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Background
Predicting complete protein-coding genes in human DNA

remains a significant challenge, as the results of the

ENCODE Genome Annotation Assessment Project (EGASP)

workshop clearly demonstrate. Although much progress has

been made of late in the use of increasingly sophisticated

models of gene structure, particularly those that utilize

homology evidence within a phylogenetic framework (for

example, [1,2]), it is clear that there is yet much room for

improvement. In the wake of the most recent spate of

advances in gene structure modeling, we additionally

observe that the sophistication in modeling techniques has
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Abstract

Background: Predicting complete protein-coding genes in human DNA remains a significant
challenge. Though a number of promising approaches have been investigated, an ideal suite of
tools has yet to emerge that can provide near perfect levels of sensitivity and specificity at the
level of whole genes. As an incremental step in this direction, it is hoped that controlled gene
finding experiments in the ENCODE regions will provide a more accurate view of the relative
benefits of different strategies for modeling and predicting gene structures.

Results: Here we describe our general-purpose eukaryotic gene finding pipeline and its major
components, as well as the methodological adaptations that we found necessary in
accommodating human DNA in our pipeline, noting that a similar level of effort may be necessary
by ourselves and others with similar pipelines whenever a new class of genomes is presented to
the community for analysis. We also describe a number of controlled experiments involving the
differential inclusion of various types of evidence and feature states into our models and the
resulting impact these variations have had on predictive accuracy.

Conclusions: While in the case of the non-comparative gene finders we found that adding
model states to represent specific biological features did little to enhance predictive accuracy, for
our evidence-based ‘combiner’ program the incorporation of additional evidence tracks tended
to produce significant gains in accuracy for most evidence types, suggesting that improved
modeling efforts at the hidden Markov model level are of relatively little value. We relate these
findings to our current plans for future research.
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to some degree outstripped our ability to ascribe, with high

confidence, specific reasons for the difference in perfor-

mance between competing gene finding systems,

particularly those that utilize similar underlying models

and/or forms of evidence, but that differ in the particulars of

their implementation. Although it is tempting in some cases

to ascribe differences in performance to conspicuous

differences in the published descriptions of two software

systems, it is clear that such reasoning can be highly

unreliable when the published descriptions are not complete,

when the systems under consideration are highly complex,

and when the source code is not available to third parties for

detailed comparison. Unfortunately, these conditions hold

for most gene finding systems in use today, with few

exceptions. An additional complication arises out of the use

of different training protocols, which can have a profound

effect on the performance of a single system [3], making

interpretation of the differences between systems, absent

knowledge of precisely how they were trained, very risky

indeed. It is clear, however, that accurate interpretation of

such differences is essential for progress in the

computational science of gene structure modeling.

For these reasons we decided to undertake, in conjunction

with our EGASP activities, a series of controlled experiments

designed to measure the relative influence of various

components in our underlying models. Whereas the high-

level EGASP evaluation included in this volume [4]

compares disparate systems, each consisting of a complex

code base with virtually no shared components between the

competing systems, it was our hope that by performing a

number of controlled experiments, each within the environ-

ment of a single software system, we could help to foster a

more fine-grained understanding of the relative merits of

different modeling decisions for gene structure prediction.

Thus, our hope was to complement the overall EGASP

comparison with a smaller-scale (but potentially very

valuable) comparison of modeling techniques for human

protein-coding genes.

Our efforts can be partitioned into two distinct sets of

experiments. The first set involves the inclusion or exclusion

of various states in our generalized hidden Markov model

(GHMM) gene finder GeneZilla. Starting with a basic state

topology for eukaryotic gene structure, we proceeded to

incorporate additional states for biological features such as

signal peptides and CpG islands, measuring the impact of

these modifications on two sets of held-out test genes. We

additionally investigated the effect of training set size, as

well as the utility of isochore modeling via an external HMM

for isochore boundary predictions. We also offer anecdotal

observations on the different levels of effort required to

achieve similar levels of accuracy in our two GHMM-based

gene finders, despite their having nearly identical underlying

models and algorithms. The latter observation further

bolsters our contention that the differences in performance

between competing systems often cannot be ascribed with

any confidence to differences in modeling decisions, due to

the many other sources of variation in the training and

operation of these complex software systems.

The second set of experiments involved the differential

inclusion of various evidence tracks in our comparative and

integrative ‘combiner’ program, JIGSAW, which was found

to perform as well as or better than any of the other entries

in the GENCODE competition. Because JIGSAW is an

integrative program that can combine arbitrary forms of

evidence (including the predictions from our other gene

finders and sequence analysis programs), our early

expectations were that this tool would dominate our

submissions to the GENCODE competition, and hence we

have concentrated our efforts on this particular tool. Our

discussion will therefore focus correspondingly on this most

important component of our pipeline.

We give a description of our prediction pipeline and the

major components in it, which we have used repeatedly and

with much success for the annotation of a number of

invertebrate eukaryotic genomes sequenced and/or anno-

tated at The Institute for Genomic Research (TIGR). Because

the components that we describe are all released under

open-source software licenses, others are thereby enabled to

reproduce any of our computational results and to

investigate extensions to our methods. In this way, we hope

that our efforts will aid others in contributing to the

advancement of automated genome annotation techniques.

