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Application of independent component analysis to microarraysWe apply linear and nonlinear independent component analysis (ICA) to project microarray data into statistically independent components that correspond to putative biological processes, and to cluster genes according to over- or under-expression in each component. We test the statistical significance of enrichment of gene annotations within clusters. ICA outperforms other leading methods, such as principal component analysis, k-means clustering and the Plaid model, in constructing functionally coherent clusters on microarray datasets from Saccharomyces cerevisiae, Caenorhabditis elegans and human.

Abstract

We apply linear and nonlinear independent component analysis (ICA) to project microarray data
into statistically independent components that correspond to putative biological processes, and to
cluster genes according to over- or under-expression in each component. We test the statistical
significance of enrichment of gene annotations within clusters. ICA outperforms other leading
methods, such as principal component analysis, k-means clustering and the Plaid model, in
constructing functionally coherent clusters on microarray datasets from Saccharomyces cerevisiae,
Caenorhabditis elegans and human.

Background
Microarray technology has enabled high-throughput
genome-wide measurements of gene transcript levels, prom-
ising to provide insight into biological processes involved in
gene regulation. To aid such discoveries, mathematical and
computational tools are needed that are versatile enough to
capture the underlying biology, and simple enough to be
applied efficiently on large datasets.

Analysis tools fall broadly in two categories: supervised and
unsupervised approaches [1]. When prior knowledge can
group samples into different classes (for example, normal
versus cancer tissue), supervised approaches can be used for
finding gene expression patterns (features) specific to each
class, and for class prediction of new samples [2-5]. Unsuper-
vised (hypothesis-free) approaches are important for discov-
ering novel biological mechanisms, for revealing genetic
regulatory networks and for analyzing large datasets for
which little prior knowledge is available. Here we apply linear
and nonlinear independent component analysis (ICA) as a
versatile unsupervised approach for microarray analysis, and
evaluate its performance against other leading unsupervised
methods.

Unsupervised analysis methods for microarray data can be
divided into three categories: clustering approaches, model-
based approaches and projection methods. Clustering
approaches group genes and experiments with similar behav-
ior [6-10], making the data simpler to analyze [11]. Clustering
methods group genes that behave similarly under similar
experimental conditions, assuming that they are are function-
ally related. Most clustering methods do not attempt to model
the underlying biology. A disadvantage of such methods is
that they partition genes and experiments into mutually
exclusive clusters, whereas in reality a gene or an experiment
may be part of several biological processes. Model-based
approaches first generate a model that explains the interac-
tions among biological entities participating in genetic regu-
latory networks, and then train the parameters of the model
on expression datasets [12-16]. Depending on the complexity
of the model, one challenge of model-based approaches is the
lack of sufficient data to train the parameters, and another
challenge is the prohibitive computational requirement of
training algorithms.

Projection methods linearly decompose the dataset into com-
ponents that have a desired property. There are largely two
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kinds of projection methods: principal component analysis
(PCA) and ICA. PCA projects the data into a new space
spanned by the principal components. Each successive prin-
cipal component is selected to be orthonormal to the previous
ones, and to capture the maximum information that is not
already present in the previous components. PCA is probably
the optimal dimension-reduction technique according to the
sum of squared errors [17]. Applied to expression data, PCA
finds principal components, the eigenarrays, which can be
used to reduce the dimension of expression data for visualiza-
tion, filtering of noise and for simplifying the subsequent
computational analyses [18,19].

In contrast to PCA, ICA decomposes an input dataset into
components so that each component is statistically as inde-
pendent from the others as possible. A common application of
ICA is in blind source separation (BSS) problems [20]: sup-
pose that there are M independent acoustic sources - such as
speech, music, and others - that generate signals simultane-
ously, and N microphones around the sources. Each micro-
phone records a mixture of the M independent signals. Given
N mixed vectors as the signals received from the micro-
phones, where N ≥ M, ICA retrieves M independent compo-
nents that are close approximations of the original signals up
to scaling. ICA has been used successfully in BSS of neurobio-
logical signals such as electroencephalographic (EEG) and
magnetoencephalographic (MEG) signals [21-23], functional
magnetic resonance imaging (fMRI) data [24] and for finan-
cial time series analysis [25,26]. ICA can also be used to
reduce the effects of noise or artifacts of the signal [27]
because usually noise is generated from independent sources.
Most applications of ICA assume that the source signals are
mixed linearly into the input signals, and algorithms for lin-
ear ICA have been developed extensively [28-32]. In several
applications nonlinear mixtures may provide a more realistic
model and several methods have been developed recently for
performing nonlinear ICA [33-35]. Liebermeister [36] first
proposed using linear ICA for microarray analysis to extract
expression modes, where each mode represents a linear influ-
ence of a hidden cellular variable. However, there has been no
systematic analysis of the applicability of ICA as an analysis
tool in diverse datasets, or comparison of its performance
with other analysis methods.

Here we apply linear and nonlinear ICA to microarray data
analysis to project the samples into independent compo-
nents. We cluster genes in an unsupervised fashion into non-
mutually exclusive clusters, based on their load in each inde-
pendent component. Each retrieved independent component
is considered a putative biological process, which can be char-
acterized by the functional annotations of genes that are pre-
dominant within the component. To perform nonlinear ICA,
we applied a methodology that combines the simplifying ker-
nel trick [37] with a generalized mixing model. We systemat-
ically evaluate the clustering performance of several ICA
methods on five expression datasets, and find that overall ICA

is superior to other leading clustering methods that have been
used to analyze the same datasets. Among the different ICA
methods, the natural-gradient maximum-likelihood estima-
tion (NMLE) method [28,29] is best in the two largest data-
sets, while our nonlinear ICA method is best in the three
smaller datasets.

Results
Mathematical model of gene regulation
We model the transcription level of all genes in a cell as a mix-
ture of independent biological processes. Each process forms
a vector representing levels of gene up-regulation or down-
regulation; at each condition, the processes mix with different
activation levels to determine the vector of observed gene
expression levels measured by a microarray sample (Figure
1). Mathematically, suppose that a cell is governed by M inde-
pendent biological processes S = (s1, ..., sM)T, each of which is
a vector of K gene levels, and that we measure the levels of
expression of all genes in N conditions, resulting in a micro-
array expression matrix X = (x1,..., xN)T. We define a model
whereby the expression level at each different condition j can
be expressed as linear combinations of the M biological proc-
esses: xj = aj1s1+...+ajMsM. We can express this model con-
cisely in matrix notation (Equation 1).

When the matrix X represents log ratios xij = log2(Rij/Gij) of
red (experiment) and green (reference) intensities (Figure 1),
Equation 1 corresponds to a multiplicative model of interac-
tions between biological processes. More generally, we can
express X = (x1,..., xN)T as a post-nonlinear mixture of the
underlying independent processes (Equation 2, where f(.) is a
nonlinear mapping from N to N dimensional space).

A nonlinear mapping f(.) could represent interactions among
biological processes that are not necessarily linear. Examples
of nonlinear interactions in gene regulatory networks include
the AND function [38] or more complex logic units [39], tog-
gle switch or oscillatory behavior [40], multiplicative effects
resulting from expression cascades; for further examples see
also [41].

Since we assume that the underlying biological processes are
independent, we can view each of the vectors s1,..., sM as a set
of K samples of an independent random source. Then, ICA
can be applied to find a matrix W that provides the transfor-
mation Y = (y1,..., yM)T = WX of the observed matrix X under
which the transformed random variables y1,..., yM, called the
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independent components, are as independent as possible
[42]. Assuming certain mathematical conditions are satisfied
(see Discussion), the retrieved components y1,..., yM are close
approximations of s1,..., sM up to permutation and scaling.

Methodology
Given a matrix X of N microarray measurements of K genes,
we perform the following steps:

Step 1 - ICA-based decomposition. Use ICA to express X
according to Equation 1 or 2, as a mixture of independent
components y1, ..., yM. Each component yi is a vector of K
loads yi = (yi1, ..., yiK) where the jth load corresponds to the jth

gene on the original expression data.

