acetyl or methyl groups, to entire
are widely observed and are of paramount importance in the  polypeptides. Covalent modification by protein tags, which
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involves linkage of polypeptides belonging to the ubiquitin
(Ub)-like superfamily, to target lysine (rarely cysteines or
amino groups of proteins) is best understood in eukaryotes.
In addition to Ub, these protein modifiers include a variety of
other Ub-like polypeptides (Ubls), such as SUMO, Nedd8 and
Urma1 [1]. Modification of a target by an Ub or Ubl can take
many different forms and can have many diverse conse-
quences [1]. For example, polyubiquitination via lysine 48
(K48), as well as neddylation and urmylation can have desta-
bilizing effects on the target by recruiting it for proteasomal
degradation. In contrast, polyubiquitination via K63, monou-
biquitination and sumoylation result in altered properties
and interactions of the localized protein, thus having a prima-
rily regulatory impact [2]. In particular, sumoylation has
been implicated in the regulation of several functions, such as
nucleocytoplasmic transport, cell cycle progression, nuclear
pore complex-associated interactions, DNA repair and repli-
cation and mRNA quality control (reviewed in [3-5]). Other
modifications, like that by Apg12, mediate specific biological
processes such as autophagy [6].

Ub/Ubl modifications are achieved by an elaborate system
involving several enzymes and regulatory components that
are intimately linked to the proteasome [7]. Firstly, Ub and
the Ubls might be processed from a longer precursor protein
by proteases to expose the carboxyl group of the carboxy-ter-
minal glycine. The conjugation process itself involves a three
enzyme cascade, namely E1, E2 and E3. Of these, the E1
enzyme usually catalyzes two reactions - ATP-dependent ade-
nylation of the carboxylate followed by thiocarboxylate for-
mation with an internal cysteine in the E1. This is followed by
a trans-thiolation reaction that transfers Ub/Ubl to the active
cysteine of the E2 enzyme. E2s then directly transfer the Ub/
Ubl to the target lysine, often aided by the E3 ligase [2,7,8].
The primary component of E3 ligases is the RING finger
domain or a related treble-clef fold domain, such as the A20
finger [2,9]. E3 ligases also often contain other subunits such
as F-box domain proteins, cullins and POZ domain proteins
(for example, Skp1 in yeast). Alternatively, Ub/Ubls can be
transferred by a further trans-thiolation reaction to HECT E3
ligases, which then transfer the Ub/Ubl to substrates. In
many cases multiple rounds of ubiquitination of the initial
oligo-Ub adduct are catalyzed by a specialized E3 that con-
tains a derived version of the RING finger called the U-box,
resulting in poly-Ub adducts [9,10]. Interaction of Ub chains
on target proteins with the proteasome is also an intricate
process involving specialized Ub/Ubl receptors and adaptors,
which recognize Ub via domains such as the UBA, Little Fin-
ger, UIM, and PH domains [11]. Further Ub/Ubls attached to
targets are recycled at the proteasome by de-ubiquitinating
peptidases (DUBs) containing the JAB metallopeptidase
domain. Other DUBs, belonging to diverse superfamilies of
peptidases, usually have a regulatory role in removing Ub/
Ubls from various targets [12]. Typically, DUBs are also the
same proteases involved in releasing Ub/Ubls from their
polyprotein precursors and show a relationship to viral pro-
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teases involved in viral polyprotein processing [12-14]. In
addition to these core components, several other components
are involved either as auxiliary, specificity-related subunits,
or as scaffolds or as chaperones.

We term this total system comprising core components
directly involved in Ub conjugation, removal/recycling and
their accessory partners as the Ub-system. While earlier work
by others and our group has investigated the provenance and
evolution of individual components of this Ub-system
[8,13,14], few studies have sought to acquire a holistic picture
of the entire system. This has recently become possible, at
least in a well-studied model eukaryote like Saccharomyces
cerevisiae, as a result of the coming together of numerous
technical and informational advances. First, genome-scale
biochemical and proteomics studies have produced enor-
mous amounts of data of diverse types, such as on protein-
protein interaction [15-18], targets of ubiquitination [19-23]
and sumoylation [24-28], and protein stability [29], abun-
dance [30,31] and subcellular localization [32]. Second, sev-
eral specific studies have determined interactions of the E3
ligase Rsp5 [33] and the proteasome subunit Rpn1o [20,21].
Third, case-by-case functional studies, coupled with highly
sensitive sequence profile comparison methods, have enabled
a comprehensive identification of Ub-system proteins with a
high degree of confidence. We exploited the above advances
to comprehensively identify Ub-system components in yeast
and then assemble all their known physical, genetic and bio-
chemical interactions between themselves and with the rest
of the proteome. Graphs or networks have become the stand-
ard representation of such datasets in studies adopting a 'sys-
tems' approach. Such representations have enabled
application of graph theoretic methods to extract previously
concealed information regarding the system as a whole. They
have been successful in analyzing other systems, such as the
transcriptional regulatory network and protein interaction
networks [34-36]. We accordingly represent our reconstruc-
tion of the Ub-system as a network, henceforth called U-net
(for ubiquitin network). By analyzing the U-net, we were able
to uncover several interesting biological features of the Ub-
system, both in terms of previously unclear functional inter-
actions of its components, as well as its interplay with other
regulatory mechanisms, such as transcriptional regulation.
As a result, we were also able to obtain the first objective
quantitative measure of the impact of the Ub-system on cellu-
lar functions.

Results and discussion

Analysis of the ubiquitin system as a network

Assembly of the Saccharomyces cerevisiae U-net

To assemble the S. cerevisiae U-net, we gathered all identi-
fied components of the Ub-system by means of literature
searches and classified them according to the conserved pro-
tein domains present in them. Sensitive sequence profile
analyses of each of the protein domain families were per-
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formed to identify all possible paralogs in the genome. We
then surveyed all newly identified proteins based on domain
architectures, catalytic active sites in the case of enzymes and
binding pockets in other cases (when known), presence of
functionally non-diagnostic and promiscuously fused protein
domains and available literature. Having thus filtered out
potentially irrelevant proteins, we arrived at a high confi-
dence list of components of the S. cerevisiae Ub-system that
is more comprehensive than any previously published list of
this type (Figure 1; File S1 and Table S1 in Additional data file
1). In the process we made several new observations, includ-
ing identifications of previously unknown representatives of
certain domains. For example, we discovered that Ynli55w
contains a novel SUMO-like Ubl domain and that Def1, which
mediates ubiquitination and proteolysis of the RNA polymer-
ase present in an elongation complex [37], contains an
amino-terminal CUE domain that is likely to be critical for its
interaction with Ub.

