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Abstract

Introduction: Emerging evidence in estrogen receptor-positive breast cancer supports the notion that prolactin-
Stat5 signaling promotes survival and maintenance of differentiated luminal cells, and loss of nuclear tyrosine
phosphorylated Stat5 (Nuc-pYStat5) in clinical breast cancer is associated with increased risk of antiestrogen therapy
failure. However, the molecular mechanisms underlying loss of Nuc-pYStat5 in breast cancer remain poorly defined.

Methods: We investigated whether moderate extracellular acidosis of pH 6.5 to 6.9 frequently observed in breast
cancer inhibits prolactin-Stat5 signaling, using in vitro and in vivo experimental approaches combined with
quantitative immunofluorescence protein analyses to interrogate archival breast cancer specimens.

Results: Moderate acidosis at pH 6.8 potently disrupted signaling by receptors for prolactin but not epidermal
growth factor, oncostatin M, IGF1, FGF or growth hormone. In breast cancer specimens there was mutually
exclusive expression of Nuc-pYStat5 and GLUT1, a glucose transporter upregulated in glycolysis-dependent
carcinoma cells and an indirect marker of lactacidosis. Mutually exclusive expression of GLUT1 and Nuc-pYStat5
occurred globally or regionally within tumors, consistent with global or regional acidosis. All prolactin-induced
signals and transcripts were suppressed by acidosis, and the acidosis effect was rapid and immediately reversible,
supporting a mechanism of acidosis disruption of prolactin binding to receptor. T47D breast cancer xenotransplants
in mice displayed variable acidosis (pH 6.5 to 6.9) and tumor regions with elevated GLUT1 displayed resistance to
exogenous prolactin despite unaltered levels of prolactin receptors and Stat5.

Conclusions: Moderate extracellular acidosis effectively blocks prolactin signaling in breast cancer. We propose that
acidosis-induced prolactin resistance represents a previously unrecognized mechanism by which breast cancer cells
may escape homeostatic control.
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Introduction
Extracellular acidosis is a frequent feature of the micro-
environment in solid tumors, and acidosis is considered
one of the major selective forces that promote evolution
of aggressive and drug-resistant tumor clones [1]. En-
hanced glycolysis with lactacidosis is a key contributor
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to reduced extracellular pH (pHe) in tumors [2]. In vivo
measurements have revealed pHe values of 6.5 to 6.9 in
human breast cancer and other malignant tumors com-
pared to normal tissue pHe values of 7.2 to 7.4 [3,4].
Cancer cell glycolysis may be anaerobic as a conse-
quence of hypoxia (the Pasteur effect) or aerobic due to
metabolic reprogramming even under normoxic condi-
tions (the Warburg effect) [5]. In addition, glycolysis in
cancer-associated fibroblasts may contribute to extracel-
lular acidosis in the tumor microenvironment [6]. Im-
portantly, extracellular acidosis of malignant tumors
d. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:hallgeir.rui@jefferson.edu
http://creativecommons.org/licenses/by/2.0


Yang et al. Breast Cancer Research 2013, 15:R73 Page 2 of 15
http://breast-cancer-research.com/content/15/5/R73
potentiates cancer progression by facilitating tumor in-
vasion [7,8], suppressing immune responses [9] and pro-
moting metastasis in mouse models [10,11]. Elevated
lactic acid secretion and acidosis were also associated
with higher incidence of metastases in various human
cancers [12,13]. However, the molecular mechanisms
underlying selection for more aggressive cancer clones
during acidosis remain incompletely understood and
may vary between cancer types.
In breast cancer, prolactin has been implicated as a

tumor promoter based on experimental studies in ro-
dents [14,15] and the association between elevated circu-
lating prolactin levels and increased risk of developing
breast cancer [16]. Prolactin sustains nuclear tyrosine
phosphorylated Stat5 (Nuc-pYStat5) and supports sur-
vival and expansion of differentiated luminal breast epi-
thelial cells [17,18] and maintains their sensitivity to cell
death [19]. In breast cancer cell lines, experimental acti-
vation of Stat5 promotes differentiation, inhibits invasive
characteristics [20-22], and blocks progesterone-induced
emergence of a drug-resistant CK5-positive cell popula-
tion [23] with tumor-initiating characteristics [24-26]. In
clinical breast cancer specimens, loss of Nuc-pYStat5
is associated with poor prognosis and increased risk
of tamoxifen resistance [27-30]. Thus, a dual role of
prolactin-Stat5 signaling in breast cancer has been pro-
posed, wherein initial pathway activation promotes cell
survival and tumor formation, whereas differentiation-
promoting effects of prolactin-Stat5 signaling may sup-
port homotypic adhesion and suppress subsequent
invasive behavior and progression [31]. However, little is
known about the molecular causes for frequent loss of
Stat5 tyrosine phosphorylation in human breast cancer.
Intriguingly, surface plasmon resonance studies have