Step 2 - clustering. Cluster the genes according to their rel-
ative loads yij in the components y1, ..., yM. A gene may belong
to more than one cluster and some genes may not belong to
any clusters.

Step 3 - measurement of significance. Measure the
enrichment of each cluster with genes of known functional
annotations.

ICA-based decomposition
Prior to applying ICA, we normalize the expression matrices
X to contain log ratios xij = log2(Rij/Gij) of red and green inten-
sities and we remove any samples that are closely approxi-
mated as linear combinations of other samples. We find as
many independent components as samples in the input

dataset, that is, M = N (see Discussion). The algorithms we
use for ICA are described in Methods.

Clustering
Based on our model, each component is a putative genomic
expression program of an independent biological process.
Our hypothesis is that genes showing relatively high or low
expression levels within the component are the most impor-
tant for the process. First, for each independent component,
we sort genes by the loads within the component. Then we
create two clusters for each component: one cluster contain-
ing C% of all genes with larger loads, and one cluster contain-
ing C% of genes with smaller loads.

Cluster i,1 = {gene j | yij = (C% × K)th largest load in yi}

Cluster i,2 = {gene j | yij = (C% × K)th smallest load in yi}  (3)

In Equation 3, yi is the ith independent component, a vector of
length K; and C is an adjustable coefficient.

Measurement of biological significance
For each cluster, we measure the enrichment with genes of
known functional annotations.

In our datasets we measured the biological significance of
each cluster as follows. For datasets 1-4, we used the Gene
Ontology (GO) [43] and the Kyoto Encyclopedia of Genes and
Genomes (KEGG) [44] annotation databases. We combined
all annotations in 502 gene categories for yeast, and 996

Model of gene expression within a cellFigure 1
Model of gene expression within a cell. Each genomic expression pattern at a given condition, denoted by xi, is modeled as linear combination of genomic 
expression programs of independent biological processes. The level of activity of each biological process is different in each environmental condition. The 
mixing matrix A contains the linear coefficients aij, where aij = activity level of process j in condition i. The example shown uses data generated by Gasch et 
al. [48].
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categories for C. elegans (see Methods). For dataset 5, we
used the seven categories of tissues annotated by Hsiao et al.
[45]. We matched each ICA cluster with every category and
calculated the p value, that is, the chance probability of the
observed intersection between the cluster and the category
(see Methods for details). We ignored categories with p values
greater than 10-7. Assuming that there are at most 1,000 func-
tional categories and roughly 500 ICA clusters, any p value
larger than 1/(500 × 1,000) = 2 × 10-6 is not significant.

Evaluation of performance
Expression datasets
We applied ICA on the following five expression datasets
(Table 1): dataset 1, budding yeast during cell cycle and CLB2/
CLN3 overactive strain [46], consisting of spotted array
measurements of 4,579 genes in 22 experimental conditions;
dataset 2, budding yeast during cell cycle [47] consisting of
Affymetrix oligonucleotide array measurements of 6,616
genes in synchronized cell cultures at 17 time points; dataset
3, yeast in various stressful conditions [48] consisting of spot-
ted array measurements of 6,152 genes in 173 experimental
conditions that include temperature shocks, hyper- and
hypoosmotic shocks, exposure to various agents such as per-
oxide, menadione, diamide, dithiothreitol, amino acid starva-
tion, nitrogen source depletion and progression into
stationary phase; dataset 4, C. elegans in various conditions
[8] consisting of spotted array measurements of 11,917 genes
in 179 experimental conditions and 17,817 genes in 374 exper-
imental conditions that include growth conditions, develop-
mental stages and a variety of mutants; and dataset 5, normal
human tissue [45] consisting of Affymetrix oligonucleotide
array measurements of 7,070 genes in 59 samples of 19 kinds
of tissues. We used KNNimpute [49] to fill in missing values.
For each dataset, first we decomposed the expression matrix
into independent components using ICA, and then we per-
formed clustering of genes based on the decomposition.

We evaluated the performance of ICA in finding components
that result in gene clusters with biologically coherent annota-
tions, and compared our results with the performance of

other methods that were used to analyze the same datasets. In
particular, we compared with the following methods: PCA,
which Alter et al. [18] applied to the analysis of the yeast cell
cycle data (dataset 1) and Misra et al. [19] applied to the anal-
ysis of human tissue data (dataset 5); k-means clustering,
which Tavazoie et al. [10] applied to the yeast cell cycle data
(dataset 2); the Plaid model [14] applied to the dataset of
yeast cells under stressful conditions (dataset 3); and the top-
ographical map-based method (topomap) that Kim et al. [8]
applied to the C. elegans data (dataset 4). In all comparisons
we applied the natural-gradient maximum-likelihood estima-
tion (NMLE) ICA algorithm [28,29] for linear ICA, and a ker-
nel-based nonlinear BSS algorithm [34] for nonlinear ICA.
The single parameter in our method was the coefficient C in
Equation 3, with a default C = 7.5%.

Detailed results and gene lists for all the clusters that we
obtained with our methods are provided in the web supple-
ments in [50].

Comparison of ICA with PCA
Alter et al. [18] introduced the use of PCA in microarray anal-
ysis. They decomposed a matrix X of N experiments × K genes
into the product X = U Σ VT of a N × L orthogonal matrix U, a
diagonal matrix Σ, and a K × L orthogonal matrix V, where L
= rank(X). The columns of U are called the eigengenes, and
the columns of V are called the eigenarrays. Both eigenarrays
and eigengenes are uncorrelated. Alter et al. [18] hypothe-
sized that each eigengene represents a transcriptional regula-
tor and the corresponding eigenarray represents the
expression pattern in samples where the regulator is overac-
tive or underactive.

ICA expresses X as a product X = AS (Equations 1 and 2),
where S is an L × K matrix whose rows are statistically-inde-
pendent profiles of gene expression. The main mathematical
difference between ICA and PCA is that PCA finds L uncorre-
lated expression profiles, whereas ICA finds L statistically-
independent expression profiles. Statistical independence is a
stronger condition than uncorrelatedness. The two

Table 1

The five datasets used in our analysis

Source (paper, datasets) Array type Description Number of genes Number of experiments

[46,52] Spotted Budding yeast during cell cycle and CLB2/CLN3 
overactive strain

4,579 22

[47,54] Oligonucleotide Budding yeast during cell cycle 6,616 17

[48,56] Spotted Yeast in various stressful conditions 6,152 173

[8,59] Spotted C. elegans in various conditions 17,817 553

[45,53] Oligonucleotide Normal human tissue including 19 kinds of tissues 7,070 59

For each dataset, the source of the dataset, the type of microarray, the organism, a short description of the experimental conditions, the number of 
genes, and the number of experiments, are shown.
Genome Biology 2003, 4:R76
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mathematical conditions are equivalent for Gaussian random
variables, such as random noise, but different for non-Gaus-
sian variables. We hypothesized that biological processes
have highly non-Gaussian distributions, and therefore will be
best separated by ICA. To test this hypothesis we compared
ICA with PCA on datasets 1 and 5, which Alter et al. [18] and
Misra et al. [19], respectively, analyzed with PCA.