Using this list of components as the basis, we assembled the
U-net by integrating an enormous volume of genetic and pro-
tein-protein interaction data obtained from public databases
and specific case-studies in the literature on the Ub-system
(see Materials and methods for details). By comparing indi-
vidual protein-protein and genetic interaction datasets with
lists of Ub/Ubl modified targets, we were able to show that
the majority of these post-translational modifications are
likely to be transient (that is, rapid protein degradation or Ubl
removal) or condition-specific. Hence, they are almost com-
pletely missed by the high-throughput protein-protein inter-
action datasets. To address this lacuna, we incorporated both
large-scale proteomic and individual case-by-case studies of
Ub/Ubl modifications of proteins to reconstruct a more com-
plete picture of the U-net (Figure 1). As these data are gener-
ated from proteins purified directly from cells followed by
detection of modifications by mass-spectrometry, they are
less likely to be affected by biases of in vitro modification
assays where targets are specifically chosen. However, it
should be mentioned that our reconstruction of the U-net is
beset by the issue of a lack of temporal or condition-specific
resolution, because most interactions were obtained under
standard growth conditions. Further, one also needs to bear
in mind the caveat of incompleteness of the available interac-
tome and inherent limitations of different biochemical tech-
niques. Questions have been raised about the quality of
different interactome-determination techniques. However, a
recent study provides evidence that the two main techniques
used to detect protein-protein interactions, namely yeast two-
hybrid and affinity-purification-coupled mass spectrometry
are of high quality and of complementary natures [36].
Hence, we decided to use all available data, rather than filter-
ing the data and lending greater weight to a particular tech-
nique (Figure 1).
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Basic structure and properties of the U-net

The thus obtained U-net is an undirected graph, composed of
3,954 proteins (nodes) and 15,487 interactions (edges) repre-
senting genetic and protein-protein interactions of both cov-
alent and non-covalent types (Figure 2; File S1 in Additional
data file 1). Within the U-net a subnetwork can be identified,
which is composed of all interactions between Ub-system
components themselves, hereafter referred to as U-net-spec
(for Ub specific network; Table S1in Additional data file 1). In
the U-net-spec the largest contribution is from protein-pro-
tein interactions of proteasome components (approximately
31.9% of U-net-spec interactions), which is reflective of the
proteasome being a tightly interacting large protein complex
(Figure 2a). In terms of connections to the rest of the pro-
teome, there is a progression of increasing number of interac-
tions in the order E1-E2-E3-Ub/Ubls (Figure 2a, b). This
order is consistent with the observed biochemistry of the Ub-
system, where there is increasing target specificity along the
E1-E2-E3 enzyme cascade, with several E3s adding Ub/Ubls
to more than one substrate [7]. As expected, Ub and SUMO
are the two primary hubs (that is, highly connected nodes;
Table S1 in Additional data file 1) in the network as they con-
nect to a significant part of the proteome through direct cov-
alent linkage. Other major hubs are the E2s Ubcy and Rad6
(601 and 300 interactions, respectively), the E3 Rsps (376
connections) and the non-ATPase proteasomal subunit
Rpn10 (432 connections) (all the information on connections
and annotations are available in Table S1 in Additional data
file 1).

Though the U-net, like most common biological networks
[38], shows a degree distribution that is best approximated by
a power-law (y = 13,616x2053 and R2 = 0.948; Figure 3a), it
has several unique features. For example, the U-net is strik-
ingly more susceptible to preferential disruption of its hubs
(attack) in comparison to the transcriptional regulatory net-
work (T-net) and the protein-protein network (P-net) - less
than 5% of the total interactions remain upon simulated
removal of a mere approximately 9% of nodes selected ran-
domly amongst the hubs (Figure 3b). In terms of susceptibil-
ity to failure - that is, random removal of nodes - the U-net
followed similar trends as the P-net, but the T-net was much
more robust to failure than either of the former networks
[34,39] (Figure 3b). We then surveyed the distribution of
essential genes [40] and genes required for normal growth
under environmental stress conditions (environmental stress
response genes) [41] in the U-net. Hubs of the U-net were not
enriched in any of these genes, suggesting that the high attack
susceptibility of the U-net is unlikely to cripple the cell com-
pletely. In contrast, the U-net in general is enriched in essen-
tial genes relative to the entire proteome (the U-net contains
about 78.6% of all essential genes, P ~ 4.914 x 1011 by Fisher
exact test (FET); P ~ 4.711 x 105 for environmental stress
response genes by FET). This observation underscores the
nature of the Ub-system as a predominantly regulatory sys-
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Flowchart for reconstruction of the U-net and its analysis. The flowchart describes the construction of the network, followed by analyses of topological
structure and integration of different datasets for biological inference. FOP: Frequency of optimal codons.
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Figure 2

U-net classes and their interactions. The graph represents the Ub pathway wherein individual nodes have been collapsed into their respective general

protein classes. The different contributions of (a) protein-protein and (b) genetic interactions that contribute to the overall U-net are shown separately.

The proteome represents the rest of the proteome (that is, minus the Ub-system). The U-net-spec connections are shown in green while those to the
proteome are shown in mauve. The intra-proteasomal protein-protein interactions are seen to stand out in graph. The figure also implies that only a
fraction of the modifications are reversed by the DUBs.
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U-net (a) degree distribution and (b) tolerance to attack and failure. The
U-net degree distribution is well approximated by a power-law equation: y
= 13616x2053 and R2 = 0.948. The power-law distribution is common to
several biological networks and is frequently associated with the scale-free
structure and tolerance to failure [110].

tem that operates on several essential functions, as opposed
to being a basic 'house-keeping' system.

To further investigate regulatory interactions of the U-net, we
devised a novel visualization, the rank plot, which utilizes
connectedness of a protein in both the U-net and U-net-spec
along with an overlay of gene essentiality data. This plot
divides the components of the Ub-system into four quadrants
signifying their relative connectedness (Figure 4). The first
quadrant contains proteins with a high connectivity in the U-
net-spec but not in the U-net and is significantly enriched in
a subset of proteasomal subunits and essential genes (FET, P
~ 1.54 x 1077).Most of these are core components of the pro-
teasome, which are critical for its characteristic structure and
function. This explains both their high connectivity within the
U-net-spec as well as their essentiality (63%, that is, 29 out of
46 proteasome proteins are essential). The second quadrant
is also enriched in proteasomal and APC proteins (FET, P <
0.01). These proteins have high degrees in both the U-net and