shown that prolactin interaction with its receptor is
disrupted at pH of 6.0 or lower [32]. Such low pH occurs
in early endosomes and in prolactin secretory vesicles of
pituitary lactotrophs and may facilitate recycling of pro-
lactin receptors and reversible prolactin aggregation,
respectively [32]. Although pHe lower than 6.5 rarely
occurs in extracellular space of solid tumors, it has
remained unclear, based on limited in vitro experiments
[32-34], whether such moderate extracellular acidosis of
the microenvironment of breast cancer affects prolactin
signaling. Based on in vitro and in vivo experimental
approaches and extensive quantitative in situ analyses of
human breast cancer specimens, we now demonstrate
that prolactin activation of prolactin receptors is select-
ively disrupted even at mildly acidic pHe of 6.8. The new
observations identify acidosis as a significant contributor
to loss of Nuc-pYStat5 in clinical breast cancer speci-
mens, and implicate acidosis-induced prolactin resist-
ance as a previously unrecognized mechanism by which
breast cancer cells may evade homeostatic control.
Methods
Cell culture, reagents and antibodies
T47D, SKBR3, MDA-MB-468, MCF-7 and BT474 cells
(ATCC, Manassas, VA, USA) were cultured as previously
described [35]. Mouse promyeloid 32D cells stably
transfected with human prolactin receptors (32D-hPrlR
cells) or human growth hormone (GH) receptors (32D-
hGHR cells), were cultured as previously described [36].
Recombinant human prolactin and human GH were pur-
chased from Dr. A. F. Parlow under the sponsorship of the
National Hormone and Pituitary Program. Epidermal
growth factor (EGF) was from Peprotech (Rocky Hill, NJ,
USA). Monoclonal anti-pY-Stat5 (AX1) and rabbit antisera
to Jak1 and Stat3, Stat5a and Stat5b were provided
by Advantex BioReagents (Houston, TX, USA). Monoclo-
nal Stat5, Jak1 and Erk antibodies were from BD Trans-
duction Laboratories (Lexington, KY, USA). Monoclonal
Jak2 antibody was from Biosource (Camarillo, CA, USA).
Mouse monoclonal antibodies to phosphothreonine/
tyrosine-ERK1/2 and phosphotyrosine-Stat3 were from
Cell Signaling Technology (Beverly, MA, USA). Polyclonal
antibody anti-Stat5 was from Santa Cruz Biotechnology
(Santa Cruz, CA, USA). Rabbit anti-JAK2 antibody
and mouse anti-phosphotyrosine antibody (4G10) were
from Millipore (Billerica, MA, USA). Monoclonal antibodies
used for immunohistochemistry include anti-pancytokeratin,
anti-estrogen receptor (ER) (1D5), anti-progesterone recep-
tor (PR) (PgR636) and antiKi67 (MIB-1) from Dako
(Carpinteria, CA, USA), pY-Stat5 antibody (Epitomics,
Burlingame, CA, USA), anti-glucose transporter 1 (GLUT1)
from Thermo Fisher Scientific (Fremont, CA, USA), anti-
PrlR (ECD) (1A2B1; Invitrogen, Carlsbad, CA, USA) and
anti-lactate dehydrogenase-5 (LDH5) (Abcam, Cambridge,
CA, USA).

Three-dimensional cell culture
To generate three-dimensional spheroids of T47D cells,
one million cells were loaded into a rotating bioreactor
(Rotary Cell Culture System; Synthecon, Houston, TX,
USA) and cultured at 7 to 8 rpm in buffered RPMI
supplemented with 10% fetal calf serum (FCS) at 37°C
for 36 h in a CO2 incubator. Spheroids (1 to 2 mm in
diameter) were collected and transferred to serum-free
medium with or without prolactin at pH 6.8 or 7.4 as in-
dicated. Spheroids were then immediately formalin-fixed
and paraffin-embedded.

Cell stimulation, protein extraction, immunoprecipitation,
and immunoblotting
For breast cancer cell lines, confluent cells were serum-
starved overnight in culture medium, then incubated in
fresh buffered RPMI (supplemented with 25 mM HEPES
and 35 mM MOPS, adjusted to desired pH) for 15 min
at 37°C before stimulation. Hormone or growth factor
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treatments were carried out at 37°C for 15 min, unless
otherwise specified. 32D-hPrlR and 32D-hGHR cells
were serum-starved for 5 h before stimulation. Cell
stimulation, protein extraction, immunoprecipitation
and immunoblotting were performed as described [35].
Briefly, for detection of pYStat5, pYJak1 or pYJak2, cell
lysates were first immuoprecipitated with anti-Stat5,
anti-Jak1 or anti-Jak2 antibodies and proteins were sepa-
rated by SDS-PAGE. Immunoblotting with anti-pYStat5
for detecting pY-Stat5 or anti-phosphotysine (4G10) for
detecting pYJak1 and pYJak2 was then conducted. For
detection of other proteins whole cell lysates were used
in western blotting.

Quantitative RT-PCR
qRT-PCR assays were performed with RNA isolated
from SKBR3 cells using RNeasy kit (Qiagen, Venlo,
Netherlands). cDNA was generated using Iscript (Bio-
Rad, Hercules, CA, USA) and subjected to quantitative
PCR using forward/reverse primers CISH-f/r(CTGC
TGTGCATAGCCAAGAC/GTGCCTTCTGGCATCTT
CTG) and c-JUN-f/r(CACGTTAACAGTGGGTGCCA/
CCCCGACGGTCTCTCTTCA).

T47D xenograft tumors, prolactin treatment and tumor
pHe measurement in vivo
T47D xenotransplants were grown as previously described
[36]. Animal studies reported here adhered to inter-
national guidelines of ethical conduct and were approved
by Thomas Jefferson University Institutional Animal Care
and Use Committee under protocol 789D to HR. Briefly,
5- to 7-week-old female nude mice implanted with 17β-
estradiol pellets (0.72 mg; Innovative Research of America,
Sarasota, FL, USA) were injected subcutaneously with 5 ×
106 T47D cells into two flank sites. For in vivo prolactin
treatment, tumor-bearing mice were injected intraperito-
neally with either vehicle control (n = 3) or 1 μg/g body
mass of human prolactin (n = 3). One h after injection,
mice were euthanized and tumors collected. The in vivo
prolactin treatment experiment was independently re-
peated a second time. In vivo tumor pH measurements
were performed individually on a total of nine anesthe-
tized T47D tumor-bearing mice by inserting a miniature
pH electrode (IC 501; Samuel Agulian, Hamden, CT,
USA) 2 to 4 mm into the tumor through a small skin inci-
sion. In vivo intraperitoneal pH measurement was carried
out in parallel in three of the same anesthetized T47D
tumor-bearing mice by inserting the micro pH electrode
into the peritoneal cavity through a skin incision. The
mice were euthanized after the procedures.

Breast tumor specimens
Two cohorts of archival and de-identified formalin-fixed,
paraffin-embedded breast cancer specimens were
analyzed under Thomas Jefferson University Institutional
Review Board approved protocol 09G.355. Cohort I
was from Walter Reed National Military Medical Center
(Bethesda, MD, USA) and represented whole tissue sec-
tions from patients with invasive carcinomas. Histology,
ER/PR, Ki67 and PrlR were evaluated by a pathologist.
Cohort II was a breast cancer progression array of speci-
mens from Thomas Jefferson University (Philadelphia,
PA, USA) constructed by cutting edge matrix assembly
[37], comprising 40 healthy breast tissues and 140 breast
carcinoma specimens, including ductal carcinoma in
situ, primary invasive ductal carcinomas (grades 1 to 3),
and lymph node metastases [38].