Alter et al. [18] preprocessed dataset 1 with normalization
and degenerate subspace rotation, and subsequently applied
PCA to recover 22 eigengenes and 22 eigenarrays. The expres-
sion matrix they used consists of ratios xij = (Rij/Gij) between
the red and green intensities. Since a logarithm transforma-
tion is the most commonly used method for variance normal-
ization [51], we used data processed to contain log-ratios xij =
log2(Rij/Gij) between red and green intensities obtained from
[52]. We applied ICA to the microarray expression matrix X
without any preprocessing, and found 22 independent com-
ponents. We compared the biological coherence of 44 clusters
consisting of genes with significantly high or low expression
levels within the independent components, with clusters sim-
ilarly obtained from the principal components of Alter et al.
[18]. (We used the most favorable clustering coefficient C for
each of the principal components and independent compo-
nents, see Methods); C was fixed to 17.5 for ICA but it was var-
ied from five to 45 with an interval of 2.5 for PCA and the
result for C = 37.5 (best) is illustrated in Figure 2a, while three
of others are illustrated in Figure 2b. For each cluster, we cal-
culated p values with every functional category from GO and
KEGG, and retained functional categories with p value < 10-7.
This resulted in 13 functional categories covered only with
PCA clusters, 27 only with ICA clusters, and 33 with both. Cat-
egories covered by either method but not both, typically had
high p values (low significance). For functional categories
detected by either ICA or PCA clusters, we made a scatter plot
to compare the negative log of the best p values of each cate-
gory (Figure 2a). In the majority of the functional categories
ICA produced significantly lower p values than PCA did. For
instance, among the functional categories with p value < 10-7,
ICA outperformed PCA in 28 out of 33 cases, with a median
difference of 7.3 in -log10 (p value) in the 33 cases. In Figure
2a, about a half of the functional categories (13 out of 28) rep-
resented around the diagonal or under the diagonal have
close connection (parent or child) within the GO tree with
another category for which ICA has much smaller p value
than PCA. This means that if we look at a group of similar
functional categories instead of a single category, most of the
groups have considerably smaller p values with ICA than with
PCA. We listed the five most significant ICA clusters based on
the smallest p value of functional categories within the clus-
ters in the web supplement [50]. Cluster 13 is driven from the
seventh independent component contained 915 genes that
are annotated in KEGG, of which 96 are annotated as 'ribos-
ome'-related (out of 111 total 'ribosome'-related genes in
KEGG). The same cluster is highly enriched with genes anno-
tated in GO as 'protein biosynthesis', 'structural constituent of

ribosome' and 'cytosolic ribosome'. A plausible hypothesis is
that the corresponding independent component represents
the expression program of a biological mechanism related to
protein synthesis.

We also applied ICA to another yeast cell cycle dataset using
a different synchronization method produced by Spellman et
al. [46] and to which PCA is applied by Alter et al. [18]. For
this dataset, ICA outperformed PCA in finding significant
clusters (data shown in the web supplement [50]).

We also applied nonlinear ICA to the same dataset. First, we
mapped the input data from the 22-dimensional input space
to a 30-dimensional feature space (see Methods). We found
30 independent components in the feature space and pro-
duced 60 clusters from these components. We compared the
biological coherence of nonlinear ICA clusters to linear ICA
clusters and to PCA clusters (Figure 2c,d). Overall, nonlinear
ICA performed significantly better than the other methods.
The five most significant clusters are shown in the web sup-
plement [50]. Similarly to linear ICA, the most significant
nonlinear ICA cluster was enriched with genes annotated as
'protein biosynthesis', 'structural constituent of ribosome',
'cytosolic ribosome' and 'ribosome' with the smallest p value
being 10-61 for 'ribosome' compared to the p value of 10-51 for
the corresponding ICA cluster.

Misra et al. [19] applied PCA to dataset 5 of 7,070 genes in 19
kinds of human normal tissue (containing 59 microarray
experiments) produced by Hsiao et al. [45] available at [53].
The dataset they used contains 40 experiments; 19 additional
microarray experiments have been performed subsequently
by Hsiao et al. [45]. After applying PCA and a filtering
method, Misra et al. [19] obtained 425 genes upon which they
reapplied PCA and plotted a scatter plot with loadings
(expression levels) of these genes in the two most dominant
principal components (eigenarrays). By visual inspection
they observed three linear clusters on the resulting two-
dimensional plot, enriched for liver-specific, brain-specific
and muscle-specific genes, respectively (no p values were pro-
vided), as annotated by Hsiao et al. [45]. We removed three
experiments that made the expression matrix X to be nearly
singular, and applied ICA on the remaining 56 experiments,
resulting in 56 independent components. We generated 112
clusters using our default clustering parameter (C = 7.5%),
and measured the enrichment of each of the seven tissue-spe-
cific categories annotated by Hsiao et al. [45] within each
cluster. The three most significant independent components
were enriched for liver-specific, muscle-specific and vulva-
specific genes with p values of 10-133, 10-127 and 10-101, respec-
tively. The fourth most significant cluster was brain-specific
(p value = 10-86). In the ICA liver cluster, 214 genes were liver-
specific (out of a total of 293), as compared with the 23 liver-
specific genes identified by Misra et al. [19]. The ICA muscle
cluster of 258 genes contains 211 muscle-specific genes com-
pared to 19 muscle-specific genes identified by Misra et al.
Genome Biology 2003, 4:R76
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Figure 2 (see legend on next page)
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[19]. The ICA brain cluster consisting of 277 genes contains
258 brain-specific genes compared to 19 brain-specific genes
identified by Misra et al. [19]. We generated a three-dimen-
sional scatter plot of the coefficients of all genes annotated by
Hsiao et al. [45] on the three most significant ICA compo-
nents (Figure 3). We observe that the liver-specific, muscle-
specific and vulva-specific genes are strongly biased to lie on
the x-, y- and z-axes of the plot, respectively.

We applied nonlinear ICA to this dataset (dataset 5) and the
four most significant clusters from nonlinear ICA with
Gaussian radial basis function (RBF) kernel were muscle-spe-
cific, liver-specific, vulva-specific and brain-specific with p
values of 10-157, 10-125, 10-112 and 10-70, respectively.

Comparison of ICA with k-means clustering
Tavazoie et al. [10] applied k-means clustering to the yeast
cell cycle data generated by Cho et al. [47] (dataset 2) and

available at [54]. First they excluded two experiments due to
less efficient labeling of the mRNA during chip hybridization,
and then selected 3,000 genes that exhibited the greatest var-
iation across the 15 remaining experiments. They generated
30 clusters with k-means clustering, after normalizing the
variance of the expression of each gene across the 15 experi-
ments. We used the same expression dataset and normalized
the variance in the same manner, but we did not remove the
two problematic experiments. Instead, we removed one
experiment that made the input matrix nearly singular, which
destabilizes ICA algorithms. We obtained 16 independent
components, and constructed 32 clusters with our default
clustering parameter (C = 7.5%). We collected functional cat-
egories detected with a p value < 10-7 by ICA clusters only (4),
or k-means clusters only (16), or both (44). Categories cov-
ered by either method but not both typically had high p val-
ues. For functional categories detected by both ICA and k-
means clusters, we made a scatter plot to compare the nega-
tive log of the best p values of the two approaches (Figure 4a).
In the majority of the functional categories ICA produced sig-
nificantly lower p values. Among the functional categories
with p value < 10-7 (or 10-10), ICA outperformed k-means clus-
tering in 30 out of 44 (27 out of 30) cases, with a median dif-
ference of 6.1 (8.9) in - log10 (p value). The seven most
significant clusters are shown in Table 2. In Figure 4a, several
functional categories are represented around the diagonal.
Some of them have close connections within the GO tree with
other categories for which ICA has much smaller p-values
than PCA. This means that if we look at a group of similar
functional categories instead of a single category, most of the
groups would have smaller p values with ICA than with PCA.
When adjusting the parameter C in our method (Equation 3)
from four to 14, we found similar results, with ICA still
significantly outperforming k-means clustering (results
shown in web supplement [50]).