Genome Biology 2009, Volume 10, Issue 3, Article R33

U-net-spec.In contrast to the first quadrant, the proteasomal
subunits in this quadrant are responsible for recruiting mod-
ified proteins to the proteome: for example, the canonical
ubiquitin receptor (Rpn10) as well as the more recently char-
acterized second receptor, Rpni3 [42,43]. Furthermore,
occurrence of the Ubl-UBA protein Rad23 in this quadrant
and the significant overlap of its interactions with Rpnio
(approximately 52.6%) are consistent with the complemen-
tary and cooperative roles of these proteins [44-46]. This
analysis also revealed the difference between Rad23 and its
paralog Dsk2, which is found in quadrant 1 (Figure 4). Hence,
Dsk2 is likely to operate on only a limited set of targets in the
proteome, and might even specialize in proteins belonging to
the Ub-system. Similarly, the presence of eight APC subunits
in the second quadrant is indicative of the role of the APC
complex in affecting a wide range of substrates in the course
of cell-cycle progression (Figure 4). The DUBs Ubp6 [47]
(Figure 4, quadrant 2) and Rpn11 (Figure 4, quadrant 1) are
similarly discriminated, suggesting a more general role for
the former in de-ubiquitinating a wide range of the proteome,
whereas the latter probably acts on a smaller range of targets.
Likewise, the plot illuminates the functional differentiation of
several components of the U-net with comparable activities,
such as the sumoylation-dependent ubiquitin ligases (Slx5-
S1x8 dyad), which are in the second quadrant. This position
suggests that they are not only functionally well integrated
with a good part of the Ub-system but also modify a large
number of target proteins. The other sumoylation-dependent
E3, Uls1/Ris1, is functionally much less integrated with the
rest of the Ub-system, though it might modify a similar
number of targets as Slx5-S1x8. Thus, the former pair is pos-
sibly a nexus for multiple regulatory controls to influence
SUMO-dependent ubiquitination. The third quadrant is
enriched in F-box proteins (FET, P ~ 0.00135), whereas the
corresponding RING finger (Hrt1) and POZ domain (Skp1)
subunits of the multi-subunit E3s is found in the second
quadrant. This illustrates how the distinct F-box proteins
help in channeling the common RING-POZ core to distinct
sets of substrates under distinct conditions.

Modular nature of the U-net

We then investigated the fine structure of the U-net by explor-
ing its modular properties using two potentially complemen-
tary methods (see Materials and methods for details), the k-
clique approach and the Markov-clustering (MCL) method.
The k-clique approach [48,49] is an inclusive one as it allows
the participation of the same protein in several cliques; it can
capture the strongly interconnected elements shared between
distinct biological subsystems. The MCL method [50] on the
other hand restricts a protein to a single cluster, thereby
bringing out the strongest functional associations in a net-
work. The k-clique approach showed that the U-net contains
12,284 cliques, a number that is significantly lower than what
is expected by chance alone - none of the 10,000 simulated
random networks with equivalent node and edge number and
degree per node ever displayed such a low number of cliques.
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Figure 4

U-net components and their relative importance to the pathway and to the proteome. The figure illustrates a rank plot that reveals the presence of
components of crucial importance for the U-net-specific interactions (for example, proteasome structural subunits) but not quantitatively relevant to its
interaction with the proteome. On the other hand, there are other key proteins with many connections to the proteome (Ubp 10 and Mpel), but not with
other Ub/Ubl pathway components. In addition, there are proteins relevant in both contexts (for example, Ubi4, Smt3, Rsp5, Rpn|0), as well as proteins

with just a few connections in both contexts. Gray quadrants were arbitrarily

set to inspect the most important proteins in terms of degree. Essential

genes are represented in bold-italic [40]. Color code: blue, proteasome components; green, Ubls; purple, F-box proteins; salmon, Els; dark cyan, E2s; red,
E3s; magenta, DUBs; dark green, others; orange, POZ; saddle brown, APC; yellow, signalosome; light blue, cullins.

Further, the mean degree for the U-net cliques is much lower
than that observed for random networks (Wilcoxon-Mann-
Whitney test (WMWT); P < 2.2 x 10°16; Table S2 and Figure
S1 in Additional data file 1). We empirically observed that
major hubs - for example, Ub and SUMO - co-occur in cliques
much more often in the random networks (approximately
32%) compared to the real one (3.14%). These results strongly
indicate that, in terms of cliques, the U-net is far less modular

than equivalent random networks. The clusters resulting
from the MCL method showed a distinctive size distribution:
the number of clusters steadily decreases in a more or less lin-
ear fashion with increasing size till around a size of 30, fol-
lowed by about 21 clusters with just a single cluster of any
given size (Table S2 and Figure S1 in Additional data file 1).
This again suggests that there is a strong tendency to have
only few well-connected components of large-size in the U-
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net. Together these results indicate that both the hubs and
individual modules (approximated by clusters or cliques) of
the U-net are restricted in terms of their sphere of influence
and tend not to display much integration between each other.

To further investigate the biological significance of cliques,
we devised a novel method of identifying high-confidence
functional interactions between nodes using a measure that
has been termed point-wise or specific mutual information
(PMI) of co-occurrence in cliques (see Materials and methods
for details). We consequently identified 1,077 high confidence
interactions (P < 0.005) between 258 Ub/Ubl pathway com-
ponents and represented this as a graph (Figure 5; Table S2 in
Additional data file 1). This graph shows a striking structure
with several densely connected subgraphs that are likely to

Genome Biology 2009, Volume 10, Issue 3, Article R33 Venancio et al.

represent major functional ensembles with biological signifi-
cance (Figure 4). As a positive control we checked these
densely connected graphs for several previously identified
complexes and found that they were faithfully recovered.
Examples of these include the entire proteasomal complex
with the associated DUBs and ubiquitin receptors, the signa-
losome, the APC complex, the ubiquitin-dependent regula-
tory system of peroxisomal import, and the urmylation,
neddylation and sumoylation pathways. We also obtained
independent corroboration for many of these linkages in the
form of their co-occurrence in the clusters generated by the
MCL technique.

This observation suggested that the above graph has excellent
predictive potential in exploring previously under-appreci-

0@0.

Figure 5

Reconstructed network using PMI. Graphical representation of the network structure captured by calculating PMI based on protein presence in cliques.
Subgraphs representing important biological processes are inside boxes and magnified: APC complex (A); sumoylation pathway (B); Golgi and vesicles (C);
proteasome (D); splicing (E); Skp| and signalosome (F); ERAD (G); peroxisome (H). The colors are the same as in Figure |. The layout of the graph to
group together functionally linked dense subgraphs was achieved using the edge-weighted spring embedded (Kamada-Kawai) algorithm, which has

