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Synthetic tests of geoid-viscosity inversion: A layered viscosity case
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We revisited the resolving power of viscosity inversion in terms of geoid misfit in a 2-D Cartesian geometry under
the assumption that the mantle viscosity is laterally stratified. Firstly, we considered a simple case of two viscosity
layers only, which is described by two parameters of the amount and the depth of the viscosity jump. The uniqueness
of the inversion was examined by evaluating misfits between the reference geoid for a reference viscosity and that
for a viscosity described by the changing two parameters. The misfits are mapped into 2-Dmodel space as a function
of the two parameters. Three types of density distribution are tested; they are vertically constant (1), taken from a
tomographic model (2), and the same but includes artificial noise (3). We found that, at least for this simple case, the
viscosity solution keeps unique in the entire 2-D model space using whole degree band (1–8) of geoid. This holds
even if the artificial noise is rather large (70%), though the solution is slightly different from the reference viscosity.
However, we also observed non-uniqueness, such as trade-off between the two parameters, when individual degree
components of geoid are concerned. In the next, we employed a more realistic viscosity structure, having seven
iso-viscous layers. It is no longer possible to describe 6-D model space easily. Therefore we tried to reconstruct a
reference viscosity from the reference geoid using genetic algorithm search. According to this analysis, nearly the
same solution with the reference viscosity can be reconstructed, while solutions apart from the reference viscosity
with increase of noise in the density distribution.

1. Introduction
Over the last decade, a great number of studies has been

made to investigate the mantle viscosity profile inferred from
observed geoid and seismic tomographic data (e.g., Richards
andHager, 1984). Currently there is a great progress in devel-
oping newmethods to analyze themantle viscositywithmore
realistic conditions, taking compressibility (Forte and Peltier,
1991; Thoraval et al., 1994; Corrieu et al., 1995; Panasyuk
et al., 1996), lateral viscosity variation (Ricard et al., 1988;
Richards and Hager, 1989; Ricard et al., 1991; Ribe, 1992;
Zhang and Christensen, 1993; Forte and Peltier, 1994), non-
linear rheology (Čadek et al., 1993), and the 660 km discon-
tinuity (Thoraval et al., 1995; Čadek et al., 1997; Forte and
Woodward, 1997; Wen and Anderson, 1997) into account.
The accuracy of tomographicmodels has also been improved
significantly. However, most of the studies present quite dif-
ferent viscosity profiles, and there is no agreement except
that the lower mantle would be higher viscous than the upper
mantle.
This discrepancy mainly comes from the used density

model. Usually density models are simply converted from
velocity anomalies derived from tomographic models using
a linear velocity-density relation, which can be a function
of depth. On the contrary, some gropes employ a priori
density anomalies for a certain part of the mantle. For two
typical studies, see King and Masters (1992) and Hager and
Richards (1989) for example. While the former converted
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velocity anomalies into a density model for the entire man-
tle, the latter imposed high density anomalies in the upper
mantle associated with subducting slabs where low veloc-
ity anomalies are observed in long wavelength tomographic
models. These two density models are much different in the
shallow upper mantle, and these force the obtained viscos-
ity profiles are much different as well. King and Masters
(1992) prefer low viscous transition zone, while Hager and
Richards (1989) suggest a low viscous asthenosphere. Fur-
ther work has been made to construct more realistic density
models, correcting for continental roots (Forte et al., 1995;
Doin et al., 1996), using various geological data (Ricard et
al., 1995), simulating past subduction history (Ricard et al.,
1993). In spite of these studies and improvements of seismic
tomography results, large uncertainties in estimating density
structure still remain due to the difficulty of interpreting the
seismic velocity anomaly beneath cratons (Jordan, 1978) and
subduction zones (Karato, 1995).
Another reason for the existence of many different viscos-