Results
Accuracy on the ENCODE regions
Results for our ab initio predictions seem to place GeneZilla

roughly between AUGUSTUS-abinit and GeneMark.hmm in

accuracy for this particular test set (for example, Table 5 in

[4]). As stated previously, ascribing these differences in

accuracy to particular algorithmic and modeling differences

between the three systems is difficult at best. In the case of

AUGUSTUS and GeneZilla, both systems effectively mimic

the earlier program GENSCAN [5] by utilizing nearly

identically-structured GHMMs with a generalized Viterbi

decoding algorithm. Known differences include the modeling

of intron lengths (geometric in GeneZilla and GENSCAN;

non-geometric for short introns in AUGUSTUS [6]), the

number of isochores modeled (four in GeneZilla and

GENSCAN; ten in AUGUSTUS), and the respective training

protocols employed in estimating the thousands of

parameters required by each of these systems (for example,

[3]). We plan to investigate the individual effects of each of

these differences within a controlled setting, as in the

feature-state experiments described here (see the ‘Effects of

modeling specific features’ section ), and to reported these at

a later date.
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The JIGSAW version designed to recreate the human anno-

tation (and submitted to EGASP) is based on the develop-

ment of a non-expression-based gene finder. We experimented

with input from the four gene finders from UCSC’s annota-

tion database (GENEID, SGP, TWINSCAN and GENSCAN)

plus GeneZilla and GlimmerHMM. Table 1 shows the results

of combining the four gene finders downloaded from UCSC

(JIGSAW-GeneFinder4) and the addition of GeneZilla and

GlimmerHMM (JIGSAW-GeneFinder6). Accuracy is mea-

sured on coding regions of the exons for three categories:

genes, where the entire gene is correctly predicted from start

codon to stop codon including all internal exons; exons,

where both splice sites are correct; and the protein coding

nucleotide level.

The four gene finders downloaded from UCSC collectively

identify 76% of the test exons correctly. Thus, if JIGSAW is

provided only the output of these gene finders and if it can

always select the correct exon, the theoretical upper bound

on its exon sensitivity is 76%. Among the input gene finders,

SGP achieves the highest exon sensitivity (61%) and

TWINSCAN has the highest exon specificity (73%) with 54%

of the exons supported by three or more gene finders.

Adding GeneZilla and GlimmerHMM increases the number

of correctly identified exons from 76% to 80%, and the

additional input supports exons predicted by the other gene

finders. With the addition of our gene finders, three or more

gene finders support 67% of the exons. Thus, by adding

GeneZilla and GlimmerHMM as input, JIGSAW’s prediction

performance is superior in nearly all categories to the best

individual gene finders SGP and TWINSCAN.

Adding expression evidence from non-human sources (non-

human RefSeq data and non-human mRNA data) expands

the pool of correctly identified exons to 83% of the test set,

and shows substantial improvements in prediction accuracy

(JIGSAW-non-human EST in Table 1) over the gene-finder-

only versions (JIGSAW-GeneFinder4 and JIGSAW-Gene-

Finder6). Interestingly, adding the non-expression based

evidence sources IsoFinder and PhastCons showed little

effect on the gene-finder-only JIGSAW versions. When used

in conjunction with the gene expression evidence, however,

sensitivity increased. Adding PhastCons and the IsoFinder

track boosted sensitivity at the nucleotide level by 3% with a

3% drop in nucleotide specificity, while also increasing the

number of correctly identified exons from 70% to 71%.

Surprisingly, 91% of the coding nucleotides are detected

using a combination of gene finders, G+C density, sequence

conservation, and gene expression evidence from organisms

other than human, while maintaining high specificity (87%).

Adding the remaining tracks of expression evidence from

human - UniGene, TIGR Gene Index, and mRNAs aligned to

the genome with BLAT - expands the pool of correctly

identified exons to 87% of the test set. Using just the mRNA

alignments and ignoring all other evidence except for the

gene finders (JIGSAW-mRNA in Table 2), gives JIGSAW

greater specificity, while remaining highly sensitive. This

suggests that the human mRNA alignments serve as

accurate gene structure predictors, obviating the need to

look at other overlapping sources of expression evidence.

Incorporating the assembled expressed sequence tags

(ESTs) appears to have limited impact, which indicates a

high degree of overlap between the ESTs and mRNA

alignments (results not shown). Adding the non-human

expression sources and the PhastCons and IsoFinder tracks

return nucleotide sensitivity to 91% (JIGSAW-All-EST), the

same level achieved by the JIGSAW-non-Human-EST+

version shown in Table 1. The use of the human expression

evidence improves the percentage of correctly detected

exons and genes to 77% and 52%, respectively.

Finally, tracks of evidence derived from curated human

genes (KnownGene) and output from the Ensembl

automated annotation pipeline were added. Incorporating

the KnownGene track along with the six gene finders as

input to JIGSAW yields a substantial boost in performance,

since the majority of genes in the ENCODE regions overlap

KnownGene predictions (JIGSAW-KnownGene). Incorpora-

ting the additional evidence sources (JIGSAW-All in

Table 2) reduces the number of completely missed genes and

exons by 4% and 5%, respectively.
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Table 1

Results for JIGSAW performance on the 31 ENCODE test regions when utilizing ab initio predictions and EST data

Missed Missed Inserted 
Gene Sn Gene Sp Exon Sn Exon Sp Nuc Sn Nuc Sp Genes Exons Exons

JIGSAW-GeneFinder4 22% 24% 59% 77% 77% 87% 15% 9% 9%

JIGSAW-GeneFinder6 25% 21% 67% 73% 87% 85% 6% 3% 13%

JIGSAW-non-Human-EST 39% 37% 70% 83% 88% 90% 7% 5% 7%

JIGSAW-non-Human-EST+ 38% 34% 71% 80% 91% 87% 5% 3% 10%

The percentage of test genes and exons that do not overlap a prediction are listed in the Missed Genes and Missed Exons columns, respectively. The
rightmost column shows the percentage of predicted exons inserted into true introns. See text for details. Nuc, nucleotide; Sn, sensitivity; Sp, specificity.