Immunohistochemistry (IHC) and quantification
IHC and automated quantitative analysis (AQUA) were
performed as described previously [38]. Briefly, fluores-
cent images of stained slides were captured in three
channels (FITC/Alexa-488, Cy5, or DAPI). AQUA
scores for pYStat5 and GLUT1 represent average signal
intensity within the epithelial cell population as defined
by cytokeratin positivity. Cell-based quantitative ana-
lysis was performed using Tissue Studio (Definiens,
Parsippany, NJ, USA).

Densitometric and statistical analysis
Immunoblots were scanned and densitometric quantifi-
cation of images exposed in the linear range was
performed using Image J (NIH, Bethesda, MD, USA).
Data from at least three experiments are presented as
mean ± standard error (SE). Statistical significance of
differences was estimated by t test or analysis of vari-
ance (ANOVA). Association between Nuc-pYStat5 and
GLUT1 was evaluated in Cohort I and II of patient-
derived specimens. For AQUA, quantification of Nuc-
pYStat5 and cytoplasmic GLUT1 were obtained at whole
tissue, regional, and cellular levels of Cohort I. Based on
discrete distribution of the AQUA score, Nuc-pYStat5
scores above 65th percentile of whole tissue level were
defined as high and GLUT1 scores above 83rd percentile
of whole tissue level were defined as positive. At the
whole tissue level, Fisher’s exact test was used to analyze
association between Nuc-pYStat5 levels (high vs. low)
and other tumor variables. Because multiple spots from
each tumor section were used to obtain regional infor-
mation, analyses at the regional level employed the gen-
eralized linear mixed-effects model to model levels of
Nuc-pYStat5 with the random effect of slide and fixed
effect of GLUT1. For Tissue Studio analyses, quantifica-
tion of Nuc-pYStat5 and GLUT1 levels at the cellular
level, corresponding percentile cut points were used to
partition the staining levels into high and low. Cellular
Nuc-pYStat5 levels were analyzed in logistic regression
model with GLUT1 levels as predictor. Data were
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analyzed in R 2.14 (R Foundation for Statistical Comput-
ing, [39]) and SAS 9.3 (SAS Institute Inc., Cary, NC,
USA).

Results
Prolactin activation of Stat5 in human breast cancer cell
lines is disrupted by moderate extracellular acidosis
Prolactin responsiveness of five human breast cancer cell
lines, including ER-positive T47D, MCF7 and BT474
and ER-negative SKBR3 and MDA-MB-468, was ana-
lyzed at pHe of 6.8 and at normal tissue pHe of 7.4. Each
of the five cell lines responded to prolactin by inducible
tyrosine phosphorylation of Stat5 at normal tissue pHe

of 7.4, whereas prolactin-induced Stat5 phosphorylation
was abolished or nearly abolished at pHe 6.8 (Figure 1A).
We conclude that prolactin-induced Stat5 activation in
human breast cancer cell lines is highly sensitive to
moderate pH reduction.

Mutually exclusive expression of nuclear localized,
tyrosine phosphorylated Stat5 and GLUT1 in clinical
human breast cancer specimens
To establish initial clinical relevance for the in vitro
observations, we tested the hypothesis that levels of
nuclear localized and tyrosine phosphorylated Stat5
(Nuc-pYStat5) would be low in human breast cancer
specimens expressing elevated levels of GLUT1, a glu-
cose transporter. GLUT1 is upregulated in breast carcin-
oma cells with elevated glycolytic metabolism and lactic
acid production [40]. Whole tumor tissue sections from
a cohort of 52 invasive breast cancer specimens were an-
alyzed using the multiplexed and immunofluorescence-
based AQUA platform [29,38]. Indeed, Nuc-pYStat5
status was negatively associated with GLUT1 status
(Fisher’s exact test, p = 0.009), but not with levels of
PrlR, ER/PR expression, histological classification (ductal
vs. lobular), or proliferation index Ki67 (Table 1). While
ER/PR-negative tumors were associated with positive
GLUT1 expression (p <0.01), Nuc-pYStat5 status was
not significantly associated with ER/PR status.
When levels of GLUT1 expression within each cancer

specimen were plotted against levels of Nuc-pYStat5, all
tumors with elevated GLUT1 levels displayed low levels
of Nuc-pYStat5, whereas all cases with high levels of
Nuc-pYStat5 expressed low levels of GLUT1 (Figure 1B).
This is consistent with mutually exclusive patterns of
positive staining for GLUT1 and Nuc-pYStat5 at the glo-
bal tumor level. However, since some Nuc-pYStat5-positive
breast cancer cases display heterogeneous staining
patterns with regional intratumoral loss of Nuc-pYStat5
(for example Figure 1C), we determined at a more re-
fined scale whether mutually exclusive expression of
GLUT1 and Nuc-pYStat5 also existed at the regional
level within tumors. We co-stained and re-quantified
levels of GLUT1 and Nuc-pYStat5 in the same 52 breast
cancer specimens based on sampling of a total of 2,244
nonoverlapping 0.6 mm2 tumor regions. Also at this
local scale, regions with high GLUT1 levels consistently
displayed low Nuc-pYStat5 levels (Figure 1D, panel 1),
whereas regions with high Nuc-pYStat5 intensities were
associated with low GLUT1 levels (Figure 1D, panel 3).
Partitioning of the sampled regions into either high or
low GLUT1 or Nuc-pYStat5 levels revealed that areas
with high GLUT1 levels had 1.72-fold elevated odds of
displaying low Nuc-pYStat5 levels (odds ratio = 1.72,
95%CI: 1.12 to 2.66; p = 0.013).
Intriguingly, even among the sampled 2,244 tumor re-

gions of 0.6 mm2 many still displayed heterogeneous
positivity for either marker, but rarely did cells appear
doubly positive for both markers (see representative
image in Figure 1D, panel 2). We therefore further
examined the relationship between GLUT1 and Nuc-
pYStat5 levels within a subset of tumors exhibiting stain-
ing heterogeneity, and resolved marker expression at
the single cell level using cell segmentation software.
In total, images of six tumors co-stained for GLUT1 and
Nuc-pYStat5 were analyzed to generate 8,804 cellular
data points (Figure 1E, upper panels). A scatter plot of
histocytometric GLUT1 and Nuc-pYStat5 values re-
vealed continued mutually exclusive staining pattern
between the two markers also at this scale (Figure 1E,
lower panel). The odds of cells expressing low levels of
Nuc-pYStat5 were 1.9-fold higher when the cells
expressed high levels of GLUT1 (odds ratio = 1.9, 95%
confidence interval (CI): 1.62 to 2.25; p <0.0001). Col-
lectively, the quantitative analyses of clinical breast
cancer specimens revealed a robust mutually exclusive
pattern of expression between high GLUT1 and Nuc-
pYStat5 levels, a relationship that persisted across all
levels examined including at the global tumor tissue,
locoregional, and cellular levels.

