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Shift of the mean magnetic field values: Effect of scatter
due to secular variation and errors
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Paleomagnetic data are mostly given in the form of field directions (inclinations and declinations) which depend
nonlinearly on the model parameters (Gauss coefficients). Because of this nonlinearity, the means of the data are
affected not only by the means of the parameters but also by their fluctuations. Defining the mean directions by
the Fisher method decreases this effect but does not completely eliminate it. For various mean fields, we evaluate
the effect of secular variation on the means of Fisher-averaged directions by the analytical (Taylor expansion to
the second order) as well as by the numerical (Monte Carlo) method. It was shown that a significant amount of
offset occurs in the field values because of the fluctuation caused by secular variation. In the case of an inclination
anomaly, the effect of secular variation as a function of latitude is antisymmetric about the equator, similar to that
of the axial octupole term (g03). We also show that the measurement errors do not induce biases in the mean field
data, provided that they are random and isotropic.

1. Introduction
In the characterization of the global magnetic field, the

use of spherical harmonic analysis and description by Gauss
coefficients is the standard as this gives a complete andunique
representation of the source-free magnetic field (Langel,
1987). In the case of the paleomagnetic field, similar ap-
proaches have been sought for a long time (Benkova et al.,
1970; Creer et al., 1973). However, these early efforts were
not very satisfactory since they did not take care of the non-
uniqueness associated with the inversion of magnetic direc-
tion data (Kono, 1976; Proctor and Gubbins, 1990; Hulot et
al., 1997).
Modern inversion methods such as stochastic inversion

(Jackson, 1979; Gubbins, 1983; Gubbins and Bloxham,
1985) or harmonic splines (Shure et al., 1982) were devel-
oped to take care of these problems. These methods apply
somephysically plausible conditions, so that the solutions are
sought within the bounds that such constraints are satisfied.
These inversion methods are also powerful in applications
where data quality is far from ideal (large errors, poor site
distribution, etc.). Gubbins and Kelly (1993), Johnson and
Constable (1995, 1997) and Kelly and Gubbins (1997) em-
ployed inversion methods adapted to the nonlinear direction
data. These authors gave time-averaged magnetic fields for
the last 5 million years.
Kono et al. (2000a), however, pointed out that not only the

means but also the variances of Gauss coefficients affect the
means of nonlinear data, and pointed out that these authors
did not properly consider this effect. To avoid the complexity
of this problem, Kono et al. (2000a) used only paleointensity
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data in their inversion, which are actually linear data, since
information about vector directions is also available for them.
This approach is easier but not satisfactory as paleointensity
data are much less abundant than paleodirection data.
If we consider the abundance of directional data compared

to intensity data, the use of nonlinear data is unavoidable for
recovering the paleomagnetic field structure. The sugges-
tion by Kono et al. (2000a) is theoretically correct; there are
always contributions to the mean of the field values from
the fluctuation of the parameters because of the nonlinearity
of the data used. However, their discussion and an analyti-
cal estimate by Kono (1997a) were based on this effect seen
through the simple means of inclinations and declinations.
In paleomagnetism, these angles are not usually averaged
separately but the mean direction is defined by the method
proposed by Fisher (1953), i.e., taking the direction of the
sum of the unit vectors representing the direction of individ-
ualmeasurements. This proceduremarkedly reduces the bias
in the mean. So, if the effect of fluctuations is made small
enough by taking the Fisher-type means, a reasonable mean
fieldmodel can still be obtained from themean direction data
assuming one-to-one correspondence between the data and
the parameters. To evaluate the relevance of the mean field
models thus far proposed, we need a quantitative estimate of
the effect of fluctuations on the mean direction in the case of
the Fisher averaging procedure.
In this study, we evaluate the effect of scatter on the mean

field when calculated by the Fisher method. For this pur-
pose, we take a few typical mean field models and assume
that the behavior of the parameters (Gauss coefficients) in a
long-term secular variation can be modeled by treating them
as normal variates having some averages corresponding to
the mean field and certain variances. As a theoretical ap-
proach, we employ the accurate second-order Taylor expan-
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sion. We compare these “analytical” results with the numer-
ical ones obtained by generating random models following
the assumed distribution of parameters. We also evaluate the
effect of errors in measurements of the mean directions and
examine whether these effects can be distinguished from the
effects of the secular variation.

2. Taylor Series Expansion ofMagnetic Field Data
We can express the three orthogonal components (X , Y

and Z ) of the geomagnetic field using a potential obtained
by spherical harmonic analysis (see Appendix A.1). These
components depend linearly on the parameters of the field
model (Gauss coefficients). Nonlinear quantities, such as
direction cosines (x , y, z), field directions (D and I ), and
virtual geomagnetic pole (VGP), can be described by a com-
bination of the linear components (summarized in Appendix
A.2 and A.3).
2.1 Expressions for nonlinear data
In general, a nonlinear element of the magnetic field A

(such as inclination or declination) can be expressed by Tay-
lor expansion around a reference model m0 (Kono et al.,
2000a)

A = A0 +
∑
j

A j�m j + 1

2!

∑
j,k

A jk�m j �mk

+ 1

3!