previously been shown to be very effective for such depictions [113].
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ated connections when used in conjunction with sequence
analysis. Here we report a few examples that are of interest in
this regard. One of the densely connected regions in this
graph is centered on the triad of highly connected nodes,
namely the Ring finger E3 Hrt1, the POZ-domain protein
Skp1 and the cullin Cdes3, which form the core of Skp1-cullin-
F-box (SCF) complexes. These nodes are further linked to
both the ubiquitin and Nedd8 (Rub1), the signalosome and a
series of 15 F-box proteins that provide further specific links,
with potential regulatory and destabilizing roles, to diverse
components of both the Ub-network and the proteome. A pre-
viously uncharacterized component of this subgraph is the
Yklo27w protein, which we previously identified as contain-
ing a distinctive version of the E1 domain fused to a carboxy-
terminal Trs4-C domain [51]. Given that this is the only E1
superfamily protein in this subgraph, it allows us to make a
functional prediction that is likely to interact with the E3 Hrt1
and the E2 Cdc34 in specific Ub/Nedd8-conjugation via cer-
tain SCF complexes. The endoplasmic reticulum (ER) associ-
ated degradation system (ERAD), which is involved in
degradation or processing of proteins associated with the ER
system, clearly emerges in our analysis as a distinctive sub-
graph. We observed that in addition to Cdc48, its target rec-
ognition receptors with Ubl domains of the Ubx family and
the rhomboid-like peptidases (Der1 and Dfm1i), it also
includes an uncharacterized protein, Ynli55w, that is exclu-
sively connected to this subnetwork. This protein is highly
conserved in animals, fungi and amoebozoana (also laterally
transferred to the apicomplexan Cryptosporidium) and con-
tains an amino-terminal Ani-finger combined with a car-
boxy-terminal SUMO-related Ubl domain. Based on its
connections in the PMI graph and the presence of the Ubl
domain, we predict that, analogous to the other Ubls in this
system, it is likely to function as a receptor in the ERAD sys-
tem that might recognize certain cytoplasmic metabolic
enzymes. The significant links that we recovered between
Ynli55w and the splicing factor Snu13 are also reminiscent of
the earlier detected link between the splicing factor Brr2 and
the ERAD system protein Sec63 [52]. This suggests that there
might indeed be unexplored connections between endoplas-
mic protein stability and the RNA processing machinery.
Examination of the PMI-derived graph in terms of connec-
tions to the rest of the proteome also helps in understanding
the differentiation of certain paralogous components of the
Ub-system. One case-in-point is the paralogous group of
RING finger E3s, Dma1 and Dma2, which are strongly con-
nected to each other (PMI = 6.25; P < 10%5), reflecting their
functional overlap in mitotic exit. However, each of them has
their own distinctive high-significance connections to the
proteome: for example, Dma1 interacts with the Esc2
involved in sister-chromatid adhesion, whereas Dma2 inter-
acts with Bub2 related to spindle orientation. Dma2 also
interacts with the kinase Ime2, suggesting that it might also
have a specific meiotic role [53-56].
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Evidence for massive feedback regulation of the Ub-system
Previous studies have shown that proteasomal components
are subject to possible feedback regulation via targeted mod-
ification by SCF complexes. Further, the proteasome-associ-
ated master regulator of the Ub-system, the transcription
factor (TF) Rpn4 [57,58], is also extremely short lived, which
is in large part due its destabilization via phosphorylation-
induced ubiquitination [57,59]. This prompted us to examine
if feedback regulation is a more pervasive feature of the Ub-
system. To avoid conflation with generic functional interac-
tions, we examined the self-connections in the U-net using
only the specific protein-modification datasets (see Materials
and methods for details). We observed that approximately
47.95% (140 out of 292) of the Ub/Ubl pathway proteins are
modified by Ub and/or SUMO, the dominant modifier being
Ub (42.8% of the components, FET, P ~ 1.54 x 1077; Table S3
in Additional data file 1). While there is a slight preference for
modification of proteasomal components (FET, P ~ 0.001),
there is no significant over-representation of any particular
category of proteins within the Ub-system (that is, Ubl, E1,
and so on) among proteins targeted for feedback regulation.
Thus, our results point to a largely unappreciated, massive
post-translational self-regulation in the Ub-system at all lev-
els. All Ub targets taken as a group did not show a lower half-
life relative to non-modified proteins. This is probably due to
the Ub-target set including both destabilizing K48 and non-
destabilizing K63 modifications. However, our simulations
showed that within the Ub-targets, modified Ub-system pro-
teins had a notably shorter half-life than equivalently sized
samples from the rest of the proteome (median P ~ 0.01).
Hence, we suspect that this extensive self-regulation is due to
destabilizing K48 modification of the Ub-system, which prob-
ably maintains the potentially destructive Ub-system under
check in the cell.

The Ub-system in the larger cellular context

Differential distribution of sumoylation and ubiquitination in cellular
compartments

Several studies have indicated that Ub/Ubl conjugation is
critical for a wide range of processes across different cellular
compartments [3,60-63]. This prompted us to obtain a quan-
titative picture of the distribution of different modifications
across compartments and also uncover any potentially novel
roles for different Ub-system components in particular com-
partments. The most prominent difference in the relative
compartment-specific distribution of modifications is with
respect to sumoylation and ubiquitination. Sumoylated pro-
teins are clearly overrepresented in the nuclear compartment
(including nucleoplasm, nuclear pore, nucleolus and nuclear
periphery; FET, P < 2.2 x 10710), cytoskeleton and spindle
pole, with approximately 50.3% of sumoylated proteins local-
ized to the nucleus (Table S4 in Additional data file 1). In gen-
eral, this is consistent with a well-established role for
sumoylation in several processes related to chromatin
dynamics, chromosome condensation, DNA repair and cell
division. This process perhaps also involves interactions via
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the SUMO interacting motifs that are found in several nuclear
proteins [64]. We observed that the highest fraction of
sumoylated proteins is in the nucleolus (Table S4 in Addi-
tional data file 1), the self-organized, dynamic membrane-less
subnuclear component primarily involved in biogenesis of the
ribosome and several ribonucleoprotein particles [65,66].
Interestingly, the de-sumoylating peptidase Ulp1, which is
anchored to the nuclear envelope via interactions with karyo-
pherins, is absent from the envelope in regions juxtaposed to
the nucleolus [3,67]. These observations are in line with prior
reports showing the requirement of sumoylation for proper
ribosome biogenesis [67], and specifically suggest that avoid-
ance of de-sumoylation could be critical for structural organ-
ization of the nucleolus. An examination of sumoylated
nucleolar proteins reveals that in addition to ribosome and
snRNP assembly factors (for example, Nop6, Nop7, Nop8,
and Nops8), multiple components of the Cdc Fourteen Early
Anaphase Release (FEAR) network (for example, Cdc14, Tof2
and Fob1 [68]), are also modified.This suggests that sumoyla-
tion could additionally be a factor in the sequestration of such
regulators of replication and cell-cycle progression to the
nucleolus.