Performance for JIGSAW using the KnownGene track alone

is also listed in Table 2. An important source of Known-

Gene’s sensitivity is its prediction of multiple isoforms. More

than half of the GENCODE genes are annotated with

multiple isoforms, but JIGSAW in its current implemen-

tation predicts only one isoform per locus. KnownGene

averages nearly two predicted transcripts per gene locus,

which allows for the possibility of increased sensitivity at the

gene level since there is a chance that at least one of the

predicted transcripts matches the GENCODE annotation.

The drawback, however, is a lower percentage of correctly

predicted transcripts compared to JIGSAW; 70% of

JIGSAW-All predictions match an annotated transcript,

compared to only 47% of KnownGene predictions. Further-

more, the percentage of genes with JIGSAW predictions

exactly matching a GENCODE annotation is as high as 74%

(Table 2, JIGSAW-All).

JIGSAW output submitted to the EGASP workshop is

labeled JIGSAW-EGASP in Table 2 and used input from the

TIGR Gene Index, Human mRNAs, UniGene, Non-human

RefSeq genes, KnownGene, PhastCons, Ensembl and the six

gene finders. Three changes to the inputs were made, which

distinguish JIGSAW-EGASP and JIGSAW-All. Two sources

were excluded from JIGSAW-EGASP: non-human mRNA

alignments and IsoFinder data. The third difference was in

the use of RefSeq genes. RefSeq genes were added to the

KnownGene track and Ensembl track for use in JIGSAW-

EGASP, but excluded from JIGSAW-All. Since RefSeq genes

were used for training, they were never used as a separate

track of evidence. The difference in input between the two

versions was based on changes to the evaluation procedures,

pre- and post-EGASP. JIGSAW output submitted to the

EGASP workshop was generated without access to

GENCODE annotations for 31 of the 44 ENCODE regions

and the choice of evidence was based on evaluating

performance on a smaller sampling of distinct evidence

combinations tested on RefSeq genes and the 13 ENCODE

training regions. JIGSAW-All reflects the assessment of

JIGSAW accuracy after running additional comparisons of

different evidence combinations, evaluating performance on

the 31 ENCODE regions using GENCODE annotations.

Our post EGASP-submission JIGSAW performance

(JIGSAW-All in Table 2) indicates a modest improvement in

gene specificity, but when including input from the

KnownGene track, results from different combinations of

input show only minor differences in performance. While

the addition of several tracks of evidence do not significantly

boost performance, it is worth noting that accuracy remains

unchanged; thus it appears that we are better off adding

more tracks of evidence to JIGSAW, rather than less.

In addition to providing accurate gene structure predictions,

an important element of the gene finding problem is

detecting more of the ‘hard to find’ exons. JIGSAW-All-EST

(Table 2) identifies 50 exons not identified by KnownGene

or Ensembl, which demonstrates the potential benefit of

JIGSAW when curated gene information is unavailable. The

JIGSAW-non-Human-EST+ version (Table 1) identifies a

similar number of novel exons (55), while the final EGASP-

submitted version predicts a slightly smaller number (45).

Since the EGASP version uses the relatively accurate tracks

KnownGene and Ensembl, JIGSAW weighs these evidence

sources more heavily, making it less likely that JIGSAW will

make predictions without support from these evidence

sources. The number of ‘novel’ identified exons is higher in

JIGSAW versions that do not use the curated data as input,

which lends support to the idea that JIGSAW-All-EST and

JIGSAW-non-Human-EST+ will be useful in identifying

novel exons.

Effects of training set size
Results of the training-set-size experiments are shown in

Figure 1, which depicts whole-exon accuracy (F score × 100)

as a function of the number of training genes (in thousands).
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Table 2

Results of applying JIGSAW with all available evidence

Missed Missed Inserted 
Gene Sn Gene Sp Exon Sn Exon Sp Nuc Sn Nuc Sp Genes Exons Exons

JIGSAW-mRNA 48% 60% 76% 93% 84% 97% 17% 11% 4%

JIGSAW-All-EST 52% 52% 77% 88% 91% 91% 6% 10% 8%

JIGSAW-KnownGene 71% 74% 76% 95% 87% 96% 7% 12% 3%

JIGSAW-All 74% 70% 80% 92% 93% 94% 3% 7% 6%

KnownGene 77% 73%* 78% 82% 89% 94% 13% 10% 4%

JIGSAW-EGASP 73% 66% 81% 89% 95% 92% 4% 6% 8%

* KnownGene predicts multiple transcripts per gene locus with transcript specificity of 47%.The percentage of test genes and exons that do not overlap
a prediction are listed in the Missed Genes and Missed Exons columns, respectively. The rightmost column shows the percentage of predicted exons
inserted into true introns. See text for details. Nuc, nucleotide; Sn, sensitivity; Sp, specificity.



The trend appears to be effectively flat for sample sizes

above 6,000 genes (data not shown). A curve of the form y =

a/(1 + be-cx + d)), fitted to the data via a least squares

criterion, is shown superimposed (a = 69.01, b = 0.0152, c =

0.0012, d = 2.09). As can be seen from the figure, increases

in sample size improve accuracy very rapidly for small

training sets of approximately 250 genes, whereas an

asymptote is rapidly approached for samples sizes >3,000

genes. Similar curves were obtained for nucleotide and

whole gene level accuracy measures (not shown), supporting

roughly the same conclusion regarding the asymptote.