Acidosis-induced disruption of all signals downstream of
prolactin receptors
Acidosis might affect prolactin-Stat5 signaling in breast
cancer cells by mechanisms beyond disrupting prolactin
receptor-ligand binding. However, if the principal mech-
anism involved is pHe-dependent disruption of receptor-
ligand binding, then the effect on prolactin signaling
would not be limited to Stat5 but include disruption of
all signals downstream of the prolactin receptor. Indeed,
in both T47D and SKBR3 cells all major prolactin-
activated signaling pathways were inhibited at pHe of
6.8, including inducible phosphorylation of Jak2, Jak1,
signal transducer and activator of transcription-5a (Stat5a),
signal transducer and activator of transcription-5b (Stat5b),
Stat3 and Erk (Figure 2A). We next characterized the pro-
ton concentration-dependence of prolactin-responsiveness



Figure 1 Mutually exclusive expression of nuclear-localized pYStat5 and GLUT1 in human breast cancer. (A) Five human breast cancer
cell lines were treated with prolactin or vehicle for 15 min at pHe 7.4 or pHe 6.8. Cell lysates were immunoprecipitated with anti-Stat5, resolved by
SDS-PAGE and immunoblotted with anti-pYStat5 or anti-Stat5. (B) Median GLUT1 and Nuc-pYStat5 levels (AQUA scores) of the 52 breast cancer
specimens in Cohort I are shown. Red dashed lines indicate the cutoff values for GLUT1 positivity and Nuc-pYStat5 positivity. (C) Example of a
human invasive ductal carcinoma showing regional variability of pYStat5 IHC staining intensity. (D) GLUT1 and Nuc-pYStat5 AQUA scores of 2,244
randomly sampled tumor regions from 52 breast cancer specimens of Cohort 1. Examples of co-staining images show high GLUT1/low
Nuc-pYStat5 (panel 1), high GLUT1/high Nuc-pYStat5 (panel 2), or low GLUT1/low Nuc-pYStat5 (Panel 3). (E) Cellular GLUT1 and Nuc-pYStat5
intensities in 8,804 cells sampled from six tumor spots displaying both high GLUT1 and high Nuc-pYStat5 are scatter-plotted. Representative
images used for the analysis are shown. AQUA, automated quantitative analysis; GLUT1, glucose transporter 1; IHC, immunohistochemistry;
Nuc-pYStat5, nuclear localized and tyrosine phosphorylated Stat5; pHe, extracellular pH.
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Table 1 Relationship between levels of Nuc-pYStat5 and
other tumor variables in Cohort I

Nuc-pYStat5 n (%) Fisher’s
exact test, PHigh Low

GLUT1 High 0 (0) 9 (100) 0.009

Low 20 (46.5) 23 (53.5)

PrlR High 9 (45) 11 (55) 0.561

Low 11 (34.4) 21 (65.6)

Ki67 > = 15% 11 (35.5) 20 (64.5) 0.770

<15% 9 (42.9) 12 (57.1)

Histology IDC 18 (39.1) 28 (60.9) 0.784

ILC 2 (50) 4 (50)

ER/PR Positive 18 (45.0) 22 (55.0) 0.100

Negative 2 (16.7) 10 (83.3)

Total 20 (38.5) 39 (61.5) 52

*Positive (ER/PR) status means ER or PR is positive, whereas negative ER/PR
status means that the specimen is negative for both receptors. Nuc-pYStat5,
nuclear localized and tyrosine phosphorylated Stat5; GLUT1, glucose
transporter 1; PrlR, prolactin receptor; IDC, invasive ductal carcinoma; ILC,
invasive lobular carcinoma; ER, estrogen receptor; PR, progesterone receptor.
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of breast cancer cells by analyzing prolactin-induced phos-
phorylation of Stat5 and Erk over a pathophysiological pHe

range from 7.4 to 6.6. Indeed, in both T47D (Figure 2B)
and SKBR3 cells (Figure 2C), prolactin-induced Stat5 and
Erk phosphorylation were gradually reduced with decreas-
ing pHe. Prolactin-stimulated Stat5 and Erk phosphoryla-
tions in both cell lines were diminished by 80% or more
at pHe 6.8 compared with phosphorylation at pHe 7.4
(p <0.01). Even at pHe 7.0, only 0.4 pH units below normal
tissue pH of 7.4, a statistically significant decrease in
pYStat5 levels was detected. Prolactin signaling in SKBR3
cells was particularly sensitive to extracellular acidosis, pos-
sibly because prolactin receptor levels in SKBR3 cells are
lower than in T47D cells.