ity profiles is the progress in the inversion methods. Tradi-
tional inversion techniques, such as calculating partial deriva-
tives (e.g., Tarantola andValette, 1982), tend to find solutions
strongly depending on a starting model. Recent studies us-
ing this type of inversion have been improved by introducing
a penalty for the smoothness of the solution instead for the
distance from the starting model (King and Masters, 1992;
Forte et al., 1994; Mitrovica and Forte, 1997). On the con-
trary, Monte Carlo inversions (Ricard et al., 1989) can search
the entire model space at the expense of much computation
time. Therefore only several free parameters can be allowed
in it. Recently, a much more efficient inversion method,
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called genetic algorithm (GA), has been introduced to the
Earth science community (e.g., Sen and Stoffa, 1992). GA
has the merit of Monte Carlo search, but drastically saves
computation time using dynamical weighting or probability
of searching area in the model space. Details of the general
GA method can be found in Goldberg (1989). The GA has
first been applied to the geoid-viscosity inversion problem by
King (1995). He demonstrated the applicability of GA, but
also found multiple viscosity solutions even using the same
density model. Kido and Čadek (1997) also applied GA to
this problem but for regional intermediate wavelength geoid
analysis, and found multiple solutions for regions where the
resolution of the tomographic model is poor. In both studies
multiple solutions are quite different to one another, which
indicates the non-uniqueness in this kind of inversion.
In this study, we examine the potential resolving power or

uniqueness of the geoid-viscosity inversion in a 2-dimension-
al Cartesian geometry. Moreover we also estimate the effect
of noise in the density distribution on the resolving power. At
first, in Section 2, we show the nature of the uniqueness of the
geoid-viscosity inversion using a viscosity variation simply
depending on two parameters. Uniqueness of the problem is
discussed based on maps representing the 2-D model space
of misfit between the geoid for a reference viscosity and that
for varying viscosities. In Section 3, we employed amore re-
alistic case that viscosity can depend on six parameters. Here
we conduct synthetic inversions using GA to reconstruct the
reference viscosity instead ofmapping the entiremodel space
like in the case of two parameters. In both cases, we also test
how noise in the density distribution devaluate the resolving
power of the inversion, which corresponds to uncertainties
in the interpretation of seismic velocity anomalies.

2. A Case for Two Parameters
In this section the complete morphology of 2-D model

space will be shown for two layers of viscosity variation. At
first, we describe the method of calculating the geoid and
density distributions used in this study.
Geoid anomaly represents perturbation of the gravity po-

tential field, which consists of the integral of density anoma-
lies in themantle (internal loads) and the deflection of all pos-
sible density boundaries, e.g. Earth’s surface and the core-
mantle boundary (CMB). These boundary deflections are
induced by the mantle flow, which is driven by the inter-
nal loads. The instantaneous mantle flow can be calculated
when viscosity structure in the mantle is given. The basic
equations are the equation of motion, continuity equation,
constitutive law, and Poisson’s equation. Assuming a sim-
ple model, such as no lateral viscosity variation and New-
tonian mantle rheology, these equations can be separately
solved for each wavelength component analytically. Then
the resultant geoid can easily be calculated using the prop-
agator matrix method. This method is described in Hager
and Clayton (1989) in detail. In this study, we assume a
non self-gravitating incompressible fluid lies in a 2-D Carte-
sian geometry whose aspect ratio is 8. Boundary conditions
are free slip and no vertical motion at the top and bottom,
and periodical at the both sides. These assumptions lead to
a rather simple approximation of the Earth’s mantle, there-
fore the predicted geoid may significantly differ from the

observational geoid. However this fact does not prohibit to
examine the potential resolving power of the geoid-viscosity
inversion, which is the goal of this paper. This is because
reference geoid is also calculated under the same conditions
as geoid to be compared.
We use four density distributions in this study. The first

one, here called CON, has no vertical density variation and
has only lateral variation assigned that all coefficients in its
Fourier expansion will be 1. This density distribution is far
from the Earth, however, is suitable to reveal nature of the
potential resolving power of the inversion. The second den-
sity distribution, we call it TOM, is taken from an equatorial
cross section of a recent tomographic model result for S-
wave velocity (Li and Romanowicz, 1996). We horizontally
scaled the original cross section whose aspect ratio is 13.8
to aspect ratio 8 in order to have the same conditions with
the density distribution CON. S-wave velocity anomalies
are converted to density anomalies assuming δρ/δv = 0.2
(kg·m−3)/(m·s−1), where δρ is density anomaly and δv veloc-
ity anomaly. This tomography derived density distribution is
illustrated inFig. 1. Stream lines, expected geoid, andbound-
ary deformations for a reference viscosity are also drawn in
the figure. It simply has one viscosity jump of two order of
magnitude at the depth of 660 km. We also prepare the other
density distribution ρnoise, which is derived by adding artifi-
cial noise to TOM. TOM is taken from the equatorial cross
section and can be denoted as ρe(x, z), where x and z are hor-
izontal and vertical coordinates respectively. Here, the noise
is also taken from the tomographic model but from a cross
section at the meridian and denoted as ρm(x, z). Then the
density model including noise used in this study ρnoise(x, z)
is defined as