Effects of modeling specific features
The results of the feature-state experiments are summarized

in Table 3, where it can be seen that gains from the modeling

of additional sequence elements were slight or nonexistent,

with some of the additions actually resulting in reduced

accuracy. In particular, we found that the polyadenylation

signal, branch point, intron phase modeling, and isochore

modeling generally improved accuracy by a very small

amount, whereas the signal peptide and CpG island states

slightly reduced accuracy (though possibly not statistically

significantly so). Most surprising was the large decrease in

accuracy at all levels, which was observed when the

untranslated region (UTR) states were trained on confirmed

UTR sequences from GenBank rather than being trained on

pooled intergenic sequence.

Discussion
Several factors help to explain JIGSAW’s overall strong

performance in EGASP. Critical to JIGSAW’s success was

access to quality cDNA evidence made available through the

UCSC genome browser. Inclusion of the KnownGene track,

for example, led to a noticeable improvement in predictions

at the whole gene level. Equally important was the use of a

wide array of evidence sources, including multiple ab initio

gene finders and non-human expression evidence. The use

of a training procedure allowed JIGSAW to conduct its own

‘genome annotation assessment project’ to compute

empirically the most reliable sources of gene structure

evidence. Accurate individual evidence sources were

identified as well as evidence combinations, where accuracy

was dependant on the presence of multiple tracks of

evidence. Therefore, gene calls were made in the presence of

reliable human cDNAs, but also in the absence of cDNAs

when alternative support for a gene was present.

While the EGASP experiment has ably demonstrated the

need for further improvements to this community’s suite of

available computational gene prediction methods, the

results of our own study suggest that greater gains in

predictive accuracy may be made via advances at the level of

integrative evidence-based methods, such as those employed

by JIGSAW, than by efforts directed at the improved

modeling of individual biological features by ab initio HMM-

based models. Although such models are clearly necessary

for the success of integrative approaches, the impact of

expression and homology data on the present study strongly

suggests that future efforts may be best spent in improving

the fidelity of homology modeling at the higher levels of

integrative gene structure modeling. In particular, our
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Figure 1
Accuracy as a function of training set size. Percentage of correct exons
(F score) is shown on the y-axis and training set size in thousands is
shown on the x-axis. Data points (N = 121) are shown in blue; the best fit
function of the form y = a/(1+be-cx+d) is shown in red; a = 69.01, b = 0.0152,
c = 0.0012, d = 2.09. The curve is effectively flat for values of x above
6,000 (not shown). The curve for nucleotide and gene level accuracies
and for the second test set are of very similar shape. 
F = 2 × Sn × Sp/(Sn + Sp).
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Table 3

Results of incorporating additional features into GeneZilla
evaluated on RefSeq genes

Nuc Exon Gene

polyA -1% +1% +2%

TATA+CAP +0% +0% +1%

TATA (no CAP) +0% +0% +0%

CAP (no TATA) +0% +0% +0%

Branch point +1% +1% +1%

Signal peptide -1% -1% +0%

Intron phase +1% +1% +0%

CpG islands +0% +0% -1%

Isochore switching +0% +1% +1%

UTR (trained on UTR) -15% -30% -7%

Values are changes in nucleotide (Nuc), whole exon (Exon), or whole
gene (Gene) accuracy, as measured by F-score. Individual features are
described in the text.



successes in utilizing human mRNAs and alignments to

curated human proteins suggest that while evolutionary

modeling of cross-species conservation may account for a

significant portion of the ‘low-hanging fruit’ that can and

should be incorporated into state-of-the-art gene-finding

pipelines, improved methods of evaluating similarity to

known proteins and mRNAs and of reliably incorporating

such evidence within an integrative environment may yet

offer significant gains in predictive accuracy. Our own

research agenda for the near future includes the application

of recent phylogenetic HMM approaches at the level of both

ab initio and integrative gene finding and, in particular, the

application of such approaches within the JIGSAW frame-

work. The fact that JIGSAW was able to perform so well in

comparison to the other comparative methods applied

within EGASP is an encouraging sign for this line of research.

In contrast to the ‘more information is always better’ mantra

suggested by the JIGSAW results, our experiences in

modeling various features within the strict GHMM

framework suggest that the higher-fidelity modeling of

biological entities within DNA sequence, at least within the

probabilistic framework of a GHMM, offers far fewer gains,

especially considering the level of effort required in the form

of additional software development and testing. Though the

precise reasons for this remain somewhat obscure, a number

of possible explanations readily present themselves, inclu-

ding the thorny issue of generative versus discriminative

modeling for biosequence analysis, which remains some-

what under-characterized in our opinion, though some effort

is now being directed at this important issue [3,7,8].

Intuitively, we find it disturbing that the explicit modeling of

features of clear biological significance (for example, signal

peptides and CpG islands) would seem to provide no advan-

tage in the predictive modeling of protein-coding genes.

Although our own speculations regarding this conundrum

point to a basic inadequacy in the HMM modeling formalism

for the purpose of optimally parsing gene structures in DNA,

work yet remains to be done in order to more rigorously

characterize the various modeling paradigms and their

applicability to the gene structure modeling problem. In

comparing the performance of the individual ab initio

predictors to that of our integrative program JIGSAW, it is

clear that the ability to automatically annotate a single

isoform of a gene is much improved from the days of

running a single gene finder on a sequence, as shown by the

fact that 70% of JIGSAW’s predicted gene structures in the

ENCODE regions exactly matched the human curation, with

93% of the total protein coding nucleotides correctly

detected. We hope in the near future to improve upon these

numbers through various enhancements, which we are now

in the process of formulating for future investigations.