To understand whether ICA clusters typically outperform k-
means clusters because of larger overlaps with the GO cate-
gory, or because of fewer genes outside the GO category, we
defined two quantities: True Positive (TP) and Sensitivity
(SN). They are determined as: TP = k/n and SN = k/f, where
k is the number of genes that are shared by the functional cat-
egory, the cluster n is the number of genes within the cluster
that are in any functional category and f is the number of
genes within the functional category that appear in the
microarray dataset. For all functional categories appeared in

Comparison of linear ICA (NMLE), nonlinear ICA with Gaussian RBF kernel (NICAgauss), and PCA, on the yeast cell cycle spotted array data (dataset 1)Figure 2 (see previous page)
Comparison of linear ICA (NMLE), nonlinear ICA with Gaussian RBF kernel (NICAgauss), and PCA, on the yeast cell cycle spotted array data (dataset 1). 
For each functional category within GO and KEGG, the value of -log10 (p value) with the smallest p value from one method is plotted against the 
corresponding value from the other method. (a) Gene clusters based on the linear ICA components are compared with those based on PCA when C for 
PCA is fixed to its optimal value 37.5. (b) Gene clusters based on the linear ICA components are compared with those based on PCA with different values 
of C. (c) Gene clusters based on the nonlinear ICA components are compared with those based on linear ICA. (d) Gene clusters based on the nonlinear 
ICA components are compared with those based on PCA. Overall, nonlinear ICA performed slightly better than NMLE, and both methods performed 
significantly better than PCA.

Three independent components of the human normal tissue data (dataset 5)Figure 3
Three independent components of the human normal tissue data (dataset 
5). Each gene is mapped to a point based on the value assigned to the gene 
in the 14th (x-axis), 15th (y-axis) and 55th (z-axis) independent components, 
which are enriched with liver-specific (red), muscle-specific (orange), and 
vulva-specific (green) genes, respectively. Genes not annotated as liver-, 
muscle- or vulva-specific are colored yellow.
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Figure 4 (see legend on next page)
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Figure 4a, we compared TP and SN of ICA clusters with those
of k-means clusters in Figure 4b and 4c, respectively. From
Figure 4b and 4c, we see that ICA-based clusters usually cover
more of the functional category (more sensitive), while they
are comparable with k-means clusters in the percentage of the
cluster's genes contained in the functional category (equally
specific). We also applied nonlinear ICA to the same dataset.
We first mapped the input data from the 16-dimensional
input space to a 20-dimensional feature space (see Methods),
found 20 independent components in the feature space and
produced 40 clusters from these components. Comparison of
the biological coherence of nonlinear ICA clusters to ICA
clusters and to k-means clusters (Figure 4d,e) showed that
overall nonlinear ICA performed significantly better than the
other methods. The seven most significant nonlinear ICA
clusters are shown in our web supplement [50].

Comparison of ICA with Plaid model
Lazzeroni and Owen [14] proposed the Plaid model for micro-
array analysis. The Plaid model takes the input expression
data in the form of a matrix Xij (where i ranges over N samples
and j ranges over K genes). It linearly decomposes X into
component matrices, namely layers, each containing non-
zero values only for subsets of genes and samples in the input
X that are considered to be member genes and samples of that
layer. Genes that show a similar expression pattern through a
set of samples, together with those samples, are assigned to
be members of that layer. Each gene is assigned a load value
representing the activity level of the gene in that layer. We
downloaded the Plaid software from [55], and applied it to the
analysis of yeast stress data of 6,152 genes in 173 experiments
(dataset 3) obtained by Gasch et al. [48] available at [56]. We
imputed dataset 3 after eliminating 868 environmental stress
response (ESR) genes defined by Gasch et al. [48] - because
clustering of the ESR genes is trivial - and obtained 173 layers.
To check the biological coherence of each layer, we grouped
genes showing significant activity level in each layer into clus-
ters. For each layer, we grouped the top C% of up-regulated/
down-regulated genes into a cluster. The value of C was varied
from 2.5 to 42.5 with an interval of five. The setting that max-
imized the average p value of the functional categories was C
= 32.5, with p value of <10-20. (We used the most favorable
clustering coefficient C for the Plaid model, see Methods.)

We applied ICA to the dataset (5,284 genes, 173 experi-
ments), after we had also eliminated the 868 ESR genes that

are easy to cluster. We found 173 independent components,
constructed 346 clusters by using our default clustering
parameters (C = 7.5, in Equation 3), and performed the same
p value comparison of statistical significance with the Plaid
model (Figure 5). Figure 5a compared ICA with the Plaid
model when C is the optimal value (C = 32.5), and Figure 5b
compared ICA with the Plaid model with C from 2.5 to 45. In
Figure 5a, when C = 32.5, in the 56 functional categories
detected by both the Plaid model and ICA with p value <10-7,
the ICA clusters had smaller p values for 51 out of 56 func-
tional categories. We list the five most significant clusters
from our model in Table 3. In Table 3, clusters are character-
ized by functional categories related to various kinds of
processes for synthesis of ATP (that is, energy metabolism),
whereas clusters in Table 2 are characterized by biological
events occurring during the cell cycle, most of which are cat-
abolic processes consuming ATP. This result is consistent
with the fact that the many cellular stresses induce ATP
depletion, which induces a drop in the ATP:AMP ratio and
leads to expression of genes associated with energy metabo-
lism [57,58]. We also applied our approach to the dataset
without removing ESR genes and the results were signifi-
cantly better (see our webpage at [50]).

Comparison of ICA with topomap-based clustering
Kim et al. [8] assembled a large and diverse dataset of 553 C.
elegans microarray experiments produced by 30 laboratories
(available at [59]). This dataset contains experiments from
many different conditions, as well as several experiments on
mutant worms. Of the total, 179 of the experiments contain
11,917 gene measurements, while 374 of the experiments con-
tain 17,817 gene measurements. Kim et al. [8] clustered the
genes with a versatile topographical map (topomap) visuali-
zation approach that they developed for analyzing this data-
set. Their approach resembles two-dimensional hierarchical
clustering, and is designed to work well with large collections
of highly diverse microarray measurements. Using their
method, they found by visual inspection 44 clusters (the
mounts) that show significant biological coherence.

The ICA method is sensitive to large amounts of missing val-
ues, while methods for imputing missing values are also not
appropriate in such cases. We applied ICA to the 250
experiments that had missing values for < 7,000 out of the
17,661 genes, removed four experiments that make the
expression matrix to be nearly singular, and generated 492

Comparison of linear ICA (NMLE), nonlinear ICA with Gaussian RBF kernel (NICAgauss), and k-means clustering on the yeast cell cycle oligonucleotide array data (dataset 2)Figure 4 (see previous page)
Comparison of linear ICA (NMLE), nonlinear ICA with Gaussian RBF kernel (NICAgauss), and k-means clustering on the yeast cell cycle oligonucleotide 
array data (dataset 2). For each GO and KEGG functional category, the largest -log10(p value) within clusters from one method is plotted against the 
corresponding value from the other method. (a) Gene clusters based on the linear ICA components are compared with those based on k-means 
clustering. (b) TP (True Positives) of gene clusters based on the linear ICA components are compared with those of gene clusters based on k-means 
clustering. Functional categories for which clusters from NMLE have larger p values than those from k-means clustering algorithm are colored in purple. 
(c) SN (Sensitivity) of gene clusters based on the linear ICA components are compared with gene clusters based on k-means clustering. Functional 
categories corresponding to the ones in purple in Figure 4b are colored in purple. (d) Gene clusters based on the nonlinear ICA components are 
compared with those based on linear ICA. (e) Gene clusters based on the nonlinear ICA components are compared with those based on k-means 
clustering. Overall, nonlinear ICA performed better than NMLE and both methods performed better than k-means clustering.
Genome Biology 2003, 4:R76
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clusters by using our default parameters. In total, 333 GO and
KEGG categories were detected by both ICA and topomap
clusters with p values <10-7 (Figure 6). Categories covered by
either method, but not both, typically had high p values. We
observe that the two methods perform very similarly, with
most categories having roughly the same p value in the ICA
and in the topomap clusters. The topomap clustering
approach performs slightly better in a larger fraction of the
categories. Still, we consider this performance a confirmation
that ICA is a widely applicable method that requires minimal
training, as in this case the missing values and high diversity
of the data make clustering especially challenging.

We also carried out a comparison of the TP and SN quantities.
For all functional categories that appeared in Figure 6a, we
compared TP and SN of ICA clusters with those of topomap-
driven clusters in Figure 6b and 6c, respectively. Again,
typically, ICA clusters cover more genes from the functional
category than the corresponding topomap clusters.