∑
j,k,l

A jkl�m j �mk �ml + · · · , (1)

where A0 is the observation corresponding to the reference
model,

A0 = A(m0), (2)

andm is a vector composed of the model parameters (Gauss
coefficients), which is a sum of the reference model m0 and
deviation from it

m = m0 + �m. (3)

The subindices attached to a field value indicate derivatives
with respect to the components of modelm; i.e., A j , A jk and
A jkl are, respectively, the first, second, and third derivatives
of A

A j = ∂A

∂m j
, A jk = ∂2A

∂m j∂mk
,

A jkl = ∂3A

∂m j∂mk∂ml
, · · · . (4)

Note that j, k, l, . . . span the interval (1, . . . , J ), where J =
�max(�max+2) is the number of parameters, so that the suffix 0
is always reserved for representing the value for the reference
model. Explicit forms of the first and second derivatives of
variousmagneticfield datawhich are useful in paleomagnetic
analyses are given in Appendix A. From (1), the mean and
the variance of some component of the field can be calculated
as

E [A] = A0 +
∑
j

A jE
[
�m j

]

+ 1

2

∑
j,k

A jkE
[
�m j �mk

]+ · · · , (5)

V[A] = E
[
A2]− (E [A])2

=
∑
j,k

A j AkE
[
�m j�mk

]

+ 1

3

∑
j,k,l,n

A j AklnE
[
�m j�mk�ml�mn

]
+ · · · . (6)

Variations inGauss coefficients in a long-term secular vari-
ation can bemodeled by assuming that eachm j is an indepen-
dent randomvariable following a normal distributionwith the
mean μ j and the variance σ 2

j (Constable and Parker, 1988)

m j ∼ N (μ j , σ
2
j ). (7)

If the reference model m0 is equated with the mean field
model μμμμμμμμ = {μ j }, each �m j becomes a zero-mean normal
variate

�m j ∼ N (0, σ 2
j ). (8)

Therefore, (5) and (6) are now

E [A] = A0 + 1

2

∑
j

A j jσ
2
j

+ 1

8

∑
j,k

A j jkkσ
2
j σ

2
k + · · · , (9)

V[A] =
∑
j

A2
jσ

2
j +
∑
j,k

A j A jkkσ
2
j σ

2
k + · · · . (10)

As we have assumed normal distribution for each m j , the
means and variances of data depend only on even-order
derivatives, so that (9) and (10) are valid to the fourth or-
der, and the next terms are sixth order in �m j . In (9), the
first term is due to the mean of the model parameters, while
the second and third terms show the effects of the variances
of the secular variation model on the mean field. If we deal
only with linear observations (X, Y and Z ), these terms do
notmatter because the second and higher-order derivatives of
them are all exactly zero. The above equations indicate that
themeans of nonlinear data (D, I , . . .) depend not only on the
means but are also influenced by the variances of the model
parameters (Kono et al., 2000a). This fact complicates the
derivation of a time-averaged field from time-averaged data.
It may also affect the stability of the iteration procedures
when we solve a nonlinear inverse problem.
In the following analyses, we use the equation of the mean

(9) truncated at the second order (i.e., up to the termswithσ 2
j )

as the “analytical” expression for the nonlinear quantities.
2.2 Expressions for the Fisherian means
The above method can be used to obtain averages of incli-

nation and declination, separately, but the so-called “mean
direction” in paleomagnetism is almost always defined by us-
ing themethod proposed by Fisher (1953). In this procedure,
each directional datum is converted to direction cosines

xn = cos In cos Dn, yn = cos In sin Dn,

zn = sin In, (11)
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and the best estimate of the mean direction is calculated from
the N unit vectors as

x̄F =

N∑
n=1

xn

R
, ȳF =

N∑
n=1

yn

R
, z̄F =

N∑
n=1

zn

R
, (12)

where R is the length of the sum of N unit vectors,

R =

√√√√( N∑
n=1

xn

)2

+
(

N∑
n=1

yn

)2

+
(

N∑
n=1

zn

)2

. (13)

By dividing both the numerator and denominator of (12) by
N , we see that, for instance, x̄F = Ex/E f , where Ex =
E [x], etc., and E f =

√
E2
x + E2

y + E2
z is the mean displace-

ment in an N -step random walk. The mean direction in the
sense of Fisher (D̄F and ĪF ) is calculated from these as

D̄F = tan−1

(
ȳF
x̄F

)
= tan−1

(
Ey

Ex

)
,

ĪF = tan−1

⎛
⎝ z̄F√

x̄2F + ȳ2F

⎞
⎠ = tan−1

(
Ez

Eh

)
, (14)

where Eh =
√
E2
x + E2

y . Thus, it is clear that we need a

scheme of Taylor expansion applicable to the above form.
In general, a composite function of m

C(A) = C
(
A(1)(m), A(2)(m), · · ·) , (15)

where each A(p) is a function of m, can be expanded by the
functions A(p)

C(A) = C(A0) +
∑
p

∂C

∂A(p)
�A(p)

+ 1

2!

∑
p,q

∂2C

∂A(p)∂A(q)
�A(p)�A(q) + · · · , (16)

provided that the intermediate functions A(p) are independent
of each other. The expansion (16) is again carried out for the
reference model m0, and the value of A(p)(m) is divided
into the part corresponding to the reference model and to the
residual

A(p) = A(p)
0 + �A(p). (17)

Note that the residual part �A(p) not only contains the first
order but also all the higher-order terms in �m j as shown in
(1). Equation (16) may be further reduced by Eq. (1). Here,
we consider the case where the intermediate functions are
the means of the direction cosines

A = (Ex , Ey, Ez
)
. (18)

The expansions for these intermediate functions were ob-
tained from Eq. (9). Because the lowest-order term in�A(p)

is proportional to σ 2
j (i.e., no first-order term), the expansion

form, accurate up to the second order, is simply

C̄F = C0 + 1

2

∑
j

(∑
p

∂C

∂A(p)
A(p)

j j

)
σ 2
j + · · · . (19)

With this form, we calculate the effect of the geomagnetic
secular variation (in Section 3) and the measurement errors
(in Section 4) in the Fisher-mean directions. The explicit
forms are listed in Appendix A.4.