In contrast, we found a significant over-representation of
ubiquitination among proteins of non-nuclear compartments
(FET, P~ 8.86 x 10°9) - cell periphery, Golgi apparatus, endo-
somes, vesicles, vacuole and the ER (Table S4 in Additional
data file 1). The cell periphery signal is likely to be enriched in
UbK63 chains, which is important in internalization of mem-
brane-associated proteins via endocytosis [60,61,69]. Fur-
ther, it has been suggested that regulation of endocytosis by
Ub might have a role in deciding if a particular receptor will
participate in signaling or be attenuated through lysosomal
degradation [69]. The well-known role of Ub, especially
mono-ubiquitination, in protein sorting in the Golgi appara-
tus, endosomes and vesicles is consistent with the remainder
of this strong non-nuclear enrichment of Ub targets.To better
understand this process, we combined these localization data
with the PMI network (Figure 5) discussed above. We
detected a densely connected subgraph in this network with
proteins such as Bres, Vps25 and Pep3, among others, which
show predominantly Golgi-, vesicle-, and endosome-associ-
ated localization [70-72]. Interestingly, this subgraph also
included the E2 ligase Rad6, which has thus far been prima-
rily implicated in a nuclear function in mono- or poly- ubiqui-
tination of chromatin proteins [73] and DNA replication/
repair proteins [73,74]. Strikingly, two other components of
the vesicular trafficking system, namely Vps71 and Vps72 and
the DUB subunit Bres, which genetically interact with Rad6,
play a second role in chromatin remodeling complexes. Sev-
eral members of the endosomal sorting complex required for
transport (ESCRT)-II and ESCRT-III - complexes involved in
vesicular trafficking - have also been implicated in RNA
polymerase function and chromatin dynamics [75]. The PMI
graph also hints at functional connections between different
chromatin proteins and vesicular trafficking or sorting pro-
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teins (for example, Doag and Isw1, and Vps8 and Swri; Table
S2 in Additional data file 1). This high confidence PMI linkage
of different nuclear and vesicular trafficking proteins sug-
gests that several of these, especially those related to ubiqui-
tin modification, might function in both cellular
compartments. In particular, the suggested functional link-
age of Rad6 with the cytoplasmic protein-trafficking system
(Figure 5) implies that it might play a second cryptic role in
this system as an E2 ligase, and might be a key component of
the ubiquitinating machinery shared by the cytoplasmic and
nuclear regulatory systems. It is possible that Rad6's E2 func-
tion in the cytoplasmic trafficking system is backed up by a
second E2, Sec66, which has resulted in this role of Rad6 not
being previously recognized in this system. Further, the
results on the enrichment of ubiquitination in both the Golgi
and the ER compartments emphasizes the common use of
ubiquitination in the quality control of defective proteins via
two very different end results - lysosomal and proteasomal
degradation, respectively.

Regulation of chromatin proteins by the Ub-system

We then investigated interlocking between the Ub-system
and nuclear processes by using a well-curated dataset of chro-
matin proteins [76] (Figure S2 in Additional data file 1). The
signal for the specific sumoylation of chromatin proteins is
very strong (FET, P < 2.2 x 10716); even upon correcting for
the general enrichment of sumoylation in nuclear proteins,
we observed that chromatin proteins are specifically enriched
in this modification (FET, 4.587 x 1077). This observation is
consistent with numerous individual observations showing a
strong connection between sumoylation and chromatin func-
tions, such as local structural remodeling as well as higher-
order chromosome organization [3,5,62,77,78]. It was
recently demonstrated that the SUMO-dependent Ub ligase
Slx5-S1x8 associates with the DNA repair apparatus at the
nuclear pore complex [79]. It was postulated that sumoylated
proteins might accumulate at collapsed forks or double-
strand breaks, thereby requiring proteasomal degradation
due to Slx5-SIx8 mediated ubiquitination for their clearance.
Pol32, Srs2 and Rad27 were suggested as potential targets for
such a degradation process [79].Consistent with this pro-
posal, all these genes were recovered as interacting with Slx5-
SIx8 in our PMI network. Moreover, we also identified several
other genes as part of this densely connected subgraph of the
PMI network (Figure S2 in Additional data file 1) with a
potential role in DNA repair. Of particular interest in this
regard is the tyrosyl-DNA-phosphodiesterase (Tdp1), which
localizes to single-stand breaks with covalently linked DNA-
topoisomerase linkages [80], and Rad9, a component of the
9-1-1 complex [81]. These observations suggest that such
SUMO-dependent targeting of proteins might additionally be
critical for clearing proteins accumulated at single-strand
breaks and other DNA lesions sensed by the 9-1-1 complex.

A study of the PMI graph (Figure 5) in conjunction with evo-
lutionary conservation patterns also helped us predict a key
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role for Sus1 in coordinating different Ub modification events
of chromatin proteins. Susi is predicted to form a 4-helical
bundle (File S2 in Additional File 1) and earlier studies have
shown that it is associated with the nuclear pore, as part of the
minimal histone H2B de-ubiquitinating complex in conjunc-
tion with the DUB Ubp8. We also found that plants contain a
second paralog of Sus1 (File S2 in Additional File 1) that is
fused to the carboxyl terminus of another DUB (Ubp2s
[GI:30688637]), suggesting a conserved functional associa-
tion between Sus1 and de-ubiquitination. Our analysis of the
evolutionary conservation patterns of components of this
complex showed that whereas Sg11 (with a Rad18 finger) and
Sg73 (with a CCCH finger) are restricted to the eukaryotic
crown group, Sus1 itself is found in kinetoplastids as well as
parabasalids. This indicates that Sus1 was present in the last
eukaryotic common ancestor and implies that it is the pri-
mary conserved subunit of the histone H2B de-ubiquitinating
complex. The PMI graph shows that SUS1 also shows signifi-
cant functional links to two E2 ligases, Ubc11 and Ubc4, as
well as the E3 Ris1/Uls1. These associations suggest that in
addition to being a subunit of the DUB, Sus1 might also
recruit E2s or an E1 and thereby function as a common adap-
tor for both chromatin protein ubiquitination and de-ubiqui-
tination.

Interplay between the ubiquitin system and transcription

We combined the comprehensive transcriptional network
compiled earlier by our group [34,39] with the U-net pre-
sented in this study to examine the functional interplay
between these two major regulatory systems in the cell. We
observed that in addition to the activator of proteasomal
genes Rpng (FET, P < 2.2 x 10-16) and Reb1 (FET, P~ 0.0002)
[34], there are few other potentially significant regulators of
the Ub-system (FET, P < 0.015; Table S5 in Additional data
file 1), namely Aft1, Sip4 and Yap3. Examination of other tar-
gets, which are likely to be co-regulated with the Ub-system
genes by these TFs, indicates possible conditions or aspects of
cellular metabolism in which they might be involved: Aft1 tar-
gets appear to be generally linked to iron metabolism [82],
Sip4 targets are related to gluconeogenesis [83] and Yap3 tar-
gets are involved in stress response [84]. In terms of incom-
ing connections of TFs to components of the Ub-system (that
is, number of regulatory inputs from TFs to Ub-system genes)
we observed no obvious relationship between connectedness
of a given gene in the U-net and its inputs from the T-net
(Table S5 in Additional data file 1). Hence, more tightly regu-
lated genes do not necessarily have more interacting partners
or a wide range of distinct functions. However, certain genes
are highly regulated by a large number of TFs and might be
required in multiple distinct conditions. The Ub-system gene
with the highest number of inputs is the uncharacterized F-
box protein- encoding gene YMR258C (16 different input
TFs). Based on it is interaction partners (Aro1, Faf1, Ypt52,
Adh1, Gdh1, Hsp82, Gdi1, Ymr1), most of which are ubiquiti-
nated, it is predicted to participate in diverse processes such
as carbohydrate metabolism, vesicular trafficking and RNA
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processing. Hence, depending on the transcriptional input,
the same E3 subunit might be potentially reused in very dis-
tinct functional contexts. SUMO and Nedd8 (Rubi1) also
receive a higher than typical number of TF inputs (ten TFs),
suggesting that these modifiers might be controlled at the
transcriptional level by a diverse set of stimuli. Thus, specific
transcriptional regulation of different Ub-system genes
appears to enable them to be reused to regulate different cel-
lular processes.