Acidosis-induced disruption of prolactin signaling is
resistant to high prolactin concentrations
We next determined whether increasing concentrations
of prolactin could overcome acidosis-suppression of pro-
lactin signaling. SKBR3 and T47D breast cancer cell
lines were stimulated with prolactin concentrations ran-
ging from 1 to 100 nM for 15 min at different pHe. At
pHe of 7.4, Stat5 phosphorylation was detectably in-
duced by 1 nM prolactin and reached maximum levels
at 10 nM prolactin in both cell lines (Figure 3A). In con-
trast, in both cell lines at pHe of 6.8, prolactin activation
of Stat5 was greatly suppressed at all prolactin concen-
trations tested. SKBR3 cells were tested also at pHe of
6.5, which completely abolished Stat5 activation even at
100 nM of prolactin. Estimated half maximal effective
concentration (EC50) values were at least 10-fold higher
at pHe of 6.8 than at 7.4 (119.0 nM vs. 3.3 nM for
SKBR3, 37.8 nM vs. 3.7 nM for T47D) (Figure 3B). Fur-
thermore, a time course study up to 120 min eliminated
the possibility that acidosis simply transiently suppressed
and delayed prolactin receptor activation (Figure 3C). At
pHe of 7.4 prolactin-induced Stat5 activation peaked
within 15 min, dropping slightly thereafter in both cell
lines, whereas prolactin-induced pYStat5 levels were
greatly diminished at pHe 6.8, without evidence of emer-
gence of a delayed signal. Together, these data established
that prolactin signaling in human breast cancer cells is
highly sensitive to extracellular acidosis even at high pro-
lactin concentrations and for extended periods.

Prolactin receptor signaling is selectively sensitive to the
inhibitory effect of acidic microenvironment
Since earlier reports had revealed a compromised solu-
tion structure of prolactin at lower pH [41] with reduced
ability to bind to prolactin receptors in surface plasmon
resonance assays [32], we examined whether the sup-
pressive effect of acidic pH is selective for prolactin re-
ceptor signaling or reflects a general effect on cell
surface receptor signaling in cancer cells stressed by
exposure to low pHe. Whereas prolactin-induced phos-
phorylation of Stat5, Erk and Akt in SKBR3 cells were
suppressed at pHe of 6.8 and 6.5, Erk activation induced
by EGF showed no evidence of inhibition by extracellu-
lar acidosis, compared to the response at normal pHe of
7.4 (Figure 4A). Likewise, activation of Stat3 and Erk in
SKBR3 cells by the proinflammatory cytokine, oncostatin
M (OSM), was also unaffected by pHe of 6.8 (Figure 4B).
Similar insensitivity to moderate acidosis was observed
for insulin-like growth factor 1 (IGF1) and fibroblast
growth factor (FGF) signaling (see Additional file 1).
Thus, under acidic conditions that completely blocked
prolactin-induced signaling, breast cancer cells remained
viable and fully capable of responding to other extracel-
lular factors. Furthermore, while prolactin effectively in-
duced both c-jun and CISH transcripts in SKBR3 cells at
pHe 7.4, transcript-inductions by prolactin but not EGF
were markedly reduced at pHe 6.8 (P <0.01) (Figure 4C).
Human growth hormone (GH) resembles prolactin

in size and overall structure and is also implicated in
breast cancer growth and development [42,43]. To
examine whether GH receptor signaling is pH-
dependent, we stably expressed GHR or hPrlR in the
GHR and PrlR-negative 32D murine myeloblast line.
We examined Stat5 activation in 32D-hPrlR or 32D-
hGHR cells by the cognate ligands over a pHe range of
7.4 to 6.6 (Figure 4D). Whereas prolactin-induced Stat5
phosphorylation was gradually lost with increasing pro-
ton concentrations in 32D-hPrlR cells, GH-induced
Stat5 activation was not suppressed over the same pHe

range in 32D-hGHR cells (Figure 4D). These results



Figure 2 Prolactin signaling in breast cancer cells is markedly inhibited by moderate acidic pHe. (A) T47D cells and SKBR3 cells were
induced by prolactin or vehicle at pHe 7.4 or 6.8. All major prolactin signaling pathways were examined. T47D (B) and SKBR3 (C) cells were
induced by prolactin or vehicle at various pHe as indicated. Stat5 and Erk activation by prolactin was examined. Levels of Stat5 activation were
analyzed by densitometry and plotted as mean ± SE (n= 3). The pYStat5 levels among different pHe conditions were analyzed by ANOVA, and followed
by Fisher’s least significant difference test. ANOVA, analysis of variance; pHe, extracellular pH; SE, standard error. *, p <0.05; **, p <0.01; ***, p <0.001.
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demonstrated that GH signaling via GHR is resistant to
extracellular acidosis.
Human PrlR does not only bind human prolactin, but

is capable of binding and responding to GH, with zinc
ions facilitating GH-hPrlR binding [44]. Many breast
cancer cells express both GHR and PrlR. To test
whether GH signaling in human T47D breast cancer
cells, which express low levels of GHR and high levels of
PrlR, is affected by extracellular acidosis, we assessed
GH induction of phosphorylation of Jak2, Jak1 and Stat5
across a range of zinc ion concentrations at pHe 7.4
and 6.8 (Figure 4E). Under zinc-free conditions GH
signals in T47D cells were modest at normal pHe and
were suppressed at acidic pHe. Increasing concentrations
of zinc ions enhanced GH signaling at pHe 7.4, presum-
ably by enhancing GH binding to PrlR. Since circulating
zinc ion concentrations in humans range from 1 to 20
μM [45], only at supraphysiological zinc ion concentra-
tions of 50 μM did GH-induced signaling in T47D cells
become pHe-independent (Figure 4E). Collectively, our
data indicates that at physiological zinc ion levels GH-
induced Stat5 activation via PrlR, but not GHR, in breast
cancer cells is significantly suppressed by moderate
extracellular acidosis.