ρnoise(x, z) = (1 − r) · ρe(x, z) + r · ρm(x, Z − z), (1)

where r is a constant and Z the height of themantle to be con-
sidered. As is defined in Eq. (1), the noise density ρm(x, z)
has been turned upside down before the addition in order to
be as random as possible relative to ρe(x, z). We employed
two noise levels of density distributions T30 and T70. The r
is set to 0.3/(1+0.3) = 0.231 and 0.7/(1+0.7) = 0.412 so
that ratio of amplitude of the noise to the original density will
be 30% and 70%, respectively. All the density distribution
used here are truncated up to degree 8 in the Fourier series.
As shown by the right hand small drawing in Fig. 1, the

reference viscosity increases by a factor of 100 at the depth
660 km. The reference geoids corresponding to the reference
viscosity calculated under the conditions described above are
drawn in the top part of Fig. 1.
Then we calculated geoids, which will be compared to

the reference geoid. As mentioned above, the used vis-
cosity profile is a step function, which has two parame-
ters; the depth of jump zjump and ratio of upper to lower
part of mantle viscosity ηupp/ηlow. Using these descrip-
tion, the reference viscosity can be represented that zjump =
660 km and log10 (ηupp/ηlow) = −2. We calculated geoids
for viscosity model space that zjump from 0 to 2900 km and
log10 (ηupp/ηlow) from −4 to 0.

Thus calculated geoid calN is compared with the reference
geoid refN for the reference viscosity. Root mean squares
(RMS) of their difference normalized by RMS amplitude of
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Fig. 2. Morphology of the root mean square (RMS) of the geoid misfit in 2-D model space for density distribution of (a) CON, (b) TOM, (c) T30,
and (d) T70. See in the text for the notations of CON, TOM, T30, and T70. Two parameters in the model space are the depth of the viscosity jump
zjump for the vertical axis and the amount of the viscosity jump log10 (ηupp/ηlow) for the horizontal axis. The reference viscosity, zjump = 660 km and
log10(ηupp/ηlow) = −2, is indicated by a “+”. Value of the misfit is normalized by the RMS amplitude of the corresponding degree components of the
reference geoid. For all the density distributions, individual degree components are shown as well as total degree components of 1–8, information of
which is depicted at the top of each panel. Supplemental broken contours are added to clearify the position of the global minimum in the top left panel
for (c) and (d).

the reference geoid, called misfit, are evaluated for the entire
model space. The misfit D for components ranging from
degree �1 to �2 is defined by

D�1,�2 =
√√√√∑�2

�=�1
[ (rerefN� − re

calN�)2 + (imrefN� − im
calN�)2 ]∑�2

�=�1
(rerefN

2
� + im

refN
2
� )

,
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Fig. 2. (continued).

where “re” and “im” mean the real and imaginary parts of
the geoid coefficients in the Fourier series.
We plotted a contour map of the misfit D1,8 for the density

distribution CON in the left top panel in Fig. 2(a). Vertical
and horizontal axes represent the two parameters, zjump and
log10 (ηupp/ηlow) respectively, of the viscosity for calculating
geoid. The position of the reference viscosity in the model
space is indicated by a “+”. The small misfit region where
D1,8 < 0.1 is shown in white surrounded by dark regions.
Scale of the shadings is indicated by a shading bar at the top
of the figure. We also plotted misfit for the individual degree

component D� (= D�,� in Eq. (2)) in Fig. 2(a). Figures 2(b),
2(c) and 2(d) are the same as Fig. 2(a) but for the density
distributions of TOM, T30, and T70, respectively.
Looking at the D1,8 for CON in Fig. 2(a), the white area

where D1,8 < 0.1 is small and centered at the position of the
reference viscosity. This indicates that the inversionwill give
an unique and correct viscosity solution. For the individual
degree component of the misfit D� (� = 1 to 8), on the other
hand, we found that the white area tends to be stretched
out and the shape of it systematically shifts upward with
increase of degreewhile keeping the position of the reference
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Fig. 2. (continued).