From the reverse perspective, one third of all TFs in the T-net
are ubiquitinated and/or sumoylated (Table S5 in Additional
data file 1). The fraction of sumoylated TFs is not significantly
different from the fraction of sumoylated TFs in the nuclear
proteome, suggesting that unlike chromatin proteins, there is
no preferential sumoylation of TFs beyond the nuclear back-
ground.Ubiquitination was, however, generally underrepre-
sented amongst TFs with respect to both the whole proteome
(FET, P ~ 0.006) and also just the nuclear proteome (FET, P
~ 0.018). Despite this trend, we observed that ubiquitinated
TFs tended to have a higher number of significant co-regula-
tory interactions with other TFs (that is, significant sharing of
target genes with other TFs, see [34,39] for details; P <
0.0001). Based on these observations, it appears that ubiqui-
tination of TFs, while less frequent, might have a specific role
in influencing their co-regulatory interactions. The low inci-
dence of TF ubiquitination also questions the role of ubiquiti-
nation in modulation of TFs by degradation. On the whole, Ub
and SUMO might exert a considerable biological influence via
transcription regulation because TFs modified by them
together regulate 2,899 genes, which is nearly half of the pro-
teome.

Interplay between cell cycle-linked gene expression and control via
the Ub-system

We further explored the link between gene expression and the
Ub-system to investigate if there was any interplay between
Ub/Ubl modifications and variations in gene expression over
the cell cycle. Using data published by Spellman et al. [85], we
compiled a list of genes whose expression varied periodically
over the progression of a cell cycle and checked their products
for post-translational regulation by Ub/Ubl modification
(Table S6 in Additional data file 1). Interestingly, products of
these cyclically expressed genes showed a certain propensity
for being preferentially ubiquitinated (FET, P ~ 0.002) but
not sumoylated. We also uncovered a certain propensity for
genes induced by cyclins Clng and Clb2 [85] to be preferen-
tially ubiquitinated (FET, P~ 0.007). Thus, in addition to reg-
ulation at the level of gene expression, the products of a
subset of these genes with periodic expression over the cell
cycle might experience a potentially reinforcing post-transla-
tion regulation by means of ubiquitination. Interestingly,
while the products of genes regulated by Clb2 showed a ten-
dency not to be sumoylated, products of those regulated by
CIn3 showed some preference for sumoylation (for example,
histones, cohesin and cytoskeletal components; FET, P =~
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0.018). Thus, in contrast to ubiquitination with its general
role in regulation of protein levels, the interplay between
sumoylation and cyclic gene expression might have a specific
role in the assembly of certain nuclear and cytoskeletal com-
plexes linked to the G1 phase of the cell cycle.

Similarities and differences in the properties of targets of Ub and
SUMO modification

We then systematically investigated different gross proper-
ties of Ub and SUMO targets to understand their general cel-
lular properties and the implications thereof. For this
purpose we integrated the modification dataset with the
large-scale datasets for protein abundance [30,31], half-life
[29] and frequency of optimal codons [86]. Both ubiquiti-
nated and sumoylated proteins have higher abundances than
unmodified proteins (WMWT, P < 2.2 x 106 and P < 0.01,
respectively; Figure S3 in Additional data file 1), with proteins
undergoing both modifications showing even higher abun-
dances (WMWT, P < 2.2 x 106). In agreement with their
higher abundances, ubiquitinated and sumoylated proteins
show a significantly higher frequency of optimal codons and
appear to be more efficiently translated than non-modified
proteins (WMWT, P < 2.2 x 1016 and P ~ 1.22 x 109, respec-
tively; Figure S3 in Additional data file 1). While one could
posit a technical bias towards detection of abundant proteins,
the use of sensitive mass spectrometry methods to detect even
rare species suggests that this might not be a major confound-
ing factor. Based on these observations, it appears that regu-
lation via conjugation of protein modifiers predominantly
targets abundant and efficiently translated proteins. How-
ever, given the divergence in the roles of sumoylation and
ubiquitination, it is likely that the effects on their targets are
very distinct. For example, we found that ubiquitinated pro-
teins, but not sumoylated proteins, show a lower half-life than
their unmodified counterparts (Figure S3 in Additional data
file 1). However, this difference is not strong (WMWT, P =~
0.03), which is in apparent contradiction to the powerful Ub-
dependent proteasomal degradation activity. However, there
are two possible explanations for this observation, which are
not mutually exclusive: first, the ubiquitination datasets do
not distinguish between the predominantly destabilizing K48
polyubiquitination on the one hand and the K63 polyubiqui-
tination and monoubiquitination on the other, which have no
destabilizing effects; and second, protein levels can rapidly
become undetectable after Ub-tagging, and these abrupt
changes in protein levels might not be captured by the tradi-
tional half-life estimations involving antibodies or green fluo-
rescent protein-tagged constructs.

We also examined the relationship between Ub or SUMO
modification and the presence of low complexity regions
(LCRs), which are repetitive or unstructured regions fre-
quently found in eukaryotic proteins (Figure S3 in Additional
data file 1). Sumoylated and/or ubiquitinated proteins have
higher fractions of LCRs (WMWT, P ~ 6.01 x 10719), with
sumoylated proteins having even higher fractions of LCRs
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than their ubiquitinated counterparts (WMWT, P~ 6.71 x 10
9). It was previously hypothesized that hubs in the protein
network tend to have higher fractions of amino acids span-
ning LCRs and a role in protein-protein interactions was pro-
posed [87]. However, we did not observe a straightforward
positive correlation between the LCR content and degree of a
given protein in the U-net; hence, the earlier reported obser-
vation might be an artifact of the presence of spuriously
'sticky' LCR-rich 'hubs' in the protein-protein interaction net-
work. On the other hand we did find a striking prevalence for
both ubiquitination and sumoylation among hubs (FET, P <
2.2 x 10716). Enrichment in ubiquitination perhaps reflects a
targeted control of hubs through degradation by the ubiqui-
tin-proteasome system. As nuclear proteins in general are
enriched in hubs, we then tested if enrichment of sumoylation
in hubs might merely be a consequence of that observation.
Even after correcting for this nuclear enrichment of hubs we
found a clear propensity for sumoylation among hubs (FET, P
~ 5.27 x 105). Thus, sumoylation could potentially serve as a
platform for allowing secondary interactions through SUMO-
interacting motifs and increase the total number of interac-
tions of a protein. Thus, it appears that both modifications
tend to preferentially target abundant proteins and hubs, but
appear to exert distinct influences on their targets; Ub proba-
bly has a role in destabilizing its targets, whereas SUMO
probably contributes to increased number of interactions.