Figure 3 Dose-dependent response and time course of prolactin-induced Stat5 tyrosine phosphorylation at different levels of pHe.
(A) Different concentrations of prolactin (1 to 100 nM) were used to induce SKBR3 or T47D cells at normal tissue pHe (pHe 7.4) or acidic tumor
pHe (pHe 6.8 or pHe 6.5). Representative data on levels of pYStat5 and total Stat5 protein is presented with densitometric analyses shown
representing independent experiments in SKBR3 (n = 4) and T47D (n = 3). (B) SKBR3 and T47D cells were treated with prolactin for indicated
length of time and representative pYStat5 and Stat5 levels are shown (n = 4). pHe, extracellular pH.
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Inhibition of prolactin signaling by acidosis is rapidly
reversible
Our observation that all downstream signals are
disrupted at reduced pHe and data from cell-free ana-
lyses [32,33] suggest that proton-induced disruption of
prolactin signaling occurs at the level of ligand-receptor
binding. However, acidosis might indirectly affect prolac-
tin receptor signaling through additional mechanisms.
We therefore tested whether restoration of physiological
pHe could immediately rescue PrlR signaling, which
would be consistent with a primary mechanism of direct
disruption of ligand binding. SKBR3 cells were
preincubated alternately at pHe 7.4 or pHe 6.8 for 30
min, before cells were exposed to medium containing
prolactin or vehicle for 15 min at either the same pHe or
the alternate pHe, and prolactin-induced Stat5, Jak2 and
Erk signals were examined. A third set of cells received
additional 30 min incubation in the alternate pHe before
prolactin exposure to determine whether prolonged re-
versal of pHe would be more effective than immediate
reversal (Figure 5A). For cells preincubated at pH 7.4,
the inhibition of prolactin signals by pHe 6.8 was imme-
diate and not further strengthened by additional incuba-
tion at pHe 6.8. Likewise, rescue of prolactin signaling in
pHe 6.8-exposed cells was immediately restored upon
exposure to prolactin at pHe 7.4, and signals were not
consistently further enhanced by prolonged incubation
at pHe 7.4 prior to prolactin stimulation.
To better experimentally model prolactin-acidosis re-

lationships in tumors in vivo, we used three-dimensional
T47D spheroids in culture to determine whether
acidosis-induced suppression of prolactin signaling could
be rapidly reversed by normalizing pHe. Indeed, when
three-dimensional spheroids of T47D cultures at pHe 6.8
were equilibrated with prolactin for 2 h there was no
detectable Stat5 activation over control levels, whereas
alkalinization of the medium to pH 7.4 restored Stat5
activation within 5 min in prolactin-equilibrated spher-
oids (Figure 5B). Collectively, extracellular acidosis in-
hibits prolactin signaling in a rapid and reversible
manner consistent with the principal mechanism being
proton-dependent disruption of ligand-receptor binding.

Markers of glucose uptake/glycolytic metabolism are
associated with loss of Nuc-pYStat5 signaling in invasive
breast cancer and xenografts in mice
To further substantiate the observed mutually exclusive
expression of the glucose transporter GLUT1 and Nuc-



Figure 4 pHe effect on prolactin receptor signaling is specific. (A) SKBR3 cells were stimulated with vehicle, prolactin or EGF for 30 min at
different pHe as indicated. Stat5 and Erk phosphorylation were examined (n = 3). (B) SKBR3 cells were treated with vehicle or 10 nM OSM for 15
min at pHe 7.4 or 6.8. Representative Stat3 and Erk activation were shown (n = 2). (C) SKBR3 cells were treated with vehicle, prolactin or EGF for 1
hour at pHe 7.4 or 6.8. Quantitative PCR of c-jun and CISH transcripts were conducted and representative results are shown in bar graphs (n = 3).
(D) 32D-hPrlR cells were treated with 2 nM prolactin at pHe range of 7.4 to 6.6 (n = 3). 32D-hGHR cells were treated with 2 nM growth hormone
at similar conditions (n = 5). Representative pYStat5 and total Stat5 blots are shown. Stat5 activation at each pHe were analyzed and compared.
(E), 10 nM GH-induced phosphorylation of Jak2, Jak1 and Stat5 at various zinc concentration were compared at normal and acidic tumor pHe in
T47D cells (n = 4). One-way ANOVA was followed by Bonferroni’s post hoc test. 32D-hGHR, human growth hormone receptor cells; 32D-hPrlR
cells, mouse promyeloid 32D cells stably transfected with human prolactin receptor; ANOVA, analysis of variance; EGF, epidermal growth factor;
GH, human growth hormone; pHe, extracellular pH.
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Figure 5 pHe effect on prolactin signaling is rapidly reversible. (A) SKBR3 cells were preincubated with medium of either pHe 7.4 or pHe 6.8
for 30 min at 37°C. Then the pHe was altered or not as indicated and cells were treated with prolactin for 15 min. Two groups were incubated
further for another 30 minutes as indicated before exposure to prolactin. Jak2, Stat5 and Erk activation was analyzed (n = 3). (B) T47D spheroids
grown in three-dimensional culture conditions were treated with prolactin or vehicle at indicated pH conditions. The spheroids were stained for
pYStat5. The experiment was carried out twice.
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pYStat5 in tissue sections from Cohort I of clinical
breast cancer cases, we examined a larger Cohort II of
archival breast cancer tissues that also included normal
controls. Normal breast epithelia generally displayed
high levels of Nuc-pYStat5 and low levels of GLUT1.
Representative tissue sections of normal breast tissue
stained for either pYStat5 or GLUT1 along with two
cases of invasive breast cancer that are positive for either
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Nuc-pYStat5 or GLUT1 are shown (Figure 6A). Levels
of GLUT1 and Nuc-pYStat5 within the epithelial com-
partment were quantified for each specimen of Cohort II
using AQUA and presented as a scatter plot stratified by
diagnostic categories (Figure 6B). GLUT1 membrane
staining was generally undetectable in normal breast
epithelia but was elevated in a subset of invasive breast
carcinomas (Figure 6B). Consistent with previous reports
[27,38], Nuc-pYStat5 levels were high in the epithelia of
healthy breast tissues and reduced in many of the inva-
sive ductal carcinomas (IDCs). GLUT1-positive breast
cancer cases not only displayed reduced Nuc-pYStat5
staining, but also represented more progressive disease,
such as higher grade of cancer or lymph node metasta-
ses. Among malignant breast specimens, levels of Nuc-
pYStat5 were substantially lower in GLUT1-positive
cases than in GLUT1-negative cases (p <0.001), whereas
expression levels of Stat5a, Stat5b and PrlR did not differ
between the two groups (Figure 6C). We further
partitioned malignant breast cancer specimens into low
and high Nuc-pYStat5 based on the range in healthy
breast tissues. Consistent with the data of Cohort I of 52
invasive breast cancer specimens, high GLUT1 levels
were associated with low Nuc-pYStat5 levels in the inva-
sive breast cancer specimens of Cohort II (N = 88;
p = 0.01, Fisher’s exact test).
We further detected regional co-expression of GLUT1