Comparison of different linear and nonlinear ICA algorithms
We tested six linear ICA methods: Natural Gradient Maxi-
mum Likelihood Estimation (NMLE) [28,29]; Joint
Approximate Diagonalization of Eigenmatrices (JADE) [30];
Fast Fixed Point ICA with three decorrelation and

Table 2

The seven most significant linear ICA clusters from the yeast cell cycle data (Dataset 2)

Cluster Number of ORFs GO/KEGG functional categories Number of ORFs within
functional category

p value (log10)

1 215 Protein biosynthesis (175) 93 -60.1

217 Structural constituent of ribosome (118) 83 -67.6

157 Cytosolic ribosome (94) 83 -73.1

229 Ribosome (96) 83 -82.5

5 208 Cell cycle (220) 61 -19.5

202 DNA-directed DNA polymerase (13) 7 -4.7

115 Replication fork (30) 16 -9.6

229 Cell cycle (58) 18 -6.6

11 2,072 Sulfur amino acid metabolism (12) 11 -11.1

211 Structural constituent of cytoskeleton (25) 11 -5.9

125 Spindle (32) 18 -10.62

9 209 Ribosome biogenesis (38) 15 -7.1

207 RNA binding (75) 7 -3.4

111 Nucleus (334) 54 -7.3

7 198 Glutamine family amino acid biosynthesis (11) 8 -6.8

99 Mitochondrion (353) 22 -3.8

3 209 Protein folding (26) 11 -5.7

212 Heat shock protein (14) 9 -6.7

11 199 DNA unwinding (10) 6 -4.5

192 ATP-dependent DNA helicase (7) 6 -6.0

85 Pre-replicative complex (8) 6 -5.7

216 Cell cycle (58) 13 -3.6

The cluster IDs are shown, where cluster Ci,1in Equation 3 is denoted by 2i-1 and a cluster Ci,2 is denoted by 2i. The number of genes in the cluster 
that have at least one annotation in GO or KEGG are listed along with the functional category with the smallest p-value among those in each 
annotation system. Four annotation systems are used: biological process (GO), molecular function (GO), cellular component (GO) and KEGG. 
Numbers in parentheses show the number of genes within the functional category that are present in the microarray data. Functional categories 
with p-values higher than 10-3 are discarded, and those with values higher than 10-7 are not considered to be significant. The number of genes shared 
by the cluster and the functional category is shown with the log10 of the p-values corresponding to each functional category for the cluster.
Genome Biology 2003, 4:R76
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nonlinearity approaches (different measures of non-Gaussi-
anity: FP, FPsym and FPsymth) [31]; and Extended Informa-
tion Maximization (ExtIM) [32]. We also tested two
variations of nonlinear ICA: Gaussian radial basis function
(RBF) kernel (NICAgauss) and polynomial kernel (NICA-
poly). For each dataset, we compared the biological coherence
of clusters generated by each method. Among the six linear
ICA algorithms, NMLE performed well in all datasets. Among
both linear and nonlinear methods, the Gaussian kernel non-
linear ICA method was the best in datasets 1 and 2, the poly-
nomial kernel nonlinear ICA method was best in dataset 5.
NMLE, FPsymth and ExtM were best in the large datasets, 3
and 4. In Figure 7, we compare the NMLE method with three
other ICA methods. We show the remaining comparisons in

our web supplement [50]. Overall, the linear ICA algorithms
consistently performed well in all datasets. The nonlinear ICA
algorithms performed best in the small datasets, but were
unstable in the two largest datasets.

The Extended Infomax ICA algorithm [32] can automatically
determine whether the distribution of each source signal is
super-Gaussian, with a sharp peak at the mean and long tails
(such as the Laplace distribution), or sub-Gaussian, with a
small peak at the mean and short tails (such as the uniform
distribution). Interestingly, the application of Infomax ICA to
all the expression datasets uncovered no source signal with
sub-Gaussian distribution. A likely explanation is that the
microarray expression datasets are mixtures of super-

Comparison of linear ICA (NMLE) with the Plaid models, on the yeast stress spotted array dataset (dataset 3)Figure 5
Comparison of linear ICA (NMLE) with the Plaid models, on the yeast stress spotted array dataset (dataset 3). For each GO and KEGG functional 
category, the largest -log10(p value) within clusters from one method is plotted against the corresponding value from the other method. (a) Gene clusters 
based on the NMLE components are compared with those based on the Plaid model when C for the Plaid model is fixed to its optimal value 32.5. (b) Gene 
clusters based on the linear ICA components are compared with those based on the Plaid model with different values of C.
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Gaussian sources rather than of sub-Gaussian sources. This
finding is consistent with the following intuition: underlying
biological processes are super-Gaussian, because they affect
sharply the relevant genes, typically a fraction of all genes
(long tails in the distribution), and leave the majority of genes
relatively unaffected (sharp peak at the mean of the
distribution).

There have been several empirical comparisons of ICA algo-
rithms using various real datasets [27,60]. Even though many
of the ICA algorithms have close theoretical connections, they
often reveal different independent components in real world
problems. The reasons for such discrepancies are usually

deviations between the assumed ICA model and the underly-
ing behavior of real data. Discrepancies can often result from
noise or wrong estimation of the source distributions. Such
factors affect the convergence of each ICA algorithm differ-
ently, and therefore it is useful to apply several different ICA
algorithms [27]. In our case, overall, the different ICA algo-
rithms perform similarly. NMLE, ExtIM, and FPsymth
algorithms yielded similar results except in dataset 2 where
NMLE performed best. Interestingly, dataset 2 is the only one
in this comparison where the data comes from oligonucle-
otide microarrays (Affymetrix), where the distribution is
highly unbalanced and required application of variance nor-
malization (see Methods).

Table 3

The six most significant linear ICA clusters from the yeast in various stress conditions data (Dataset 3)

Cluster Number of ORFs GO and KEGG functional category Number of ORFs within
functional category

p-value (log10)

17 378 Protein biosynthesis (181) 76 -37.3

407 Structural constituent of ribosome (73) 63 -57.8

225 Mitochondrion (286) 137 -77.7

423 Translation (76) 32 -15.5

15 346 Amino acid and derivative metabolism (84) 58 -47.0

379 Oxidoreductase (141) 39 -11.9

423 Metabolism of other amino acids (62) 26 -12.7

1 363 TCA intermediate metabolism (19) 18 -18.9

381 Oxidoreductase (141) 52 -22.1

198 Mitochondrion (286) 77 -22.9

421 Oxidative phosphorylation (137) 35 -24.2

65 377 Protein catabolism (123) 35 -11.1

377 Threonine endopeptidase (30) 20 -15.1

194 26S proteasome (41) 26 -18.2

423 Proteasome (32) 21 -15.5

61 375 Main pathways of carbohydrate metabolism (51) 27 -16.5

395 Transporter (218) 37 -4.8

184 Cytosol (125) 32 -9.1

421 Glycolysis/gluconeogenesis (36) 24 -17.9

75 386 Cell-cell fusion (90) 32 -12.8

390 Transmembrane receptor (14) 6 -3.3

189 External protective structure (66) 16 -4.3

The cluster IDs are shown where cluster Ci,1in Equation 3 is denoted by 2i-1 and a cluster Ci,2 is denoted by 2i. The number of genes in the cluster 
that have at least one annotation in GO or KEGG are listed, along with the functional category with the smallest p-value among those in each 
annotation system. Numbers in parentheses show the number of genes within the functional category that are present in the microarray data. 
Functional categories with p-values higher than 10-3 are discarded, and those with values higher than 10-7 are not considered to be significant. The 
number of genes shared by the cluster and the functional category is shown with the log10 of the p-values corresponding to each functional category 
for the cluster.
Genome Biology 2003, 4:R76
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Discussion
ICA is a powerful statistical method for separating mixed
independent signals. We proposed applying ICA to decom-
pose microarray data into independent gene expression pat-
terns of underlying biological processes and to group genes
into clusters that are mutually non-exclusive with statistically
significant functional coherence. Our clustering method out-
performed several leading methods on a variety of datasets,
with the added advantage that it requires setting only one

parameter, namely the percentage ranking C beyond which a
gene is considered to be associated with a component's clus-
ter. We observed that performance was not very sensitive to
that parameter, suggesting that ICA is robust enough to be
used for clustering with little human intervention. The empir-
ical performance of ICA in our tests supports the hypothesis
that statistical independence is a good criterion for separating
mixed biological signals in microarray data.