Evolutionary implications of the reconstructed
network

A precise understanding of how the U-net has diversified in
the course of evolution requires comparable networks from
other eukaryotes. Although there have been several recent
datasets that provide information to allow limited reconstruc-
tions in other eukaryotes, we feel that the data are still vastly
insufficient to attempt any meaningful comparison with the
current network available for S. cerevisiae. However, analysis
of the conservation patterns of nodes and the general struc-
ture of this S. cerevisiae network does throw light on both the
early diversification of the Ub-system as well as some general
evolutionary trends of particular components. Our earlier
investigation of the evolution of Ub/Ubls in eukaryotes and
other Ub-like proteins suggests that eukaryotes probably
acquired the basic precursors of the Ub conjugation system,
like the ancestral E1 and E2 enzymes, from a bacterial source
[13,88]. Given that there are no extant primitively amito-
chondriate eukaryotes, the most parsimonious scenario
would imply that this bacterial source was the progenitor of
the mitochondrion [89]. From the time of this first eukaryotic
common ancestor with the bacterial endosymbiont to the last
eukaryotic common ancestor (LECA) of all extant lineages
there was an explosive radiation of the Ubl superfamily
resulting in several conjugated and non-conjugated forms
[51]. It is likely that the ancestral conjugated form had a gen-
eral role of a tag in the degradation of targeted proteins
because peptide tagging (for example, tmRNA-derived pep-
tides and pupylation in bacteria [90-92]) has been an ancient
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solution to the problem of specifying proteins for unfolding
and degradation by different ATP-dependent proteolytic sys-
tems. However, the explosive early radiation of the Ubl super-
family suggests that even before LECA these tags appear to
have been utilized in contexts other than degradation, such as
specific protein-protein interactions.

Our current analysis of the U-net helps in understanding the
context of differentiation of the primary conjugated forms,
Ub and SUMO. We observed a strong signal for the preferen-
tial nuclear enrichment of SUMO compared to the cytoplas-
mic enrichment of Ub, especially in the context of vesicular,
vacuolar and ER complexes. Even the SUMO E3s show a pre-
dominantly nuclear localization and nuclear interaction part-
ners (Figure S3 in Additional data file 1). This suggests that
the divergence of Ub and SUMO was probably correlated and
coeval with the emergence of the nucleus as a separate com-
partment from the cytoplasmic ER network. SUMO probably
acquired a dominant nuclear role while Ub a dominant cyto-
plasmic role. Previously, sumoylation has been shown to
exhibit a preference for lysine occurring in the signature
sequence hxK [ED] (where h is a hydrophobic residue and x
any residue) [93]. However, it was not clear if the Ub sites
exhibit any preference at all. We utilized the dataset identify-
ing the individual modified lysines on Ub targets [22] and
1,000 randomly picked lysines as a comparison for statistical
purposes to investigate if there was any preference in the Ub
modification site. We noticed a preference for a motif of the
form [ED]Kx4 [ED] spanning the modified lysine, and a mild
general enrichment for acidic residues for around five posi-
tions on either side of the modified K (Figure S4 in Additional
data file 1). This suggests that in addition to divergence of the
modifiers, SUMO and Ub themselves, even their target site
preferences differentiated to a certain extent. Consistent with
this, the E1, E2 and E3 enzymes for Ub and SUMO appear to
have diverged considerably in the interval between the first
eukaryotic common ancestor and LECA, with distinct SUMO-
and Ub-specific E3s by the time of LECA. Further, specific
nucleolar enrichment and function suggest that the diver-
gence of SUMO might be related to the emergence of this key
subcompartment within the nucleus.

Phyletic patterns of SIM-containing SUMO-dependent Ub
E3s reveal an interesting pattern: apparently, Rnf4 (SIx8)
orthologs are conserved throughout the eukaryotic crown
group (animal, fungi, amoebozoans and plants) and have
been transferred to chromists from their plant symbiont.
However, Slx5 (Rfp1 and Rfp2 in S. pombe) is restricted to the
ascomycete fungi and appears to have emerged in that lineage
through a duplication of Slx8. The other potential SUMO-
dependent E3, Ris1 (Uls1), is also restricted to the eukaryotic
crown group. These observations would suggest that the func-
tional linkage between sumoylation and ubiquitination was a
relatively late phenomenon. However, it cannot be ruled out
that other eukaryotes possess uncharacterized SUMO
dependent Ub ligases. In this light it is interesting to note that
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Rads (a more ancient Ris1 paralog) shows strong functional
links in the PMI network with different SUMO pathway pro-
teins, namely Ubcg (the SUMO E2) and Wss1 (a potential
SUMO DUB). Hence, it would be of interest to investigate if
Rads might have SUMO-dependent ubiquitination activity.

Examination of our reconstructed network in light of the con-
servation patterns of components of the ER associated ubiq-
uitination system also throws light on the origin of the ERAD
system. Within the core ERAD system identified here through
PMI analysis (Figure 5) specific components, such as the
ATP-dependent unfoldase Cdc48, the key Ub-interacting pro-
tein Npl4, the UBX and CUE domains of receptors of targeted
proteins, and the rhomboid-like peptidase (Dfm1 and Der1)
[94], can be traced back to LECA. Of these, Cdc48 can be
traced to the archaeal component of the eukaryotic progeni-
tor and the rhomboid-like peptidase Dfm1/Der1 to the bacte-
rial symbiont. In archaea, Cdc48 homologs function as
chaperones in association with the RNA-degrading exosome
or as chaperones of membrane proteins [95,96]. Multiple
eukaryotic cytoplasmic complexes, such as the ribosome, the
T-complex chaperone and the core of ESCRT-III, have an
archaeal origin, suggesting that many complexes functioning
in the cytosol of the archaeal progenitor of eukaryotes were
directly inherited by the eukaryotic cytoplasm [89]. In a sim-
ilar fashion it is possible that Cdc48, which was associated
with the cytosol and the membrane of the archaeal progeni-
tor, was retained as the core of a key ER membrane associated
chaperone system in eukaryotes. However, the elaboration of
this system proceeded very differently in eukaryotes, with
rhomboid peptidases acquired from a bacterial endosymbi-
ont being recruited as new components that were critical in
the context of an internal membrane - the ER. The remaining
components were eukaryotic innovations; two of them - the
UBX domain and the novel Ubl in Npl4 - emerged as part of
the early eukaryotic radiation of the Ubl superfamily [51]. The
CUE domain appears to have been part of the radiation of Ub-
binding domains of the UBA-like fold, whereas the inactive
Jab domain in Npl4 is a part of the notable radiation of active
as well as inactive Ub-binding Jab domains in early eukaryo-
tic evolution [51,97]. The Zn-clusters in Npl4 appear to be de
novo innovation of a Zn-supported eukaryote-specific struc-
ture. Thus, the early radiation of Ubls and Ub-associated
domains provided a new 'eukaryotic' layer that connected the
ancient membrane-linked chaperone system to the incipient
Ub-system. Similar recruitment of Ub-system components to
the ESCRT-III complex, inherited from archaea, appears to
have been central to the emergence of the new role of the
eukaryotic ESCRT complex in vesicular trafficking, in addi-
tion to its ancestral function in cell-division [98,99].