The perennial question of how much training data is

necessary to achieve a certain level of accuracy with an ab

initio gene finder has been somewhat addressed by the

experiments performed within the context of our GHMM-

based gene finder. While additional experiments within the

contexts of other gene finders remain to be done, our present

results suggest that for novel genomes and at the lower end

of the sample-size domain, steep gains may be expected for

small increases in sample size. The practical significance of

this result resides in the way that training data for obscure

genomes tends to be produced. For heavily fragmented

genomes of obscure organisms, for example, training genes

tend to be scarce, and the effort involved in increasing sample

sizes may be very laborious. Nevertheless, our results,

assuming they generalize to other eukaryotic genomes,

suggest that such labor when undertaken with appropriate

care may significantly impact the accuracy of the resulting

gene finder, thereby justifying the greater effort in

developing such training sets.

It is important to note that while both of our GHMM-based

gene finders have seen extensive use for genome annotation

efforts at TIGR over the past several years, and despite the

near equivalence of their state topologies and decoding

algorithms, we have often observed that the two programs

can produce significantly different accuracy results, with

sometimes one or the other program performing better, and

no clear trend indicating any overall advantage of either

program across all genomes. In contrast, we have often

observed that the largest improvements in predictive

accuracy have come about through improvements to our

training practices [3], as opposed to improvements in the

actual GHMM software. The latter observations, which have

been further bolstered by our experiences with EGASP,

support the notion that gross comparison of predictive

accuracy between different software systems may be of

limited scientific value in assessing modeling and algorith-

mic options for gene prediction, and points instead to the

need for controlled experiments within the context of an

individual software code base, or, more ideally, replicated

across several independent software implementations. We

believe that the more widespread adoption of such practices

could greatly improve computational gene modeling as a

rigorous science.

In conclusion, we believe that the more effective integration

of multiple forms of evidence (for example, DNA, RNA, and

protein), as opposed to higher-fidelity ab initio modeling of

DNA alone, offers the greatest potential gains for further

improvements in human gene prediction. With this in mind,

we would suggest that data from other types of experiments,

such as protein mass spectrometry, might offer further

gains. We have now reached the point where our pipeline

predicts roughly three quarters of the genes exactly, missing

only 3% of the genes completely. This suggests that further

efforts in human gene finding might be more productively

applied to refining existing gene annotations than to

generating new ones. It is important for the human genome
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community to recognize that uncurated de novo gene

predictions can be highly inaccurate, and this has implica-

tions for expression studies and other experiments based on

genome annotation. We would also point out that sequen-

cing centers have now completed draft genomes for

hundreds of additional species, with many more to come.

The data presented in this study makes it clear that in order

to predict genes accurately in the countless genomes yet to

come, we need both automated gene finders and a steady

source of independent evidence such as mRNAs from those

species.

Materials and methods
Prediction pipeline
Our prediction pipeline consists of a number of comparative

and non-comparative gene finders, as well as several

sequence analysis tools, which provide inputs to the other

components of the system. The major components are

described separately below; here we give a brief overview.

The system, tentatively called UMIAGS (University of

Maryland Integrative Analysis of Gene Structure) is shown

schematically in Figure 2. The gene finders currently in our

pipeline are: JIGSAW, GlimmerHMM, GeneZilla, and

TWAIN. Because our human gene-finding efforts began only

several months ago, not all of these components could be

adapted in time for inclusion in the EGASP competition. In

particular, our generalized pair hidden Markov model

(GPHMM) TWAIN was not included, and is not described

further herein, though we hope to adapt it for mammalian

gene finding in the near future. The GHMM programs

GlimmerHMM and GeneZilla are described in more detail

below, as is the integrative ‘combiner’ program JIGSAW.

The other two components of our pipeline are the isochore

boundary predictor IsoScan and the CpG island predictor

Gilligan, which we describe next.

IsoScan
To more accurately model the dependence of GHMM

parameter profiles on the local G+C density of a sequence,

we constructed a HMM to predict the likely boundaries of

isochores. These predictions were then made available to the

GHMM gene finders, enabling them to switch parameter

profiles during Viterbi decoding at the precise positions of

predicted isochore boundaries, without the need for

segmenting the input sequence prior to gene finding. The

structure of our isochore predictor, called IsoScan, is shown

in Figure 3. The states of the HMM, labeled I to IV (not

including q0, which is the silent start/stop state) represent

discrete ranges of G+C density: I = (0-43%), II = (43-51%),

III = (51-57%), and IV = (57-100%). For the purpose of our

GENCODE submissions, we estimated the HMM parameters

from the predictions of the IsoFinder program [9] on human

chromosome 1. Because the latter program can predict many

more than four types of isochores, we coalesced IsoFinder

predictions according to the four G+C density ranges given

above, and then estimated the emission and transition
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Figure 2
The computational gene finding pipeline UMIAGS (University of Maryland
Integrative Analysis of Gene Structure). The raw genomic sequence is
shown as an input at left; gene structure predictions are emitted at right.
Additional evidence tracks for the combiner program JIGSAW are shown
entering from the bottom. See text for details. GHMM, generalized
hidden Markov model.
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probabilities for our IsoScan HMM using maximum

likelihood estimates from this data.

Prediction of isochores in IsoScan is accomplished via

Viterbi decoding [10]. A post-processing phase allows us to

impose a minimum isochore size by identifying predicted

isochores smaller than the minimum allowable size and

progressively combining them with their neighbors until all

remaining isochore segments satisfy size constraints (and

such that no two isochores of the same class are adjacent).