3. Effect of Secular Variation on the Mean Field
Values

With the appropriate Taylor expansion forms, we can ana-
lytically evaluate the effect of scatter in the data on the mean
values of field directions and direction cosines. The scatter in
the data are caused either by secular variation of themagnetic
field or by errors in various phases of the treatments used to
recover the field directions. We will consider only the effect
of secular variation in this section and treat the errors in the
next section.
Analytical estimation is based on the Taylor series ex-

pansion up to second order, using the Fisher-averaging pro-
cedure. To supplement the analytical estimates, numerical
calculations were done with a 105 set of randomly generated
Gauss coefficients. This number seems to be enough to sat-
isfactorily represent the distribution of the assumed secular
variation. Comparison between these two calculations gives
estimates of the effects due to the fourth and higher-order
terms.
We consider two types of mean field models; the geo-

centric axial dipole (GAD, in Subsection 3.2) field, and two
nonaxisymmetric field models (in Subsection 3.3). In each
case, the variances of Gauss coefficients are assumed to de-
pend only on the degree of the spherical harmonic and not
on the order. In a few cases, some of the non-dipole terms
were allowed to deviate from the general trend (in Subsec-
tion 3.4). Because the IGRF 1995 (Barton, 1997) was used
as one of the non-axisymmetric mean fields, all the models
were calculated up to themaximumdegree of 10 (�max = 10).
3.1 Model for secular variation
Paleomagnetic secular variation (PSV) models have been

proposed by various authors (e.g. Cox, 1970; McFadden et
al., 1988). In this paper, we adopt a model similar to those
proposed by Constable and Parker (1988) and by Kono and
Tanaka (1995). These models are based on the observed
exponential decay of the power of the geomagnetic field with
a spherical harmonic degree. For the present field, an almost
flat spectrum is observed at the core-mantle boundary (CMB)
(Langel and Estes, 1982). This feature is also seen in the self-
consistent three-dimensional geodynamo simulation models
(e.g. Glatzmaier and Roberts, 1995; Kono et al., 2000b).
In the model of Constable and Parker (1988), the power in

a degree is divided equally into harmonics of different orders,
so that the variances of a degree �Gauss coefficient are given
as

σ 2
� = (c/a)2�

(� + 1)(2� + 1)
α2, (20)

where a and c are the radii of the Earth and its core, re-
spectively. Constable and Parker (1988) estimated the value
of α for the present field as 27.7 μT, excluding the dipole
(� = 1) terms. A few other terms were permitted to behave
differently in the model of Constable and Johnson (1999).
In this paper, we use Eq. (20) with various values of α

to define the variances of Gauss coefficients, including the
dipole terms. In paleosecular PSV models, we implicitly
assume that the statistical properties of the field models are
well sampled by observations for a long period of time. In
the numerical calculations, we use 105 random models to
generate “instantaneous observations” of the field at various
times, which should represent well the entire distribution of
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Fig. 1. Latitude dependency of the biases; (a) �x , (b) �y, (c) �z, (d) �D and (e) �I ; by numerical (solid lines) and second-order analytical (dashed)
calculation and (f) �I calculated by a simple averaging method (like in Kono, 1997a). The mean field is due to GAD (g01 = −30.0 μT) and a PSV
model (α = 30.0 μT in Eq. (20)). Note that the values of y and D due to the random data set (N = 105) are very small and their analytical value is
exactly zero.

possible ranges of fluctuation.
3.2 Fluctuations about the geocentric axial dipole field
As an example of the simplest model, the GAD field

(g01 = −30 μT) was taken as the mean field. In this case,
the fluctuations around the mean with the form (20) produce
only an axisymmetric effect. Figure 1 shows the deviations
of the means of direction cosines x , y, z and angles D and I
from the axial dipole field values. Biases estimated analyti-
cally (by Taylor expansion) and numerically (by 105 random
models) are shown. For Figs. 1(a)–(e), the mean values were

determined by the Fisher (1953) method, i.e., the direction of
the sum of unit vectors. Figure 1(f), on the other hand, gives
the deviation of the simple mean of the inclination from the
axial dipole value.
It can be seen that there are indeed biases due to the pres-

ence of fluctuations (such as secular variation), except for D
and y, forwhich the effect is negligible. These biases take the
maxima at a low latitude. For instance, the inclination offset
(Fig. 1(e)) for the variation of parameters with α = 30.0 μT
is 2.8◦ at the latitude of 20◦Nor S, and vanishes at the poles or
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Fig. 2. α dependency of |�I | at the latitude of 20◦N and S with the same
parameters in Fig. 1, suggesting that the second-order accurate expression
(A.24, dashed line) of |�I | always overestimates the numerical value
(solid).

on the equator. By simple averaging (Fig. 1(f)) the values of
�I are significantly higher than those of the Fisherian mean
(Fig. 1(e)). Figure 1(f) also shows that a simple mean makes
�I much larger near the poles because of the singularity in
its definition (Kono, 1997a).
The inclination differences in the case of the GAD mean

field have a trend that the absolute value of inclination be-
comes smaller everywhere on the Earth’s surface. The dif-
ference becomes larger with an increase in amplitude (α) of
the secular variation. It is only about 0.5◦ when α = 10 μT
(Fig. 2), which can easily be buried by the usual errors in pa-
leomagnetic data. The bias becomes significant for larger α