Our earlier study of lineage-specific expansions and innova-
tions in the Ub-system showed that while E1 and E2 are
largely vertically inherited over eukaryotic evolution, the E3s
and their subunits, and to a lesser extent the DUBs, are sub-
ject to numerous lineage-specific expansions or innovations
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[100]. This pattern was explained on the basis of the core
structure of the conjugation pathway, in which a common
stem comprising E1 and E2 is recruited to a very diverse set of
targets by means of E3s and their subunits. Similarly, lineage-
specific innovations in DUBs are seen as driven by a need to
accommodate larger substrate diversity. An examination of
our PMI-based network shows that one of the most striking
dense subgraphs is centered on the Skpi, Hft1 and Cdcs3
(Figure 5). These are in turn connected to numerous F-box
proteins in a 'star-like' topology. This organization suggests
that with a relative small set of RING finger E3 ligase and cul-
lin subunits a great diversity of SCF E3s is achieved, primarily
via the multiplicity of F-box subunits. Interestingly, the larg-
est independent lineage-specific expansions in the Ub-system
are seen in F-box proteins (for example, plants and nema-
todes), POZ (BTB) and MATH domain proteins (which take
the place of the POZ domain Skp1 in the SCF complexes; for
example, plants and different animals), both of which are
components of SCF. The organization of the SCF subgraph of
the above network suggests that this organizational principle
has probably favored repeated lineage-specific diversification
of the SCF complex widely across different eukaryotes. Such
lineage-specific expansions were previously suggested to
have a role in pathogen response; hence, these SCF complexes
might have independently radiated in different eukaryotic
lineages as a part of the intracellular immune system that rec-
ognizes a diversity of intracellular pathogens and degrades
their proteins [101].

Conclusions

By reconstructing the first comprehensive network represen-
tation of the Ub pathway for a model eukaryote, we were able
to investigate for the first time the Ub-system not merely in
terms of individual components but as a whole. As a result we
were able to obtain a quantitative picture of how different
subsystems interact within the Ub-system and develop an
understanding of the diversification of the biochemistry of
paralogous and functionally analogous components of the
system. We also developed a novel point-wise mutual infor-
mation based method that helps in assessing strengths of par-
ticular functional connections in the network and delineating
the most relevant interactions. The reconstruction also
helped us recover new connections that have predictive value
regarding previously poorly understood components (for
example, of SCF-based ubiquitination and ERAD) and might
be of use in further experimental investigation. Finally, we
were also able to estimate the extent of interlocking between
other major regulatory systems such as transcription and the
ubiquitin system and the compartment-specific diversity in
modification by ubiquitin-like modifiers. We also use the
structure of the network reconstructed here to understand
certain key tendencies observed in the evolution of the ubiq-
uitin system. We hope the model presented here will provide
a platform not only for integrating distinct datasets but that
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also allows comparisons between different eukaryotes in the
future.

Materials and methods

Defining the Ub-system components, datasets and
network assembly

The Ub/Ubl system proteins used in our reconstruction are
manually curated and frequently updated via extensive liter-
ature mining as presented in earlier publications by our group
[13,51,102]. For assembling a comprehensive interaction map
using publicly available data we used the following databases:
BioGRID (version 2.0.45) [103,104], IntAct (version 02/10/
2008) [105] and MINT (version 5/16/2008, without compu-
tationally predicted interactions) [106]. These were used to
build the interaction network, which was further comple-
mented by specific ubiquitination [19-23], sumoylation [24-
28], Rsps (E3 ligase) [33] and the proteasome subunit Rpn1o
data [20,21]. All data processing was locally performed with
custom scripts using the open reading frame identifiers from
the Saccharomyces Genome Database [86]. To assemble the
Ub network (graph), all pair-wise interactions (edges) that
involved at least one component of the Ub/Ubl pathway
(described in the previous section) were used. We have also
assembled a protein-protein interaction network by filtering
this type of interaction from BioGRID[103], IntAct [105] and
PMINT [106]. All analyses of ubiquitination and sumoylation
mentioned in the text were performed using only the Ub/
SUMO-specific datasets mentioned above.

Other datasets used in this study include: environmental gene
essentiality [40]; genomic profiling [41]; protein half-life,
localization and abundance [29-32]; chromatin- and cell
cycle-related proteins [76,85]. The environmental genomic
profiling dataset is composed of genes important to normal
growth under medium and/or nutrient changes (environ-
mental) and chemical stresses (exposure to small molecules).
Only the first category was used here. We define a gene as
involved in environmental stress response if it reached statis-
tical significance (P < 0.001) in at least 80% of the replicates
in the original dataset [41]. As many high-throughput data-
sets are not readily available through public databases and/or
in plain text formats with unique identifiers, their integration
and analysis necessitated extensive case-specific data extrac-
tion through literature searches, reorganization and collation
via custom Perl scripts.

Data processing, statistical testing and simulations

Basic network analyses were carried using Perl scripts [107]
and all statistical tests were performed using the R statistical
language [108]. For simulation purposes, 10,000 random
networks were created by re-wiring the edges of the original
network using a previously described strategy [109], main-
taining the original degree of each node. In assessing robust-
ness of the U-net to attack/failure [38,110], edges created due
to a link with Ub or SUMO interactions were excluded to
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avoid biases due to these major hubs. The logo representation
of the ubiquitination sites was plotted using WebLogo [111].
Graphs were rendered using Cytoscape [112].

Assessing network modularity

In the k-clique approach we identified complete subgraphs
with k-vertices using two independent programs that pro-
duced identical results [48,49]. Incomplete (or defective)
cliques [49] were also generated via merger of cliques into
larger modules, annotated and analyzed [34]. Merger of
cliques with at least 51% overlapping nodes resulted in 12,284
cliques generating 574 modules. For MCL we used the unsu-
pervised clustering implemented in the MCL package [50].
We assigned weights for the interactions using simple topo-
logical overlap between two nodes and used the resulting
weighted graph for computation of clusters with the MCL
program [47]. We then identified high-confidence interac-
tions involving different proteins of the U-net using a novel
approach of point-wise mutual information. PMI is effectively
a measure of the association between two nodes i and j in the
network by using their joint distribution (p(Z, j)) and the prod-
uct of their marginal distributions (p(i) and p(j), respec-
tively):

p(i4)
p(i)p( /)
To assess the significance of the PMI value between two nodes
we computed cliques for 10,000 random networks and calcu-
lated the p-value for a pair of nodes as the fraction of the ran-

dom networks that presented the PMI score of at least the
same value as the U-net.

Mi = log, €Y
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