Gilligan
Prediction of CpG islands was performed using a modified

version of the algorithm given by Larsen et al. [11]. Our

program Gilligan predicts CpG islands using a sliding

window approach. Parameters to the program include: the

minimum allowable separation between islands; the size of

the sliding window; the minimum allowable island size; the

minimum G+C density for an island; and the minimum ratio

of observed-to-expected CG dinucleotide counts in predicted

islands. These parameters thus impose a set of constraints

on predicted CpG islands, which are enforced via an iterative

merging process in which islands violating one or more of

these constraints are merged with their largest neighbor,

until no further merging is required.

Gene finders
GlimmerHMM
The first of our two GHMM-based gene finders is

GlimmerHMM, which is depicted in Figure 4. The under-

lying model is very similar to that of GENSCAN, and features

different states for the different forms of exons (initial,

internal, final, and single), as well as introns and internal

exons of different phases. The signal sensors (that is, fixed-

length states such as splice sites and start/stop codons) are

implemented using Nth-order weight array matrices (WAM)

[5], with N typically set to 2. The variable-length feature

states (for example, exons, introns, intergenic regions) are

implemented using Nth-order interpolated Markov models

(IMM) [12] for N = 8. More details about the program can be

found in [13,14].

Note that GlimmerHMM was run on the unmasked DNA

sequence; we felt this was most appropriate, given that the

predictions of the program were to be used as inputs to our

integrative gene finder JIGSAW. GlimmerHMM was trained

on 6,859 human RefSeq genes; only those training genes not

split by an IsoFinder prediction were used. Training proto-

cols roughly followed those used for GeneZilla (see below).

GeneZilla
Our apparatus for the feature-state and training-set-size

experiments consisted of the GHMM-based ab initio gene

finder GeneZilla, previously known as TIGRscan [13].

GeneZilla’s basic model topology is similar to that of

GlimmerHMM, with the addition of a TATA box state and a

polyadenylation signal state, as well as the UTR states, which

they delimit. Modifications were made to the structure of the

GHMM to incorporate the following states, as illustrated in

Figure 5 (state labels are given in parentheses): CpG islands

(CpG); CAP sites (CAP); branch points (b); signal peptides

(sigP); phase-specific introns (In).

In addition, we investigated the explicit modeling of isochore

boundaries, the tying of exon state parameters, the (separate)

disabling of the TATA and polyadenylation signal states, and

the use of UTR-trained parameters for the UTR models

(versus the use of intergenic parameters for those states).

The base gene finder (not including the above added states)

was trained on 8,259 human RefSeq [15] genes rendered

non-redundant via BLASTN [16], so that no two genes were

more than 80% identical over 80% of the gene length at the

nucleotide level. Genes known to have multiple isoforms

were also removed prior to training, since GeneZilla

currently predicts only one form for each putative gene. For

the experiments addressing the effect of sample size,

training sets of 250 to 16,000 RefSeq genes were randomly

selected from our full set of 17,477 nonredundant RefSeq

transcripts.

A fixed-length state (‘CpG’) was used to represent the 5’ end

of a predicted CpG island, where predictions were produced
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Figure 4
State-transition diagram of the GHMM for GlimmerHMM. The dashed
line in the middle separates the positive strand and negative strand
portions of the model. Each state in the GHMM is implemented as a
separate submodel, such as a weight array matrix or an IMM (interpolated
Markov models).
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via the program Gilligan (see above). The decision to

explicitly model only the 5’ end of a CpG island in the

GHMM was based on our observation that predicted CpG

islands often overlapped the 5’ region of a coding sequence

(CDS; data not shown). Because Viterbi decoding algorithms

generally do not allow for the prediction of overlapping

features, we instead opted to model the 5’ end of each CpG

island (for each strand) as an upstream element of a putative

gene on the same strand.

The polyadenylation signal state (‘polyA’) was implemented

by a 16 base-pair (bp) 2nd order WAM trained on 10,046

examples labeled as ‘polyA_signal’ features in human

GenBank entries. (All GenBank entries were extracted in

April 2005). Two consensus sequences were allowed for this

signal: AATAAA and ATTAAA. Only one isochore was

modeled for this feature because the range of G+C densities

for the example sequences were mostly <43%. Because the

WAM was trained via simple maximum likelihood and is,

therefore, not guaranteed to provide optimal discrimination

power for the gene finder as a whole [3], we incorporated

two additional parameters related to this state and explored

a broad range of values for these parameters in an attempt to

discover a maximally discriminative parameterization. The

additional parameters were R3’, a multiplicative factor that

adjusts the existing L3’ (mean 3’ UTR length) parameter; and

Opoly (‘poly-A optimism’), another multiplicative factor that

is applied to the (pre-logarithm) WAM score. Larger window
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Figure 5
State-transition diagram of the GHMM-based gene finder GeneZilla. Green states were differentially included for the feature-state experiments. Reverse-
strand states have been omitted for brevity. A, acceptor site; AATAAA, polyadenylation signal (including ATTAAA); ATG, start codon; b, branch point;
CAP, cap site; CpG, CpG island; D, donor site; E, exon; I, intron; N, intergenic; sigP, signal peptide; TATA, TATA box; TAG, stop codon (including TAA
and TGA); UTR, untranslated region.
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sizes were investigated for the WAM but were found to

provide no advantage over the 16 bp window, so all further

experiments utilized a configuration similar to that

described in [5].