viscosity. This shows that a single wavelength component
of geoid is not able to resolve the viscosity profile if density
distribution has no vertical variation.
For the misfit D1,8 for TOM in Fig. 2(b), the white area

is also small as for the case CON. However, the behavior
of the misfit for the individual degree components are quite
different from that for CON. The systematic change of its
morphology with degree is destroyed. The individual lower
degree components, D1 and D2, already have strong con-
strains to the viscosity solution at least for this simple case
of the two viscosity parameters. We observed a common

feature with the case CON that higher degree components
of the geoid are poor to resolve the log10 (ηupp/ηlow). This
is because the viscosity kernels for higher degrees are rather
insensitive to such a large viscosity jump.
Finally in Figs. 2(c) and 2(d), we show the misfits for T30

and T70, containing 30% and 70%of noise defined byEq. (1)
in the density distribution. It should be noted that the misfit
here is the difference between the reference geoid for TOM
and calculated geoid for T30 or T70. Therefore the misfit
does not necessarily to have zero area even at the position
of the reference viscosity. However, some of the individual
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Fig. 2. (continued).

degree components of misfit has the white region even for
large noise level T70 in Fig. 2(d). We should mention that
all of these white regions do not coincide with the position of
the reference viscosity. Especially for D1 of T30 in Fig. 2(c)
and D3 of T70 in Fig. 2(d), white regions appear completely
different position from the reference viscosity. Nevertheless
such strange behavior of the misfit in the model space for
the individual degree components, the global minimum of
the misfit (indicated by supplemental contours) for the entire
degree band D1,8 is close to the position of the reference
viscosity both for T30 and T70. This might be a kind of

averaging effect.

3. A Case for Six Parameters
Nowweexamine theuniqueness of the inversion for amore

realistic situationwith six parameters describing the viscosity
profile. Since the geoid is insensitive to the absolute value of
the viscosity, we assume seven layers, where the bottom layer
is fixed to be a constant viscosity value. Depth of the bottom
of each layer is 164.93, 379.35, 658.08, 1020.44, 1491.51,
2103.90, and 2900.00 km,where layer thickness is increasing
with increase of its depth. As shown by a dotted line in any
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Fig. 3. Reconstruction tests of viscosity profile for seven layers case (six free parameters) from reference geoid for the reference viscosity drawn by a thick
dotted line. The tests have been done for three density distributions TOM, T30, and T70. See in the text for the notations of TOM, T30, and T70. For
(a)–(c), components of lower degrees 1–8 are used in the reconstruction. In each test, results of ten times of the inversion are shown, which are sorted
along with smaller misfit depicted at the top of each panel. The misfit is normalized by RMS amplitude of the reference geoid. (d)–(f) are the same as
(a)–(c), respectively, but for the upper degree band 8–12.

panel in Fig. 3, the employed reference viscosity profile is
a step function having seven layers defined above. Value of
the viscosity in n-th layer ηn is 1021 Pa·s for n = odd number
and 1023 Pa·s for n = even number, respectively. The density
distributions used here are the same as CON, TOM, T30, and
T70 in the two parameters case.
Since it is impossible to search the entire model space of

geoid misfit as in the case of two parameters only, we try to
reconstruct a reference viscosity from reference geoid using
genetic algorithm (GA) inversion, which is suitable for awide
range search of the model space. As is written in Section 1,
GA is much more efficient than Monte Carlo search while
keeping access to the entire model space. Technical detail of
the GA inversion used here is described in Kido et al. (1998).
The GA inversion used here minimizes a misfit between the
reference geoid for the reference viscosity and the calculated
geoid for a model viscosity. For the model viscosity, each
layer (except for the fixed bottom layer) is allowed to have a

value between 1020 and 1024 Pa·s, which is wide enough not
to loose possible solutions.
The reconstruction tests by the GA inversion are carried

out for lower degree band 1–8 and higher degree band 8–12,
where 12 is the cut-off degree in the tomographic model.
The results of the tests are shown in Fig. 3. Here, the results
for the density distribution CON are omitted because we
obtained no acceptable solution in the inversion for CON.
Wewill mention about this in the next section. Then we have
three density distributions TOM, T30, and T70 and each of
them has results for lower (1–8) and higher (8–12) degree
bands, so totally six rows of viscosity profiles are shown in
Figs. 3(a)–3(f). The density distribution and the degree band
are depicted at the left side of each row.
Each of the six tests consists of ten times of the GA in-