and the key glycolytic enzyme, lactate dehydrogenase-5
(LDH5), in T47D xenotransplants indicative of localized
glycolytic metabolism and lactic acid production within
the tumors (Figure 6D). In contrast, expression of PrlR
and Stat5 proteins were largely uniform within the
xenotransplants, regardless of glycolytic markers. We
therefore hypothesized that GLUT1-positive T47D
tumor regions would be resistant to exogenous human
prolactin. Consistent with local acidosis within T47D tu-
mors, in vivo pH measurement by microelectrode probe
revealed a variably acidic tumor interstitium averaging
pHe of 6.61 ± 0.11 (n = 9), significantly lower than pHe of
mouse peritoneal cavity at 7.25 ± 0.04 (n = 3; p <0.001
by Student’s t test). We injected human prolactin or ve-
hicle into nude mice bearing T47D human xenografts
and collected tumors 1 h later. When tumor sections
were co-stained for pYStat5 and GLUT1, all T47D xeno-
grafts were regionally positive for GLUT1 staining
(Figure 6E). Consistent with local acidosis-mediated sup-
pression of prolactin signaling, GLUT1-positive regions
as well as the immediately surrounding zone lacked
prolactin-inducible pYStat5 response whereas regions of
GLUT1-negative tumor cells displayed robust pYStat5
signal (Figure 6E). These in vivo experiments confirmed
the presence of interstitial acidosis and regionally
increased glucose uptake and glycolytic metabolism
in T47D xenotransplants, and established selective
unresponsiveness of GLUT1-positive tumor regions to
exogenous human prolactin.

Discussion
The present study supports the novel pathophysiological
concept that extracellular acidosis within the micro-
environment of breast cancer potently and selectively
disrupts prolactin receptor signaling, including Stat5
activation. Previous analyses of more than 2,000 cases
revealed that loss of nuclear translocated and tyrosine
phosphorylated Stat5 (Nuc-pYStat5) occurs frequently
in breast cancer, and correlates with disease progres-
sion, poor prognosis, and increased risk of resistance to
endocrine therapy [27-30]. Intratumoral acidosis is a
previously unrecognized factor contributing to loss of
prolactin-induced Nuc-pYStat5 human breast cancer,
and implicates acidosis-associated prolactin resistance
as a novel mechanism by which breast cancer cells
escape pro-differentiation and invasion-suppressive ef-
fects of prolactin.
The pathophysiological relevance of potent and revers-

ible acidosis-disruption of prolactin signaling in breast
cancer is supported by extensive experimental evidence
and correlative studies in archival human breast cancer
specimens provided clinical relevance. Indeed, we ob-
served mutually exclusive expression patterns of Nuc-
pYStat5, a marker of prolactin receptor activation, and
elevated levels of GLUT1, a marker of increased glycoly-
sis and associated lactacidosis. Quantitative multiplexed
immunofluorescence analyses specifically revealed that
positive GLUT1 expression (gain-of-function) was asso-
ciated with low levels of Nuc-pYStat5 (loss-of-function)
in malignant breast tumors at three different scales: at
the global tumor level, regionally within tumors, and at
the cellular level. This is consistent with global and
regional acidosis within malignant breast tumors. How-
ever, a substantial number of tumors, tumor regions, or
tumor cells were negative for both GLUT1 and Nuc-
pYStat5, indicating that not all tumor-associated absence
of Stat5 signaling is explainable by GLUT1-associated
acidosis in breast carcinoma cells. For instance, acidosis
may in some cases be caused by increased glycolysis
within stromal fibroblasts [6], which is not correlated
with epithelial GLUT1 staining. Furthermore, alternative
mechanisms likely lead to loss of Nuc-pYStat5 in human
breast cancer, such as inhibition of prolactin-Stat5 sig-
naling by the tyrosine phosphatase PTP1B through
inhibition of the Jak2 tyrosine kinase [46].
Aerobic glycolysis in carcinoma cells is frequently

associated with activated oncogenes, including Src, Myc,
AKT/mTOR pathway and mutation of tumor suppres-
sors such as p53 [47]. In these cases, the entire tumor
typically displays glycolytic metabolism regardless of
oxygenation status. In fact, we observed that more than



Figure 6 Elevated GLUT1 is associated with low Nuc-pYStat5 in human breast cancer and xenografts. (A) Representative images from a
breast cancer progression tissue array co-stained with anti-cytokeratins, DAPI, anti-pYStat5 or anti-GLUT1. (B) Expression of GLUT1 and nuclear
pY-Stat5 in each tissue samples were quantified by AQUA and plotted. The range of normal GLUT1 expression is labeled on the plot by mean of
normal mammary gland GLUT1 (log) score ± 3 SD. (C) Comparison of AQUA scores Nuc-pYStat5, Stat5a, Stat5b and PrlR between GLUT1 negative
and positive breast cancer samples (n = 88) by Student’s t test. (D) IHC staining of LDH5, GLUT1, PrlR and Stat5 with consecutive slides of a
representative T47D xenograft tumor. (E) Co-staining of pYStat5 and GLUT1 in representative T47D xenografts from mice that were injected
intraperitoneally with vehicle or human prolactin. Red, pYStat5; green, GLUT1. AQUA, automated quantitative analysis; GLUT1, glucose transporter
1; IHC, immunohistchemistry; LDH5, lactate dehydrogenase-5; Nuc-pYStat5, nuclear localized and tyrosine phosphorylated Stat5; PrlR, prolactin
receptor; SD, standard deviation.
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half of the GLUT1-positive human breast cancer speci-
mens displayed generally homogenous GLUT1 staining
throughout the tumor and were essentially negative for
Nuc-pYStat5. Alternatively, rapidly proliferating tumors
may exhibit regional hypoxia with resulting focal or re-
gional hypoxia-induced glycolysis and acidosis. Indeed,
heterogeneous GLUT1 staining in breast tumors was also
commonly detected, including specimens with GLUT1-
positive foci surrounding necrotic regions suggestive of
local hypoxia. More recently, paracrine hepatocyte growth
factor from cancer-associated fibroblasts was shown to
promote GLUT1 expression and the Warburg effect in
cancer [48]. Regardless of the mechanisms underlying in-
creased regional glucose metabolism and extracellular
acidosis, carcinoma cells positive for Nuc-pYStat5 were
absent in tumor regions where carcinoma cells displayed
elevated GLUT1. Experimental evidence for acidosis-
induced suppression of prolactin signaling in breast cancer
was extended from cell lines in two-dimensional cultures
to human breast cancer xenotransplants in mice in vivo
and to multilayered three-dimensional spheroid cultures,
experimental conditions that better mimic local acidosis
within the patient tumor microenvironment. In fact,
T47D xenotransplant tumor regions expressing high
GLUT1 were resistant to exogenous prolactin despite
retaining prolactin receptor and Stat5 expression. Fur-
thermore, in three-dimensional spheroids of T47D
cells extracellular alkalinization alone rapidly reversed
acidosis-disrupted prolactin signaling. These observa-
tions are consistent with the notion that elevated
glycolysis and lactacidosis effectively disrupts prolactin-
induced Nuc-pYStat5 in breast cancer.
The sensitivity of prolactin-induced signaling to acid-