Comparison of linear ICA (NMLE) versus topomap-based clustering on the C. elegans spotted array dataset (dataset 4)Figure 6
Comparison of linear ICA (NMLE) versus topomap-based clustering on the C. elegans spotted array dataset (dataset 4). For each functional category within 
GO and KEGG, the value of -log10 (p value) with the smallest p value from NMLE is plotted against the corresponding value from the topomap method. (a) 
Gene clusters based on the NMLE components are compared with those based on the Topomap method. The two methods performed comparably, as 
most points of low p values fall on the x = y axis. (b) TP (True Positives) of functional categories from gene clusters based on the NMLE components are 
compared with those of functional categories from gene clusters based on the topomap method. Functional categories for which clusters from NMLE have 
larger p values than those from topomap method are colored in purple. (c) SN (Sensitivity) of functional categories from gene clusters based on the linear 
NMLE and topomap clusters. Functional categories corresponding to the ones in purple in Figure 6b are colored in purple.
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Figure 7 (see legend on next page)
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Linear ICA models a microarray expression matrix X as a lin-
ear mixture X = AS of independent sources. ICA decomposi-
tion attempts to find a matrix W such that Y = WX = WAS
recovers the sources S (up to scaling and permutation of the
components). The three main mathematical conditions for a
solution to exist are [42]: the number of observed mixed sig-
nals is larger than, or equal to the number of independent
sources, that is, N = M in Equation 1; the columns of the mix-
ing matrix A are linearly independent; and there is, at most,
one source signal with Gaussian distribution. In microarray
analysis, the first condition may mean that when too few sep-
arate microarray experiments are conducted, some of the
important biological processes of the studied system may col-
lapse into a single independent component. If the number of
sources is known to be smaller than the number of observed
signals, PCA is usually applied prior to ICA, to reduce the
dimension of the input space. Because we expect the true
number of concurrent biological processes inside a cell to be
very large, we attempted to find the maximum number of
independent components in our tests, which is equal to the
rank of X. We also experimented with adjusting the number
of independent components by randomly sampling a certain
number of experiments and by using dimensional reduction
using PCA for the datasets 1, 2 and 3 (results shown in the web
supplement at [50]). Both random sampling and PCA
dimensional reduction led to worse performance in terms of
p values as the number of dimensions decreased. The main
conclusion that we can draw from this drop in performance is
to exclude a scenario where a small number of linearly mixing
independent biological processes drove the expression of
most genes in these datasets. The second condition, that the
columns of the mixing matrix A are linearly independent, is
easily satisfied by removing microarray experiments that can
be expressed as linear combinations of other experiments,
that is, those that make the matrix X singular. The third con-
dition, that there is, at most, one source signal with Gaussian
distribution, is reasonable for analyzing biological data: the
most typical Gaussian source is random noise, whereas
biological processes that control gene expression are expected
to be highly non-Gaussian, sharply affecting a set of relevant
genes, and leaving most other genes relatively unaffected.
Moreover, the ability of ICA to separate a single Gaussian
component may prove ideal in separating the experimental
noise from expression data. This is a topic for future research.

ICA is a projection method for data analysis, but it can be
interpreted also as a model-based method, where the under-
lying model explains the gene levels at each condition as

mixtures of several statistically-independent biological proc-
esses that control gene expression. Moreover, ICA naturally
leads to clustering, with each gene assigned to the clusters
that correspond to independent components where the gene
has a significantly high expression level. An advantage of ICA-
based clustering is that each gene can be placed in zero, one
or several clusters.

ICA is very similar to PCA, as both methods project a data
matrix into components in a different space. However, the
goals of the two methods are different. PCA finds the
uncorrelated components of maximum variance, and is ideal
for compressing data into a lower-dimensional space by
removing the least significant components. ICA finds the sta-
tistically independent components, and is ideal for separating
mixed signals. It is generally understood that ICA recovers
more interesting (that is, non-Gaussian) signals than PCA
does in the financial time series data [25]. If the input com-
prises a mixture of signals generated by independent sources,
independent components are close approximates of the indi-
vidual source signals; otherwise, ICA is the projection-pursuit
technique that finds the projection of the high-dimensional
dataset exhibiting the most interesting behavior [44]. Thus,
ICA can be trusted to find statistically interesting features in
the data, which may reflect underlying biological processes.

We applied a new method for performing nonlinear ICA,
based on the kernel trick [37] that is usually applied in Sup-
port Vector Machine (SVM) learning [61]. Our method can
deal with more general nonlinear mixture models
(generalized post-nonlinear mixture models), and reduces
the computation load so as to be applicable to larger datasets.
Using nonlinear ICA we were able to improve performance in
the three smaller datasets. However, the algorithm was still
unstable in the two larger datasets. Using a Gaussian kernel,
the method performed very poorly in these datasets; using a
polynomial kernel, it performed comparably to linear ICA.
Overall we demonstrated that nonlinear ICA is a promising
method that, if applied properly, can outperform linear ICA
on microarray data.

In nonlinear mixture models, the nonlinear mapping f(.) rep-
resents complex nonlinear relationships between biological
processes s1 ...sM and gene expression data x1...xN. In our non-
linear ICA algorithm, the nonlinear step based on kernel
method is expected to map the data x1...xN from the input
space to a higher dimensional feature space where these non-
linear operations become linear so that the relationship

Comparison of NMLE with other ICA approachesFigure 7 (see previous page)
Comparison of NMLE with other ICA approaches. Comparison of the NMLE ICA algorithm with three other ICA approaches on two yeast cell cycle data 
(dataset 1 and 2), yeast stress data (dataset 3), and C. elegans data (dataset 4). Eight different ICA algorithms and variations (Table 4) were compared. The 
full comparison is shown in the web supplement. Overall, NMLE, ExtIM and FPsymth performed similarly except in the dataset 2. NICApoly performed 
comparably with NICAgauss. Both nonlinear approaches were better than NMLE in the two smaller datasets, but performed relatively poorly in the two 
larger datasets.
Genome Biology 2003, 4:R76



R76.16 Genome Biology 2003,     Volume 4, Issue 11, Article R76       Lee and Batzoglou http://genomebiology.com/2003/4/11/R76
between biological processes s1 ...sM and the mapped data
Ψ(x1),..., Ψ(xN) becomes linear. Kernel-based nonlinear map-
ping has many advantages compared to other nonlinear map-
ping methods because it is versatile enough to cover a wide
range of nonlinear operations, and at the same time reduces
the computational load drastically [34]. One challenge in gen-
eral is to choose the best kernel for a specific application
[62,63]. A common practice is to try several different kernels,
and decide on the best one empirically [3,34]. Finding which
kernels best model observed nonlinear gene interactions is a
direction for future research.

The linear mixture model that we proposed has the advantage
of simplicity - it is expected to perform well in finding first-
order features in the data, such as when a single transcription
factor up-regulates a given subset of genes. Nonlinear ICA
may prove capable of capturing multi-gene interactions, such
as when the cooperation of several genes, or the combination
of presence of some genes and absence of others, is necessary
for driving the expression of another set of genes. In future
research, we will attempt to capture such interactions with
nonlinear modeling, and to deduce such models from the
components that we obtain with nonlinear ICA. Currently our
ICA model does not take into account time in experiments
such as the yeast cell cycle data. A direction for future
research is to incorporate a time model in our approach,
whenever the microarray measurements represent successive
time points.