(1.5◦ for 20 μT and 4◦ for 40 μT). We can conclude that the
scatter of data due to secular variation will affect the mean
values of observed inclinations at these latitudes if α is 20μT
or larger.
The Taylor expansion to the second order (A.24) gives

the correct magnitude of inclination bias up to about α = 20
μT. For larger values of α, the analytical method gives larger
estimates than those obtained by random numerical models.
In �x , �z, �I (Fisher means), analytical values always
produce overestimates, while�I , based on a simple average,
is larger or smaller than the numerical estimate depending on
the latitude. The difference between the two estimates are
about 40% or less when α = 30 μT (Fig. 2).
3.3 Fluctuation about non-axisymmetric mean fields
Effects of the secular variation are also examined for two

non-axisymmetric mean fields; IGRF 1995 (Barton, 1997)
and the time-averaged normal-polarity field model for the
last 5 million years (JC97N) given by Johnson and Constable
(1997). The IGRF 1995 model actually shows an instanta-
neousfield containingboth themeanand thefluctuationparts,
but we use it as an example of a field with large non-dipole
components compared to JC97N in which the axial dipole
component is much more dominant.
Declination is not a well-defined quantity at very high

latitudes (|I | ∼ 90◦), because the expression for D becomes
singular at the poles (see Kono, 1997a, b). In reality, |�D| is

Fig. 3. Mapping of numerical (a) and second-order analytical (b) �I with
the IGRF 1995 mean field and a PSV model of (20) with α = 30.0 μT.

less than 0.5◦ almost everywhere except in the close vicinity
of the poles (cf. Fig. 1(d)). Here we only show the maps
of inclination offset �I for the mean fields of IGRF 1995
(Fig. 3) and JC97N (Fig. 4) with a variation of α = 30.0 μT.

In both cases, the contour on which inclination offset van-
ishes (�I = 0◦) almost coincides with the geomagnetic
equator and �I is negative (positive) when the value of I
is positive (negative). Therefore, it can be concluded that the
geomagnetic secular variation makes the absolute value of
inclination smaller almost everywhere on the Earth’s surface
(see also Fig. 1(e)). Furthermore, the features of the mag-
netic field derived from second-order analytic results is very
similar to those obtained by numerical calculations. The an-
alytical expression overestimates the bias in a similar way
to the case of the GAD mean field. The difference between
analytical and numerical estimates becomes conspicuous at
sites where the absolute value of inclination is more than 40◦

(|�I | � 2◦).
In the case of the IGRF 1995 mean field (Fig. 3), inclina-

tion bias is particularly large in the south Atlantic. There, the
differences between the analytical and numerical estimates
are the largest. This is known to be a region in which the
effect of the non-dipole field is significant and also a region
where the VGPs may have a metastable state during rever-
sals (Hoffman, 1992). Hoffman showed four flux centers and
suggested that transitional VGPs cluster in these areas. How-
ever, large �I does not seem to be associated with the other
three regions (north America, east Indian Ocean and central
Asia), possibly because the latter are at high geomagnetic
latitudes.
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Fig. 4. Mapping of numerical (a) and second-order analytical (b) �I . The
mean field is the result of Johnson and Constable (1997) from paleomag-
netic data in the normal periods for the last 5 Ma as the mean field, and
the PSV model is the same as in Fig. 3.

3.4 Effect of (2,1) harmonics
From the latitude dependence of scatter of the field or

the VGP components, Kono and Tanaka (1995) and Kono
(1997a, b) concluded that the variation of the quadrupolar
terms g12 and h12 should be a few sizes larger in amplitude
than the general trend given by (20). We evaluate the effect
of large (2,1) terms on the mean inclinations. Figure 5 shows
the contour map of�I corresponding to amodel which is the
same as the axially symmetric model shown in Fig. 1, except
that the standard deviation of g12 is made three times larger,
as is given by (20). Four (positive and negative) extrema are
shown in the �I map, which correspond to the flux patches
of the Z field due to g12.
Figure 6 shows the map of �I with a secular variation

model in which both of the (2,1) harmonics have larger am-
plitudes of fluctuation; i.e., σg12

= σh12
= 3σ2. In this case,

the effect becomes axisymmetric because the sum of g12 and
h12 contributions is a constant of longitude (Kono, 1997b).
The total amount of secular variation is larger in this model
compared to 3.2, so that the �I is much larger. The latitudi-
nal plot (Fig. 6(c)) indicates that the maximum of inclination
bias appears at a latitude (about 30◦) which is higher than in
the original PSV model (about 20◦, Fig. 1(e)). The reason
for this shift seems to be because the field due to a combina-
tion of g12 and h12 has nodes at the north and south poles and
at the equator. Therefore, the effect of the secular variation
by enhanced g12 and h12 is large at middle latitude which is
higher than the peak by a PSV model following Eq. (20).

Fig. 5. Mapping of numerical (a) and second-order analytical (b) �I with
the mean field of GAD (g01 = 30.0 μT) and variances from a secular
variation model following (20) with α = 30 μT excluding σg1

2
= 3σ2.