The promoter state (‘TATA’) was implemented using a

model very similar to the one used in GENSCAN, consisting

of a TATA-box followed by a CAP site with a variable 14 to 20

bp ‘spacer’ region between. Difficulty in obtaining reliable

CAP site features from GenBank compelled us to use the

existing CAP model from TRANSFAC 3.2 [17], a weight

matrix (WMM) trained from 303 putative CAP sites. The

spacer region was modeled using simple 0th order intergenic

nucleotide frequencies.

The TATA-box WMM was trained on 548 examples

extracted from human ‘TATA_signal’ elements in GenBank.

These sequences were filtered to include only those having

one of the following consensuses, based on patterns

observed in a previously published TATA-box model [18]:

TATA, CATA, GATA, AATA, TAAA, TATT, TATG. Although a

wider range of degeneracy may be present in functional

TATA-box elements, the linear-time performance of the

GHMM decoding algorithm requires that the number of

potential matching sites be relatively small, and this is most

readily accommodated by employing a limited consensus list

[19]. Weight array matrices of up to 5th order were also

investigated, though preliminary experiments showed no

advantage to using the latter.

As with the polyA state, two additional parameters related to

the promoter state were incorporated and tuned so as to

maximize accuracy: R5’, a multiplicative factor for the mean

5’ UTR length; and Oprom (‘promoter optimism’), which is

multiplied by the promoter model score. Note that the

tuning of these extra parameters was performed on the first

of two test sets; to avoid undesirable post hoc effects as a

result of ‘peeking’ at the test set, our final results were

measured on a second, unseen, test set (described below).

Putative signal peptide sequences S were evaluated by the

signal peptide model Msp via:

P(S | Msp) = Π
codons
c in S

P(amino(c) | Msp) P(c | amino(c))

where amino(c) is the amino acid encoded by codon c.

P(amino(c) | Msp) was estimated by observing frequencies of

amino acids in the set of training signal peptides;

P(c | amino(c)) was estimated by observing the codon usage

statistics of the training genes. Training data for this state

consisted of 1,048 ‘sig_peptide’ features extracted from

human GenBank entries.

The test sets for the feature-state experiments consisted of

458 and 481 individual human genes selected randomly

from the set of all nonredundant RefSeq genes available at

the beginning of the study, with a margin of 1,000 bp

retained before and after the CDS portion of each gene when

segmenting the sequence for input to the gene finder. This

was done because we wished to test the ability of the gene

finder to accurately model the structure of genes, rather than

to assess the false positive rate for entire genes. However, for

experiments targeting the utility of the polyA, promoter, and

UTR states, a margin of 50 kb was instead used, since most

UTRs in the training set were seen to be shorter than 50 kb

in length. Under these latter conditions the test sets each

comprised 62 Mb of sequence, or roughly 2% of the genome.

Likewise, for the isochore-switching experiments we

selected margin sizes so that each test chunk was ≥300 kb in

length, as per the commonly accepted definition of isochores

[20]. Note that because these experiments were performed

in part to help us prepare for the EGASP submissions, we

were unable to perform the tests on the final EGASP

annotations, which had not yet been released; hence, these

experiments were not limited to the ENCODE regions.

The 5’ and 3’ UTR states were trained on 18,432 and 19,977

untranslated regions, respectively, extracted from GenBank.

These states were also retrained from scratch using pooled

intergenic sequences, and the differences in accuracy

resulting from this change were recorded.

The remaining parameters of the GHMM were initially

trained via maximum likelihood estimation from the 8,259

RefSeq training genes, and then a handful of the parameters

(including transition probabilities, WMM and WAM sizes,

WAM and Markov chain orders, and mean intron and

intergenic lengths) were tuned by hand so as to maximize

accuracy on the first of the two test sets. Results are reported

only on the second, unseen test set.

Note that GeneZilla, like GlimmerHMM, was run on

unmasked sequence; for this reason, direct comparisons

with other GHMM-based gene finders in the EGASP exercise

are not appropriate for those programs that were applied to

masked sequence.

JIGSAW
JIGSAW predictions are based on the set of available gene

structure evidence aligned to the genome. An overview of the

method is given here to highlight key aspects of the prediction

strategy; further details are described in [21]. A graphical

model similar to the GeneZilla and GlimmerHMM is used to

model protein coding gene structure. A state q is an element of

the gene structure label set taking one of six values: single

exon, internal exon, initial exon, terminal exon, intron or

intergenic. Gene prediction involves parsing the sequence S

into non-overlapping intervals t = (t0, t1, … , tn), where each

interval ti = (bi, ei, qi) aligns state qi to the subsequence S[bi, ei]

from position bi to ei inclusive. Input to JIGSAW is the

genomic sequence S and a parameter E denoting the evidence

aligned to S. An example sequence parse is shown in Figure 6.
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The input parameter E refers to the collection of gene finder,

protein, and EST evidence. A conditional probability P(t | S,

E) is computed, which assumes that the probability of

aligning qi is dependent only on the previous state qi-1 along

with the sequence and evidence overlapping the interval

from bi to ei. The probability of a parse is:

P(t | S, E) = P(q0 | S[b0, e0], E) - P(q0) Π
n

i=1
P(qi | S[bi, ei], E) - P(qi | qi-1)

A dynamic programming algorithm is used to find the most

probable parse of the sequence. The evidence parameter E is

defined by feature vectors, which record each evidence

source’s predictions at each nucleotide in the sequence. Six

distinct feature vectors record each predicted occurrence of

the following six gene features at position k in the sequence:

start codon, νk
start; stop codon, νk

stop; donor site, νk
donor; accep-

tor site, νk
acceptor; coding interval, νk

coding; intron interval,

νk
intron.