version, results of which are drawn in an individual panel by
a solid line superimposed on a dotted line of the reference
viscosity. The panels are sorted in terms of smaller misfit
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depicted at the top of each panel, which is normalized by
RMS amplitude of the reference geoid as was defined by
Eq. (2). Here, it should be noted that viscosity profiles with
considerably large misfit relative to the smallest one within
a same test should not be counted as multiple solutions; this
is due to the failure of the GA inversion and not due to the
non-uniqueness in the model space.
For the density model TOM the best results for both the

lower (Fig. 3(a)) and higher (Fig. 3(d)) degree bands have
almost reconstructed the reference viscosity and their misfits
are very small (0.0025 and 0.0059 for the lower and upper
degree bands). However, the worse solutions are far from the
reference viscosity though their misfits are still small. This
means that there are trade-off among viscosity layers even
for the noise-free density distribution.
Existence of the noise in density (T30 and T70) apparently

devaluates the reconstruction even in the best results. The
reason of this is that a local minimum of misfit in the model
space does not coincide to the reference viscosity. This has
been also observed in the two parameters case in Section 2.
Actually, misfits calculated for the reference viscosity are
larger by a factor of two or three than the misfits of all the
results for T30 and T70. The misfits calculated for the refer-
ence viscosity are 0.2377 for the lower band of T30, 0.4242
for the lower band of T70, 0.2188 for the upper band of T30,
and 0.3940 for the upper band of T70. Results for T30 and
T70 tend to converge to certain profiles, which are far from
the reference viscosity, while solutions in TOM are oscillat-
ing near the reference viscosity.

4. Discussion
In this study, we performed uniqueness tests for the geoid-

viscosity inversion under various conditions. In general, the
viscosity inversion is not a unique problem and has a large
trade-off between viscosity parameters even using noise-free
data. However, using numbers of wavelength components of
geoid and fitting all of them simultaneously, the uniqueness
of the inversion will be largely improved. How much im-
provement could be expected is owing to the noise content in
the data being used. For the inversion of a viscosity profile,
we can treat the observed geoid as noise free, whereas den-
sity data from seismic tomography has large uncertainties
due to the interpretation in the seismic velocity anomalies,
which can be of thermal or chemical origin. Therefore we
used density data with rather large noise of 70%. Here we
interpret the results obtained in each section.
In Section 2, a model of only two viscosity layers was

concerned to grasp general features of the effects of num-
ber of components and the noise in data on the uniqueness
of viscosity solution. We employed unrealistic simple situ-
ations in order to see the behavior of trade-off, such as the
use of vertically constant density distribution CON and anal-
yses for individual degree component of geoid. In Fig. 2(a),
all of the individual component of misfit have a sharp trade-
off between two parameters describing a viscosity profile.
This is quite natural since there is only one component while
freedom of this problem is two. It should be noted that the in-
dividual single degree analysis for TOM in Fig. 2(b) has two
components, real and imaginary parts of the Fourier series.
If we plotted real and imaginary parts of misfit separately,

all of the misfits for individual degree for TOM has strong
trade-off. Therefore individual degree components of misfit
in Fig. 2(b) can have an unique solution, like D1 and D2, if
combination of depth variation of the real and imaginary parts
of the density distribution is appropriate. However, under-
standing the appropriate combination is difficult since geoid
consists of the convolution of density variation and geoid ker-
nel, which has nonlinear response to viscosity variation. We
can only say that zero misfit or the white area of each single
component in the model space has basically “⊃”-figure as in
Fig. 2(a) for any vertical density distribution. Rather com-
plex morphology of the model space of individual degree for
TOM in Fig. 2(b) comes from combination of two slightly
different (real and imaginary) “⊃” like morphologies. In this
stand point, resolving power of higher degrees in the spher-
ical 3-dimensional Earth is expected to have more unique
morphology than for the 2-dimensional analysis. This is be-
cause spherical harmonics has many components of order as
well as real and imaginary parts in a single degree.
We employed another density distribution containing arti-

ficial noise. Concerning the uncertainty in the interpretation
of the seismic data (Jordan, 1978), or some unique use of
higher degree components of tomographic data (Kido and
Čadek, 1997), noise level was set to rather large value of
70% (T70) here. We also tested a case of moderate noise
of 30% (T30). Even with the noise, some of the individual
degree components of misfit have zero white region in the
model space but it is not at a position of the reference vis-
cosity. This means noise in the density data can mislead a
solution of the inversion nevertheless misfit is very small or
zero. Fortunately, using wide enough degree band 1–8, the
peculiarity in each individual degree components smeared
out and the global minimum in the misfit locates close to the
reference viscosity (broken contours in Figs. 2(c) and 2(d)).
In this case, misfits of the global minimum are large (0.36
for T30 and 0.72 for T70), which is not the matter with the
inversion to obtain a plausible viscosity profile.
In Section 3, resolution tests were extended to a more re-