4. Effects ofMeasurement Errors on theMeanDi-
rection

In paleomagnetic studies, the data are inevitably contam-
inated by some amount of experimental errors, even if we
collect and measure the samples very carefully. These errors
are due to many causes; orientation errors during sampling
and cutting, shape anisotropy of samples, heterogeneity of
magnetization in a specimen, errors of setting in the mag-
netometer, errors in the measurements, and so on. Here we
omit systematic errors (such as is caused by a strong local
magnetic anomaly at sampling sites, or the inability to re-
store the original bedding plane), and only consider random
errors in each measurement.
By excluding the possibility of systematic errors, we can

assume that the errors of the measured components X , Y and
Z are mutually independent and zero-mean normal variates.
It seems reasonable to assume that the standard deviations in
individual components are proportional to its intensity

σX = σY = σZ = s F, (21)

where s is a constant. (This assumption, in effect, is based
on the experience that the source of the largest errors in pa-
leomagnetism of volcanic rocks is the orientation errors.)
In the expansion of the means defined by the Fisher proce-

dure (A.24), all the second-order terms (A.26) vanish. Thus,
the relevant forms of expansion are

x̄F = X

F
+ O(s4), ȳF = Y

F
+ O(s4),
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Fig. 6. Mapping of numerical (a) and second-order analytical (b) �I ,
and their sectoral section at φ = 0◦ (c). The mean and variances of
Gauss coefficients are the same as in Fig. 5 excluding h12 as well as g12
(σg1

2
= σh1

2
= 3σ2).

z̄F = Z

F
+ O(s4), D̄F = tan−1 Y

X
+ O(s4),

ĪF = tan−1 Z√
X2 + Y 2

+ O(s4). (22)

These indicate that the means of the data are not affected by
the presence of scatter due to experimental errors, at least to
this order.
To show that these analytical conclusions are correct, de-

viations from the mean field values (�D, �I , �x , �y and
�z) were obtained by the random data set (N = 105), and

the results are shown in Fig. 7 in which the mean field is
GAD and s = 0.1 (10% of the total intensity, which is large
for usual experimental situations). As can be seen from this
figure, the difference in the means is negligibly small which
is in agreement with the above analysis. The small differ-
ences shown in this figure are likely to be caused by the
incompleteness of the randommodels, because five different
random data sets gave quite different results. From these, we
can conclude that if we make adequate observations at each
site, there will be no bias to the mean direction due to the
experimental errors, provided that the errors are not system-
atic. Note that this conclusion applies only to the Fisherian
means; a significant amount of shallowing results from the
scatter due to errors if a simple mean of inclination is taken
(e.g., Kono, 1997a). Observational errors also increase the
scatter in the data compared to the case with only secular
variation.
It is remarkable that the (non-systematic) measurement

errors do not cause biases in the means of the field directions.
This is quite different from the behavior of the scatter caused
by secular variation. In retrospect, it is quite reasonable that
the experimental errors do not induce bias in the mean field
direction, since the Fisher method was created to obtain the
most likely estimate of themagnetization directionwhen data
contain random errors (Fisher, 1953). This feature, however,
does not apply to secular variation because it generates non-
random scatter.

5. Discussion
5.1 Far side effect
Previous paleomagnetic studies (Wilson, 1970, 1971) sug-

gested that observed inclination is shallower than that pro-
duced by the GAD field everywhere in the world. This effect
is most prominently seen in the Northern Hemisphere. The
VGPs for these data are located on the far side of the ge-
ographic North Pole. For example, the lava data set from
Hawaii indicates that the inclination is 9◦ shallower than the
GAD, resulting in an offset of 5◦ of the mean VGP from
the North Pole (Tanaka, 1999). Combining a small amount
of Southern Hemisphere data, Wilson (1970) concluded that
this effect can be attributed to the offset of the axial dipole
from the geocenter. Equivalently, the “shallow inclination”
or “far side effect” can also be explained by the existence of
a non-zero axial quadrupole field (g02) which has the same
sign as that of g01.
With the addition of more data from the Southern Hemi-

sphere, however, it became apparent that the addition of the
quadrupole term cannot completely explain the inclination
anomalies. Indeed, McElhinny et al. (1996) showed that the
inclination anomaly with respect to the GAD value has an
asymmetric component. They explained this by introducing
the non-zero octupole term (g03), in addition to the dipole
and quadrupole in the time-averaged field, as the inclination
anomaly caused by g02 is symmetric, while that caused by g03
is antisymmetric about the Equator. We have shown, how-
ever, that the effect of random secular variation is similar
to that of persistent g03 in creating an inclination anomaly
antisymmetric about the Equator (Fig. 1(e)). Thus, the in-
clination anomaly observed for the last 5 Ma (McElhinny
et al., 1996) can be equally explained by the combination of
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Fig. 7. (a) �x , (b) �y, (c) �z, (d) �D and (e) �I by measurement error with s = 0.1. There are 5 curves by 105 random normal distribution data sets
generated by different seeds. They indicate that the amount of random data (N = 105) is not enough to see the effect of the measurement errors and,
even if it exists, it is much smaller than these shown values.

g01+g02+g03 (McElhinny et al., 1996) or by g01+g02 combined
with the effect of secular variation (Fig. 8). In the present
case, it is not possible to choose the most probable model
from the fit shown in Fig. 8 alone. But it may be important
that the observed asymmetry does not necessarily mean the
existence of the octupole term.
5.2 Effects of the secular variation and measurement

errors on nonlinear inversion
In this study, we considered the effects of variances due

to two sources; geomagnetic secular variation and measure-
ment error. From the foregoing analyses, it can be concluded

that secular variation really influences the mean directions,
but the errors do not change the means. The effect of the
geomagnetic secular variation is to make the absolute value
of observed inclination smaller everywhere.
The effect of secular variation was not considered in pre-

vious nonlinear inversion studies (Gubbins and Kelly, 1993;
Kelly and Gubbins, 1997; Johnson and Constable, 1995,
1997) which sought Gauss coefficients corresponding to the
time-averaged field. The present study indicated, however,
that the fluctuations of the model parameters caused by secu-
lar variation can change themean value of the observed direc-
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Fig. 8. Inclination anomaly �I for the normal polarity data (the mean
and the 95% confidence interval) of the last 5 Ma (McElhinny et al.,
1996). Dashed curve shows their best estimate with g02/g