It has been suggested that ICA be used for projection pursuit
(PP) problems [64] where the goal is to find projections
containing the most interesting structural information for
visualization or linear clustering. ICA is applicable in this
context because directions onto which the projections of the

data are as non-Gaussian as possible are considered interest-
ing [60]. Unlike the BSS problem, in the projection pursuit
context inputs are not necessarily modeled as linear mixtures
of independent signals. In dataset 5, we can see difference
between ICA and PCA in finding interesting structures. Using
a previous version of dataset 5 containing 40 out of the 59
samples, Misra et al. [19] constructed a scatter plot illustrat-
ing the two most dominant principal components. On that
plot, there were three linearly structured clusters of genes,
each turning out to be related to a tissue-specific property.
Two of them were not aligned with any principal components.
The corresponding plot derived by ICA in Figure 3 shows that
the directions of the three most dominant independent com-
ponents are exactly aligned with the linear structures of genes
so that we can say that each component corresponds to a tis-
sue sample. It is known that by applying ICA, separation can
be achieved along a direction corresponding to one projec-
tion, which is not the case with PCA [60]. Nonlinear ICA can
similarly be understood to be a PP method that finds
nonlinear directions that are interesting in the sense of form-
ing highly non-Gaussian distributions.

In practice, microarray expression data usually contain miss-
ing values and may have unsymmetrical distribution. In addi-
tion, there maybe false positives due to experimental errors
(for example, weak signal, bad hybridization and artifact) and
intrinsic error caused by dynamical fluctuations in photoelec-
tronics, image processing, pixel-averaging, rounding error
and so on. In the datasets we used in the current analysis,
missing values comprise 1.427%, 3.187% and 8.55% for data-
sets 1, 3 and 4, respectively. The datasets have undergone log
transform normalization so that equivalent fold changes in
either direction have the same absolute value. Moreover, they
do not have symmetrical distribution (shown in the web

Table 4

Methods for performing ICA that we compared

Algorithm Variations Abbreviation Description Reference Software

Natural Gradient Maximum 
Likelihood Estimation

- NMLE Natural gradient is applied to MLE for 
efficient learning

[28,29] [72]

Extended Information 
Maximization

- ExtIM NMLE for separating mix of super- 
and sub-Gaussian sources

[32] [73]

Fast Fixed-Point Kurtosis with deflation FP Maximizing non-Gaussianity [31] [74]

Symmetric orthogonalization Fpsym

Tanh nonlinearity with 
symmetric orthogonalization

Fpsymth

Joint Approximate 
Diagonalization of Eigenmatrices

- JADE Using higher-order cumulant tensor [30] [75]

Nonlinear ICA Gaussian RBF kernel NICAgauss Kernel-based approach [34,37,50] [50]

Using polynomial kernel NICApoly

Eight methods are based on five algorithms. The method's name, variations, abbreviation, short description, references and software that we use, are 
listed.
Genome Biology 2003, 4:R76
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supplement [50]). Missing values, unbalanced data or intrin-
sic errors are common challenges of many statistical tech-
niques including ICA. Several strategies have been proposed
to address these problems. In the context of microarrays and
ICA, we point to the following solutions.

For missing data, a traditional way is to fill in missing values
by mean imputation. However, this approach can induce
some bias to the input data. The algorithm we apply, KNNim-
pute, is an improved version of this principle [49]. A more
principled approach is to estimate density of missing data and
use the estimate to fill in missing values; Expectation-Maxi-
mization (EM) algorithm is an example for this approach
[65]. Chan et al. [65] proposed a variational Bayesian method
to perform ICA on high-dimensional data containing missing
values. The Bayesian ICA they proposed successfully per-
formed with input data with missing values. New ICA
algorithms with additional capability to basic ICA algorithm
have been developed and it is important to develop or modify
existing algorithms for use of ICA to handle wide range of
gene expression datasets.

For noisy and asymmetric data, there are three potential
approaches: applying data normalization and error estima-
tion techniques; applying preprocessing step for ICA; and
using advanced ICA algorithms. In the first approach, there
have been approaches for normalizing spotted/oligonucle-
otide microarray data by estimating intrinsic errors on the
data [66-68]. Applying these approaches to the dataset before
ICA might help reduce errors. In the second approach, one of
the successful applications of ICA is the analysis of neurobio-
logical data such as MEG, EEG and fMRI. However, there are
limitations of using ICA for these data because neurobiologi-
cal data contain a lot of sensory noise and the number of inde-
pendent component is unknown. Therefore, many strategies
have been proposed to overcome this problem in this area.
For example, Ikeda et al. [69] proposed a novel preprocessing
step that can estimate the amount of the sensory noise and
the number of sources by using factor analysis as a preproc-
essing step for ICA to MEG signals. In the third approach,
most of the fMRI data have skewed distribution. Algorithms
have been developed that support unsymmetrical source dis-
tribution [24] and those that do not require assumption on
the source distribution. Stone et al. [24] applied skewed
probability distribution for fMRI data as a way of adopting
realistic physical assumption and showed improved perform-
ance of ICA. Applying these approaches to microarray analy-
sis is an interesting future direction. Finally, a direction for
future research is to use ICA as a preprocessing step, followed
with subsequent analyses, such as clustering or classification
methods, on the transformed space. Sophisticated clustering
methods may produce more coherent groups of genes than
our simple clustering scheme that groups genes with high
coefficients in each component separately. Here we demon-
strated that ICA transforms the data into a space whose axes
have significant functional coherence, potentially making

further analyses considerably more effective than when
applied to the original microarray data.

Methods
Data treatment
The five datasets we used in this analysis were treated as
follows.

Yeast cell cycle dataset by Spellman et al.
The yeast cell-cycle dataset in [46] was preprocessed to con-
tain log-ratios xij = log2(Rij/Gij) between red and green inten-
sities. ICA was applied on the 22 experiments with 4,579
genes that were analyzed by Alter et al. [18].

Yeast cell cycle dataset by Cho et al.
Variance normalization was applied to the yeast cell-cycle
dataset in [47] for the 3,000 most variant genes (as in [10]).
The 17th experiment, which made the expression matrix close
to singular, was removed.

Yeast stress data
The yeast stress dataset in [48] was preprocessed to contain
log-ratios xij = log2(Rij/Gij) between red and green intensities.
As in Segal et al. [15], we eliminated 868 environmental stress
response (ESR) genes defined by Gasch et al. [48] for which
clustering is trivial and applied ICA to the remaining genes
and experiments.

C. elegans data
Experiments in the C. elegans dataset [8] that contained
more than 7,000 missing values were discarded. The 250
remaining experiments were used, containing expression lev-
els for 17,817 genes preprocessed to be log-ratios xij = log2(Rij/
Gij) between red and green intensities.

Human normal tissue
The expression levels of each gene in the human normal tis-
sue [45] were normalized across the 59 experiments, and the
logarithms of the resulting values were taken. Experiments
57, 58 and 59 were removed because they made the expres-
sion matrix nearly singular.

Gene annotation database
For the yeast and C. elegans datasets (datasets 1, 2, 3 and 4),
we used the functional categories defined by four different
annotation systems: three tree ontologies developed by the
GO Consortium [43] and one from KEGG [44]. For budding
yeast, we used 502 functional categories from GO and KEGG
annotations: 243 functional categories from biological proc-
ess (GO), 120 from molecular function (GO), 81 from cellular
component (GO) and 58 from KEGG biological pathway
annotation. For C. elegans, we used 974 functional catego-
ries: 194 categories from biological process, 458 from molec-
ular function, 231 from cellular component, and 91 from
KEGG annotations. For the human dataset (dataset 5), we
Genome Biology 2003, 4:R76
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used the functional annotations compiled by Hsiao et al. [45]:
brain (618), kidney (91), liver (279), lung (75), muscle (317),
prostate (46) and vulva (103). For each cluster, we reported
functional categories with p values smaller than 10-7.