osis is most likely due to a mechanism that involves
protonation of histidine residues located at the ligand-
receptor binding interface [33,49]. Four histidine resi-
dues are directly involved in high-affinity binding
between prolactin and its cognate receptor based on
crystal structures [41]. In contrast, histidine residues are
not critical for binding of the closely related but
acidosis-resistant growth hormone to its cognate GHR
[50]. Mutational analyses have suggested that H180 of
prolactin and H188 of PrlR are particularly important
for the pH-dependent ligand-receptor binding. Import-
antly, human GH can also bind to hPrlRs and exert
lactogenic activity [51]. The binding of GH to hPrlRs is
facilitated by a critical Zn2+ binding site formed by two
growth hormone residues (H18 and E174) and two pro-
lactin receptor residues (D187 and H188) at the binding
interface [52]. Therefore, protonation of prolactin recep-
tor H188 at acidic pH may interfere with Zn2+-mediated
binding of GH, and consequently disrupt the majority of
GH-induced PrlR signaling in T47D cells. Only in the
presence of supraphysiological concentrations of Zn2+
(50 μM) did GH-induced signaling become resistant to
acidosis in T47D cells. This effect is probably due to
stabilization of the histidine imidazole group at high Zn2+

concentration, which might protect PrlR H188 from be-
coming protonated. These observations are consistent
with an earlier report based on a cell-free assay that the
binding of GH to the PrlR extracellular domain was not
pH-dependent in the presence high levels of Zn2+ [33].
Importantly, GH signaling through PrlRs, including pro-
posed heterodimerization of PrlRs and GHRs [53], is likely
to remain pHe-dependent at physiologic Zn2+ levels. In
contrast, GH activation of GHRs expected to be un-
affected by acidosis.
In addition to the full-length or ‘long’ PrlR, alterna-

tive mRNA splicing generates ‘intermediate’ and ‘short’
PrlR isoforms that only differ in their cytoplasmic
domain. Binding of prolactin to these PrlR isoforms is
expected to remain sensitive to acidosis. On the other
hand, binding of prolactin to the ΔS1 PrlR isoform
may be less sensitive to acidosis due to its already
poor ligand-binding kinetics caused by partial loss of
the ligand-binding interface [54]. Furthermore, 16 K
prolactin is an N-terminal proteolytic fragment of pro-
lactin that comprises only the first 145 amino acid resi-
dues. Therefore, 16 K prolactin lacks the critical H180
residue which mediates pHe-sensitive binding of Prl to
PrlR. Despite the well-documented anti-angiogenesis
activity of 16 K prolactin, the receptor mediating its
function remains to be identified, and the effect of acid-
osis on the function of 16 K prolactin is unknown.
Interestingly, 16 K prolactin is generated by cathepsin
D cleavage of full length prolactin [55]. Cathepsin D is
a lysosomal protease and thought to be active only at
lysosomal pH range (approximately 5.0). More recent
studies suggested that cathepsin D could be secreted
and activated at acidic pHe approximately 6.7 [56].
Therefore, an acidic tumor environment might facilitate
cleavage of full length prolactin into 16 K prolactin.

Conclusions
In summary, the prolactin-Jak2-Stat5 pathway, which
may suppress breast cancer cell epithelial-to-mesenchy-
mal transition, invasion and drug resistance [21-23], is
potently and selectively suppressed by extracellular
tumor acidosis. Local acidosis within the breast cancer
microenvironment may represent a significant con-
tributor to loss of Nuc-pYStat5 detected in clinical
breast cancer specimens and thereby promote progres-
sion and evolution of more invasive and therapy-
resistant disease. Studies are warranted to determine
how extracellular tumor acidosis impacts pharmaco-
logical strategies centered on targeting prolactin recep-
tor pathways [57,58] in breast cancer and potentially
other malignancies.
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Additional file

Additional file 1: FGF and IGF1 signaling was not affected by acidic
pHe. SKBR3 cells were treated with FGF (20 ng/ml) or IGF1 (100 ng/ml)
for 15 min at either pHe 7.4 or 6.8. Representive immunoblots of pErk1/2
and Erk are shown (n = 3). FGF, fibroblast growth factor; IGF1, insulin-like
growth factor 1; pHe, extracellular pH.
Abbreviations
pHe, extracellular pH; 32D-hGHR: human growth hormone receptor cells;
32D-hPrlR cells: mouse promyeloid 32D cells stably transfected with human
PrlR; ANOVA: analysis of variance; AQUA: automated quantitative analysis;
CI: confidence interval; DAPI: 4′,6-diamidino-2-phenylindole; EC50: half
maximal effective concentration; EGF: epidermal growth factor; ER: estrogen
receptor; FCS: fetal calf serum; FGF: fibroblast growth factor; hGH: human
growth hormone; hGHR: human growth hormone receptor; GLUT1: glucose
transporter 1; hPrlR: human prolactin receptors; IDC: invasive ductal
carcinoma; IGF1: insulin-like growth factor 1; IHC: immunohistochemistry;
LDH5: lactate dehydrogenase-5; Nuc-pYStat5: nuclear localized and tyrosine
phosphorylated Stat5; OSM: oncostatin M; pHe: extracellular pH;
PR: progesterone receptor; SE: standard error; Stat5a: signal transducer
and activator of transcription-5a; Stat5b: signal transducer and activator
of transcription-5b.
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