0
1 = 0.043,

g03/g
0
1 = 0.017, g04/g

0
1 = −0.008. Solid curve indicates an example

of the fit with g02/g
0
1 plus the effect of secular variation expressed by

α = 0.6|g01 |.

tions significantly, evenwhen themean directions are defined
as the best estimate of Fisher (1953). The neglect of this ef-
fect will result in the estimates of nondipole componentswith
larger errors. Therefore, it is possible that the time-averaged
field may be characterized by parameters somewhat different
from those given by their results.
Considering these effects, we can define a new inversion

method to seek the time-averaged geomagnetic field and its
variances (i.e. PSV) from paleomagnetic data. The mean
directions of the observed paleomagnetic data depend on the
mean Gauss coefficients as well as on their change due to
PSV. The observation equation for the mean direction (or
the direction cosines) at a site i can be obtained from Eq.
(A.24) as

Ai = fi (μμμμμμμμ,σσσσσσσσ), (23)

wherewe take themeans {μ j } and the variances {σ j }ofGauss
coefficients as the model parameters to be determined.
In addition, we can define another equation to show the

relation between the variances of the parameters and the vari-
ances of the observations. The equation for variances (or
standard deviations) depends on the means as well as the
variances of Gauss coefficients and the measurement errors

Vi = gi (μμμμμμμμ,σσσσσσσσ , e). (24)

It is necessary to solve (23) and (24) simultaneously in order
to properly account for the means and variances of the data.
Up to now, such inversion was done only for the linear case
(Kono et al., 2000a), but a solution for the nonlinear data set
is also required.
5.3 Robustness of the present results
Wehave obtained the expressionswhich indicate the effect

of scatter caused by secular variation of the magnetic field on
themean values of field data. It was shown that the effect was
not negligible; indeed a considerable amount of offset was
observed in the mean values of inclination and other field
elements. However, in order to derive workable formulas,
it was necessary to make a few assumptions about the field
behavior. Thus, the relevance of the present results in secular

variation analysis depends on the validity of the assumptions
we employed in deriving the expressions.
We would argue that the assumptions employed are quite

reasonable and, moreover, the results do not critically depend
on the details of the assumptions. First of all, it is quite certain
that there were fluctuations in the field elements with time;
there is no doubt that the secular variation of the magnetic
field occurred with considerable amplitudes. Secondly, the
assumption of normal distribution of Gauss coefficients was
usedmore for the convenience of calculation. The Taylor ex-
pansion method developed by Kono and Tanaka (1995) and
following papers is quite general and applies to any distribu-
tions if the existence of low-degree moments (e.g. the mean
and variance) can be assumed. Thirdly, using essentially the
same assumptions, Constable and Parker (1988) and others
(Kono and Tanaka, 1995; Kono, 1997a, b; Constable and
Johnson, 1999) obtained reasonable results in the analysis of
paleosecular variation in the last 5 Ma, which indicates that
it is at least permissible. Lastly, Kono et al. (2000b) showed
that numerical dynamo simulation results suggests that the
distribution of Gauss coefficients of low degrees are indeed
quite similar to normal distribution.
It is impossible at the present stage to convincingly show

which distribution is more appropriate to describe the fluc-
tuating Gauss coefficients because of the secular variation.
However, it may be reasonable to consider that the distri-
bution of gm� or hm� is effectively bounded in some interval
and that it is not skewed. This makes modeling by normal
distribution quite appropriate. Moreover, if the distribution
of Gauss coefficients deviates from the normal distribution,
the nonlinear effects will be larger than those we derived be-
cause the effect of the third (skewness) and fourth moment
may not be neglected.

6. Conclusions
We have quantitatively evaluated the effect of geomag-

netic secular variation and measurement errors on the mean
directions. If the measurement errors are not systematic, i.e.,
truly random and isotopic, they do not affect the mean direc-
tions but make the variances larger. The fluctuations in the
model due to PSV change the mean directions in which the
absolute inclination becomes smaller than that for the mean
field. For example, in a PSV model with α = 30.0 μT, �I
is a few degrees at low to middle latitude sites. In the case
where the mean field is the GAD, this inclination anomaly
is antisymmetric about the Equator, which is similar to that
caused by the non-zeromean value of the axial octupole (g03).
It is possible that the g03 term reported from the analysis of
secular variation data (e.g., McElhinny et al., 1996) is partly
attributable to this effect. We cannot ignore this effect when
we seek the time-averaged field by nonlinear inversion from
paleomagnetic data.
We gave the Taylor series expansion of themean directions

up to the second order, where the mean is defined by Fisher’s
procedure. These expressions agree quite well with the es-
timates obtained numerically when the amplitude of secular
variation is not too large. Some significant difference was
observed for the amplitude which is of interest in the ac-
tual paleomagnetic data analysis. However, even when the
amplitude of the variation is quite large, the main features
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of the biases due to the PSV are very well reproduced by
the analytical method in the distribution over the globe, in-
dicating the usability of the second-order Taylor expansion
approximation.
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Appendix A. Derivatives of Various Field Components
The derivatives of paleomagnetic data with respect to Gauss coefficients have been described by various authors (e.g.,

Constable and Parker, 1988; Kono and Tanaka, 1995; Kono and Hiroi, 1996; Kono, 1997a, b). However, in many cases, these
expressions were given in a form applicable to some specific model (e.g., near GAD), and the notations also vary greatly in
each case. For the sake of convenience, we give here the complete form of derivatives of the first and second order.
A.1 The linear components of the geomagnetic field