Each entry in a feature vector corresponds to a specific

evidence source. Using the evidence listed in Figure 6,

ordered from top to bottom, the coding feature vector at

position k in this example is νk
coding = (0,1,0.59,0) since Gene

Finder 2 and the protein alignment overlap position k.

Probabilities are estimated to reflect the likelihood of each

feature type occurring in position k given the gene feature

type’s matching feature vector - P(type | S, νk
type). The proba-

bility of aligning state qi to the sequence is the product of

probabilities of each gene feature occurring from bi to ei

consistent with qi. For example, if state qi is a single exon

this means that bi is the beginning of a start codon, ei is the

end of a stop codon, with a protein-coding interval from bi to

ei. Therefore, the scoring function computes the probability

of a start codon at bi, the probability of a stop codon at ei, the

probability of a coding interval from bi to ei and the

probability that no conflicting gene features occur. At each

position k in the sequence the product of six probabilities for

the six gene feature types (start, stop, acceptor, donor,

coding, and intron) is computed,

Π
type

h(type | S, νk
type), 

where h is a function that returns the probability of the

occurrence of type, if type is consistent with qi, and 1 -

P(type | S, νk
type) otherwise. The probability of an intergenic

sequence is computed as the probability of no gene features

occurring in the sequence.

Figure 7 illustrates the training procedure used to obtain

probability models conditioned on the sequence and the
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Figure 6
Parsing sequence S into three non-overlapping intervals t0, t1 and t2with the state assignments q1, q2 and q3, respectively. Position k marks an index in S.
The dashed box highlights the evidence overlapping the first interval from position b0 to e0.
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evidence. The statistics for the feature vectors observed in

the training set are collected to estimate P(type | S, νk
type).

These statistics reflect the accuracy of each observed

combination of evidence in predicting each gene feature

type. Using the coding feature vector at position k from

Figure 6 as an example - νk
coding = (0,1,0.59,0) - the training

procedure checks the percentage of times the observed

feature vector (0,1,0.59,0) correctly predicts a protein

coding nucleotide. This percentage is taken to be the

probability of coding given the observed feature vector. To

handle both boolean predictions and continuous values

(such as percent similarity values from alignments), a

decision tree [22] is induced to group accurate and

inaccurate feature vectors into distinct groups. The average

probability of the feature vectors grouped together by the

decision tree is taken as the final probability value.

Data preparation
To train our gene finders for the EGASP exercise, we

downloaded from the NCBI the complete set of human

RefSeq genes available at the beginning of our study. This

comprised a total of 26,941 transcripts belonging to 22,487

genes, all having canonical start and stop codons. Because

the programs in our pipeline each predict at most one

isoform per locus, we discarded any RefSeq gene having

more than one isoform in the downloaded set, thereby

reducing our set to 19,838 genes. We further reduced this set

by eliminating overlapping genes (based on a comparison of

their genome coordinates) and those found by BLASTN to be

at least 80% identical over 80% of their length. The final set,

which we call RNR, consisted of 17,477 transcripts.

We then took a random sample of 8,308 genes from RNR to

use as training data for the final versions of our GHMM gene

finders (but note that the sample-size experiments,

described below, use larger subsets of RNR). This training set

we refer to as RT. From the set of unused genes RU = RNR-RT,

we then took two random samples to produce test sets T1

(458 genes) and T2 (481 genes), with T1Ç[ED]T2 = Ø, as

described previously.

Evaluation of evidence tracks
To evaluate the utility of various evidence tracks in JIGSAW,

we performed a series of experiments in which individual

tracks were progressively added to the gene finder’s set of

available inputs. For each experiment, JIGSAW was
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Figure 7
Training procedures for building JIGSAW prediction models. Feature vectors are collected from m examples and separated according to each of the six
gene feature types. Decision trees are induced for each of the separated training sets, and their output is combined during the prediction procedure.
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retrained using 1,024 RefSeq genes excluded from

GlimmerHMM and GeneZilla training. Prediction accuracy

was evaluated on the 31 ENCODE regions using the

GENCODE annotations with JIGSAW running on unmasked

sequence. GENCODE data were used to evaluate both

JIGSAW’s ability to recreate the human annotation and the

program’s performance in the absence of reliable human

cDNA evidence.

Input to JIGSAW was taken from the UCSC gene structure

annotation database (build hg17; [23]) plus three auxiliary

sources: IsoFinder, GeneZilla, and GlimmerHMM. Evidence

used from the UCSC genome browser included: UniGene

[15] and TIGR Gene Index [24] (assembled human ESTs);

human mRNA, non-human RefSeq and non-human mRNA

(BLAT alignments; [25]); KnownGene [23], Ensembl [26]

(Curated sources); GENEID [27], SGP [28], GENSCAN [5],

and TWINSCAN [29] (GeneFinders); PhastCons [1] (Cross-

species conserved elements).

Evaluation of training data quantity
As a final experiment, we addressed the perennial question

of how much training data would be sufficient to achieve

near-optimal performance for an ab initio gene finder.

Although we are often asked this question by prospective

users of our gene finders, we know of very few studies

addressing this most practical issue. Training sets of

between 250 and 16,000 genes were randomly sampled from

the set RT and used to retrain GeneZilla from scratch. The

gene finder was then evaluated on test set T2 and its exon-

level accuracy (that is, percentage of perfectly predicted

exons) was scored using the F measure:

F = 2 × Sn × Sp/(Sn + Sp)

where Sn is sensitivity and Sp is specificity. A total of 121

(training and test) runs were performed with sample sizes

chosen uniformly at random within the above specified range.
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