Calculating statistical significance
We measured the likelihood that a functional category and a
cluster share the given number of genes by chance, based on
the following quantities: the number of genes that are shared
by the functional category and the cluster (k), the number of
genes within the cluster that are in any functional category
(n), the number of genes within the functional category that
appear in the microarray dataset (f) and the total number of
genes that appear both in the microarray dataset and in any
functional category (g). Based on the hypergeometric
distribution, the probability p that at least k genes are shared
by the functional category and the cluster is given by Equation
4.

Algorithms for ICA
The ICA problem can be formulated as

Y = WX  (5)

where X represents an original expression dataset of N exper-
iments × K genes. The goal of ICA is to find W so that compo-
nents, that is, rows of Y, are statistically as independent as
possible. To perform ICA, we used an ICA algorithm driven by
maximum likelihood estimation (MLE), a statistical approach
for finding estimations of unknown parameters that result in
the highest probability for observations [27]. Applying a well-
known principle of density of linear transformation to Equa-
tion 5 leads to

where px and py are probability density functions of the origi-
nal dataset X and the components Y, respectively and pi is the
probability density function of the ith row of Y. The second
equality is based on the assumption that the rows of Y are
independent and so py may be factored. The log likelihood
L(W) of Equation 6 is given in Equation 7.

Based on the gradient descent rule, a learning algorithm for
finding the matrix W that maximizes the log-likelihood L(W)
is defined as follows.

The above learning rule was first derived by Bell and
Sejnowski [29] from another approach called the Information
Maximization (Infomax) approach and can be derived from
negentropy maximization [70]. Amari et al. [28] proposed
that the natural gradient method makes the above learning
rule more efficient and modified the above learning rule.

∆W ∝ [(WT)-1 - g(Wx)xT] WT W = [I - g (y) yT]W  (9)

In the above learning rule, there is one unknown parameter,
g(y), a function of the probability density of the sources. In
practice, it is enough to decide whether the distribution of the
sources is super-Gaussian or sub-Gaussian [42]. Super-Gaus-
sian distributions have a high peak at the mean and long tails
(for example, the Laplace distribution). Sub-Gaussian distri-
butions have a low peak at the mean and short tails (for exam-
ple, the uniform distribution). In our application, since
independent components are expected to be genomic expres-
sion levels of biological processes, a super-Gaussian distribu-
tion is appropriate: a biological process is likely to affect a few
relevant genes strongly (long tails), and the rest weakly (high
peak at the mean, usually = 0). We choose g(y) to be a sigmoid
function, g(u) = 2 tanh(u), when we compared various ICA
algorithms.

Nonlinear ICA model
Our nonlinear ICA algorithm defines a nonlinear mixture
model, called a generalized post-nonlinear mixture model,
described in Equation 10.

where f(.) is a nonlinear mapping from N to N dimensional
space. If f(.) operates componentwise, the above model is a
post-nonlinear mixture model on which most research on
nonlinear ICA has so far centered.

In general, an approach for nonlinear ICA of the above mix-
ture models consists of two steps [27,71]: a nonlinear step and
a linear step. A nonlinear step maps input X = [x1, ..., xN]T to
another space, called a feature space. A linear step decom-
poses the mapped data into statistically independent compo-
nents that are ideally identical to S = [s1, ..., sM]T. Here, the key
is to construct an appropriate feature space such that a non-
linear relationship between biological processes s1, ..., sM  and
expression data x1, ..., xN in the input space correspond to a
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linear relationship between s1, ..., sM and the mapped x1, ..., xN

in the feature space.

Harmeling et al. [34] proposed a technique for constructing a
feature space and finding its orthonormal basis using a kernel
method, called the kernel trick [37] that makes their approach
computationally efficient. We adopted this approach for the
nonlinear step and used NMLE for the linear step. Our
approach for nonlinear ICA is as follows.

Step 1 - construct a feature space. We find orthonormal
basis of a feature space using a kernel method with Gaussian
RBF kernels and polynomial kernels

Step 2 - map the input data to the feature space. We
map the expression data X of N experiments × K genes in the
N-dimensional input space into Ψ in the L-dimensional (L
>N) feature space.

Step 3 - apply linear ICA. We decompose the mapped data
Ψ in the feature space into statistically independent compo-
nents using the NMLE algorithm.

Construction of a feature space
Denoting by x[i] the ith column of X, the kernel method pro-
posed by Harmeling et al. [34] constructs an L-dimensional
feature space where a dot product of two mapped inputs
Φ(x[i]) and Φ(x[j]) in the feature space is determined by a
kernel function k(.,.) in the input space (Equation 11).

k (x[i], x[j]) = Φ(x[i])·Φ(x[j])  1 ≤ i, j ≤ K  (11)

Define L points v1,..., vL in the input space so that their images
ΦV = [Φ(v1),...,Φ(vL)] form a basis in the feature space. Denot-
ing by ΦX = [Φ(x[1]),...,Φ(x[K])], since ΦV is a basis of a fea-
ture space ([∈RL), span(ΦV) = span(ΦX) and rank(ΦV) = L
hold [34]. Then, orthonormal basis is defined as follows:

Here, multiplying (ΦV
T ΦV)-1/2 with ΦV leads to orthonormal

matrix and it does not change the column space of ΦV, that is,
rank(ΦV (ΦV

T ΦV)-1/2) is still L. The L points v1,..., vL can be
selected from x[1],...x[K] if they fulfill rank(ΦV) ≈ L, which
implies that ΦV

T ΦV is full rank [34]. To determine the best
basis of the feature space, we randomly sample L input vec-
tors from x[1],..., x[K], obtain v1,..., vL, and calculate the con-
ditional number of ΦV

T Φ. We repeat this random sampling
1,000 times and choose the input vectors, v = {v1, ..., vL}, that
results in the smallest conditional number, so that ΦV

T ΦV

becomes close to full rank. From Equation 11, we can use a
kernel function k(.,.) when calculating ΦV

T ΦV (Equation 13).

Mapping input data to the feature space
We map all the vectors x[1],..., x[K] to the feature space with
Ξ as a basis. For an input vector x[k], the coordinates of
mapped point Φ(x[i]), denoted by Ψ(x[i]), are calculated by a
kernel function k(.,.).

An alternative way to find an orthonormal basis of the feature
space is to use kernel principal component analysis [61].
First, calculate L eigenvectors with ΦX = [Φ(x[1]),...,Φ(x[K])]
such that (ΦX

T ΦX/K) EL = EL Λ holds. Then, determine the
basis in the feature space, as Ξ: = ΦXEL (K Λ)-1/2 and map the
input vectors x[1],..., x[K] into the feature space defined by
these bases as:

We tried this alternative method, but the results were gener-
ally worse than with random sampling.

Applying the linear ICA algorithm
We linearly decompose the mapped data Ψ = [Ψ(x[1]),...,
Ψ(x[K])] ∈RL × K into statistically independent components
using NMLE.

The requirements for a valid kernel function that specifies the
feature space are described by Muller et al. [37]. We choose a
Gaussian radial basis function (RBF) kernel described as
k(x,y) = exp(-|x - y|2) and a polynomial kernel of degree 2
described as k(x,y) = (xTy+1)2. We refer to nonlinear ICA with
Gaussian RBF kernel as NICAgauss, and with polynomial
kernel as NICApoly.

Determination of clustering coefficient
The only adjustable parameter in our approach is the cluster-
ing coefficient C in Equation 3. When generating clusters, we
varied the value from five to 15, and the result for C = 7.5%
was reported. The best settings of C for each individual data-
set were: 17.5% for dataset 1, 7.5% for dataset 2, 7.5% for data-
set 3, 7.5% for dataset 4 and 2% for dataset 5. The best setting
of C was determined to be the setting that maximizes the aver-
age of the values of - log10 (p-value) larger than 20. When
comparing ICA with PCA and the Plaid model, C was adjusted
from 5 to 45% (C = 37.5% was the optimal) and from 2.5 to
42.5% (C = 32.5% was the optimal), respectively. The favora-
ble comparison of our approach to other methods was not
sensitive to the value of C in this range.
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