The magnetic field outside the Earth’s core can be described by a scalar potential. The potential W at a point (r, θ, φ),
where r is the radius, θ is the colatitude, and φ is the longitude, is given by

W = a
�max∑
�=1

�∑
m=0

(a
r

)�+1
(gm� cosmφ + hm� sinmφ)Pm

� (cos θ), (A.1)

where Pm
� is the Schmidt-normalized Legendre function, gm� and hm� are Gauss coefficients, and �max is the maximum degree

at which spherical harmonics are truncated. The model m is a vector formed by arranging the Gauss coefficients by degree
and order

m = (g01, g11, h11, g02, g12, h12, . . .)T . (A.2)

Its components will be designated by a single suffix j ( j = 1, . . . , �max(�max + 2)), such as m j , rather than by � and m.
The three components of the magnetic field at some point over the surface of the Earth can be derived from the potential

as
X =

∑
j

X jm j , Y =
∑
j

Y jm j , Z =
∑
j

Z jm j , (A.3)

where X j , Y j , Z j are functions of position (θ , φ)

X j = dPm
�

dθ

(
cosmφ

sinmφ

)
, Y j = mPm

�

sin θ

(
sinmφ

− cosmφ

)
, Z j = −(� + 1)Pm

�

(
cosmφ

sinmφ

)
. (A.4)

The choice of φ dependence is determined by whether m j is gm� or hm� . Obviously, the three components (X, Y, Z ) are linear
in Gauss coefficients, and X j , Y j , Z j are their derivatives with respect to a Gauss coefficient m j .

Any other field component, either linear or nonlinear, can be written by a combination of these three components (in
some cases, the coordinates of the position r, θ, φ are also needed).
A.2 Nonlinear field elements

In paleomagnetism, data are mostly given by two angles, inclination I and declination D. In paleointensity experiments,
the total intensity F is determined. These quantities are related to the three components as

I = tan−1

(
Z

H

)
, D = tan−1

(
Y

X

)
, F =

√
X2 + Y 2 + Z2, (A.5)

where H = √
X2 + Y 2. The first and second derivatives of these quantities are

∂ I

∂m j
= H 2Z j − Z(XX j + YY j )

F2H
,

∂2 I

∂m j∂mk
= 1

F4H 3

[
(F2 + 2H 2)Z(XX j + YY j )(XXk + YYk) − F2H 2Z(X j Xk + Y jYk)

+ H 2(Z2 − H 2)
{
(XX j + YY j )Zk + (XXk + YYk)Z j

}− 2H 4Z Z j Zk
]
,

∂D

∂m j
= XYj − Y X j

X2 + Y 2 ,

∂2D

∂m j∂mk
= − (XXk + YYk)(XYj − Y X j ) + (XX j + YY j )(XYk − Y Xk)

H 4 ,

∂F

∂m j
= G j

F
,

∂2F

∂m j∂mk
= G jk

F
− G jGk

F3 , (A.6)

where H = √
X2 + Y 2 is the horizontal component and G = F2/2, G j = XX j + YY j + Z Z j , etc.

For direction cosines,

x = cos I cos D = X

F
, y = cos I sin D = Y

F
, z = sin I = Z

F
, (A.7)
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the first and second derivatives of x are

∂x

∂m j
= X j

F
− XG j

F3 ,

∂2x

∂m j∂mk
= − 1

F3 (X jGk + XkG j + XG jk) + 3XG jGk

F5 ,

∂3x

∂m j∂mk∂ml
= − 1

F3 (X jGkl + XkG jl + XlG jk)

+ 3

F5

[
X jGkGl + XkG jGl + XlG jGk + X (G jkGl + G jlGk + G jGkl)

]
− 15

F7 XG jGkGl . (A.8)

Derivatives of y and z can be obtained by replacing X by Y or Z .
A.3 Virtual geomagnetic pole (VGP) and its moment

In many cases, VGPs or virtual dipole moments (VDMs) are used in place of field elements because the concept of the
dipole is global and suitable for worldwide comparison. The expressions for VGP and VDM have been already reported
(Kono and Tanaka, 1995; Kono and Hiroi, 1996; Kono, 1997a). The colatitude (θp) and longitude (φp) of VGP are given by

θp = cos−1

(
�

U

)
, φp = tan−1

(
�

�

)
, (A.9)

where

U =
√
X2 + Y 2 + (Z/2)2,

� = −X cos θ cosφ − Y sinφ + 1

2
Z sin θ cosφ,

� = −X cos θ sinφ + Y cosφ + 1

2
Z sin θ sinφ,

� = X sin θ + Z

2
cos θ. (A.10)

The first and second derivatives of θp and φp are

∂θp

∂m j
= 1(

T 2 + �2
)
T

(
�T ′

j − T 2� j
)
,

∂2θp

∂m j∂mk
= 1(

T 2 + �2
)2
T 3

[
T 2�

(
T 2 + �2) T ′

jk − �
(
3T 2 + �2) T ′

j T
′
k

+ 2T 4�� j�k + T 2 (T 2 − �2) (T ′
j�k + T ′

k� j
)]

,

∂φp

∂m j
= 1

�2 + �2

(
� � j − � j �

)
,

∂2φp

∂m j∂mk
= 1(

�2 + �2
)2 [� � (� j �k − � j �k) − (�2 − �2)(� j �k + �k � j )