alistic case with six viscosity parameters. As was mentioned
above, logical comprehension about the morphology of the
model space is complicated even for the two viscosity pa-
rameters case. Therefore we have to empirically recognize
its behavior by the model reconstruction and the value of
the misfit. We could reconstruct the reference viscosity in
a practical level at least for the best result out of ten times
of inversion for noise-free density distribution TOM. For
the density distribution with noise (T30 and T70), solutions
are stable, however, reconstruction of the reference viscosity
was failed. There are two possible reasons for the failure of
the reconstruction. One is the non-uniqueness of the model
space itself and the other is a technical problem in the GA
inversion. Looking at the Figs. 3(a) and 3(d), the noise free
density distribution TOM, values of the misfit vary among
ten times of the inversion, though they are still small. In
this case, the latter is the cause of the poor reconstruction
due to rather flat morphology near the global minimum of
misfit in the model space. On the contrary, for T30 and T70,
solutions are stable and hence values of the misfit are nearly
constant for most of the ten times of the GA inversion. This
would be the former case, since the inversions have reached
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to the rather sharp global minimum, which is not close to
the reference viscosity. There is a special case that results
shown in Fig. 3(c) have three independent local minima hav-
ing nearly the same misfit. This lead the inversion to result
in the multiple solutions.
We have applied various types of reference viscosity for

the six viscosity parameter tests, having an opposite sign or
smaller oscillation. In addition, density distributions of no
vertical variation (called CON in Section 2) or of little ver-
tical variation. Results of them are not shown in this paper.
Particular feature of their results are different to one another,
however, we found that a part of the descriptions in the previ-
ous paragraph can be common behavior. They are; (1) there
is a rather flat hill at the position of the reference viscosity
for a density distribution without noise, (2) there is a sharp
global minimum which lies apart from the reference viscos-
ity for a density distribution with noise, which split into a
few peaks in some cases. Only the exception is the case for
CON, which has too many solutions of zero misfit, hence the
inversion does not make sense. For the density distribution
with the noise, misfits of obtained solutions are rather large
compared to that for the noise-free density distribution, but
are still smaller than those calculated by the reference vis-
cosity. This is why they result in solutions different from the
reference viscosity.
In this study, we tested resolving power of the geoid-

viscosity inversionmainly on the effect of noise in the density
data. However, we have many other problems when we ap-
ply the inversion to the real Earth, such as validity of viscos-
ity representation by several iso-viscous layers, neglecting
the lateral viscosity variation in the mantle, and so on. To
examine the exact resolving power of the geoid-viscosity in-
version, these problems must be considered simultaneously
in a realistic spherical geometry. One should conduct syn-
thetic tests like presented in this study with his particular
conditions in order to confirm reliability of their inversion
before applying the geoid-viscosity inversion to the Earth.
We should also mention that obtaining a small misfit has no
warranty for the validity of the solution in the geoid-viscosity
inversion. If the problem is not unique or has distorted global
minimum due to noise in data, one can obtain small or even
zero misfit with a wrong viscosity solution. Important thing
is whether the solution is unique and lies near the real viscos-
ity. Though we have an interest in theoretical analysis of the
model space, it is difficult to elucidate the relation between
vertical distribution of the density andmodel space morphol-
ogy for individual degree components. However the peculiar
behavior of a single component would be smeared out by us-
ing spherical harmonics, which has much more components
in a single degree. This enable us to understand the statisti-
cal systematics in the resolving power of the geoid-viscosity
inversion.
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Fig. 1. Density distribution used in this study. It is called TOM in the text, taken from a 2-D equatorial cross section of S-wave tomographic model by
Li and Romanowicz (1996). Velocity anomalies are translated into density anomalies using a scaling factor of 0.2 (kg·m−3)/(m·s−1). Thus obtained
density distribution is scaled horizontally so that the aspect ratio would be 8. Shading scale for density anomaly and the reference viscosity profile are
shown at the right side of the figures. Corresponding reference geoid, deformations of the surface and CMB, and stream lines are also drawn.
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