]
, (A.11)

where

T =
√
U 2 − �2 =

√
X2 cos2 θ + Y 2 + Z2

4
sin2 θ − X Z cos θ sin θ (A.12)

and � j , �k , � j , �k , � j and �k are their derivatives, as

� j = −X j cos θ cosφ − Y j sinφ + 1

2
Z j sin θ cosφ. (A.13)

T ′
j and T ′

jk are defined as

T ′
j = T

∂T

∂m j
= XX j cos2 θ + YY j + 1

4
Z Z j sin2 θ − 1

2

(
X j Z + X Z j

)
cos θ sin θ,

T ′
jk = ∂T ′

j

∂mk
= X j Xk cos2 θ + Y jYk + 1

4
Z j Zk sin2 θ − 1

2

(
X j Zk + Xk Z j

)
cos θ sin θ, (A.14)
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and T ′
k is similar to T ′

j .
The VDM can be calculated as

M = a3U = a3
√
X2 + Y 2 + (Z/2)2, (A.15)

To express the VDM in the usual unit of Am2, it is necessary to multiply the right-hand side by a factor of 4π/μ0 = 107.
The first and second derivatives of the elements of VGP are

∂M

∂m j
= a3U ′

j

U
,

∂2M

∂m j∂mk
= a3

U 3

(
U U ′

jk −U ′
j U

′
k

)
, (A.16)

where U ′
j , U

′
k and U

′
jk are defined similarly to (A.14).

As was the case in paleomagnetic directions, the mean of the VGPs is defined by summing the unit vector in the direction
of the individual VGP. Thus, we need the expressions for the direction cosines (ξp, ηp, ζp) of the pole:

ξp = sin θp cosφp = �

U
, ηp = sin θp sinφp = �

U
, ζp = cos θp = �

U
, (A.17)

where � and � are defined in (A.10). The first and second derivatives of ξp can be obtained as

∂ξp

∂m j
= � j

U
− U ′

j �

U 3
,

∂2ξp

∂m j∂mk
= 3U ′

j U
′
k �

U 5
− U ′

jk � +U ′
j �k +U ′

k � j

U 3
. (A.18)

The derivatives of ηp and ζp can be obtained by changing the terms concerned with the numerators of Eq. (A.17).
A.4 Mean directions defined by Fisher’s method

The Fisherian means of nonlinear data can be expanded following the general method given by Eq. (19). Specifically,
we treat the nonlinear quantities x̄F , ȳF , z̄F , D̄F , and ĪF as functions of Ex , Ey , and Ez . For instance, for the Fisherian mean
of x we have

x̄F = x0 + 1

2

(
∂ x̄F
∂Ex

�Ex + ∂ x̄F
∂Ex

�Ey + ∂ x̄F
∂Ex

�Ez

)
0
+ · · · . (A.19)

As usual, the suffix 0 indicates that the values are to be evaluated for the reference model m0. The partial derivatives can be
calculated from (12),

∂ x̄F
∂Ex

= 1

E f
− E2

x

E3
f

,
∂ x̄F
∂Ey

= − Ex Ey

E3
f

,
∂ x̄F
∂Ez

= − Ex Ez

E3
f

. (A.20)

On the other hand, the deviations of the means direction cosines are given by (9)

�Ex = 1

2

∑
j

∂2x

∂m2
j

σ 2
j + · · · , etc. (A.21)

Thus, the expression of x̄F accurate to second order (σ 2
j ) is

x̄F = x0 + 1

2

∑
j

[
∂2x

∂m2
j

− X

F2

(
X

∂2x

∂m2
j

+ Y
∂2y

∂m2
j

+ Z
∂2z

∂m2
j

)]
0

σ 2
j + O(σ 4

j ). (A.22)

It can be shown from (A.8) that

X
∂2x

∂m2
j

+ Y
∂2y

∂m2
j

+ Z
∂2z

∂m2
j

= −G j j

F
+ G2

j

F3 ,

∂2x

∂m2
j

− X

F2

(
X

∂2x

∂m2
j

+ Y
∂2y

∂m2
j

+ Z
∂2z

∂m2
j

)
= −2X jG j

F3 + 2XG2
j

F5 . (A.23)

The final forms of the Fisher-mean direction cosines and directions, accurate to second order, are

x̄F = x0 +
∑
j

[
XG2

j

F5 − X jG j

F3

]
0

σ 2
j + O(σ 4

j ),
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ȳF = y0 +
∑
j

[
YG2

j

F5 − Y jG j

F3

]
0

σ 2
j + O(σ 4

j ),

z̄F = z0 +
∑
j

[
ZG2

j

F5 − Z jG j

F3

]
0

σ 2
j + O(σ 4

j ),

D̄F = D0 +
∑
j

[
(X jY − XYj )G j

F2H 2

]
0
σ 2
j + O(σ 4

j ),

ĪF = I0 +
∑
j

[
G j (Z(XX j + YY j ) − H 2Z j )

F4H

]
0
σ 2
j + O(σ 4

j ). (A.24)

A.5 Derivatives with respect to the linear components X,Y and Z
In order to consider only the effect of experimental errors, we can fix the field model to the reference model m0, which

means that there is no contribution from the fluctuation of the field model itself. In this case, the observed linear elements
can be expressed as X = X0 + �X , etc., where X0 is the value corresponding to the field model and �X is the error in
measurement. Thus, we can treat the three orthogonal components as independent variables and proceed to estimate the
effect of errors by taking the derivatives of the field elements with respect to X , Y , and Z as we did in (1).

The first and second derivatives of direction cosines x can be obtained as
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The derivatives of other direction cosines (y and z) can be obtained by cyclically replacing X, Y, Z in the above expressions.
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