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Abstract

conventional lamp-based widefield microscope.

Background: Fluorescence-based biological imaging has been revolutionized by the recent introduction of
superresolution microscopy methods. 3D superresolution microscopy, however, remains a challenge as its
implementation by existing superresolution methods is non-trivial.

Methods: Here we demonstrate a facile and straightforward 3D superresolution imaging and sectioning of the
cytoskeletal network of a fixed cell using superresolution optical fluctuation imaging (SOFI) performed on a

Results and Conclusion: SOFI's inherent sectioning capability effectively transforms a conventional widefield
microscope into a superresolution ‘confocal widefield" microscope.

Background

Superresolution (SR) imaging has revolutionized fluores-
cence biological imaging by providing resolution enhance-
ment down to a few 10’s of nanometers, allowing us to
decipher morphology of small organelles and sub-cellular
structures (S. Hell 2009; Huang et al. 2009; Schermelleh
et al. 2010). Superresolution methods, however, generically
provide enhanced resolution in two dimensions (2D) only
(Betzig et al. 2006; Rittweger et al. 2009; Rust et al. 2006);
additional resolution enhancement along the optical axis
(i.e. SR in three dimensions, 3D) is a more challenging task
and usually requires additional (and often significant)
modifications to the optical set-up (Nagorni and Hell
2001; Pavani et al. 2009; Roman et al. 2008; Shtengel et al.
2009). Other technical challenges have to do with sample
preparation protocols. For example, extra care is required
to avoiding refractive index changes, since those could
adversely affect the quality of the point spread function
(PSF) (Huang et al. 2008; Klar 2000). The illumination/
excitation arm of the microscope often needs to be
modified as well (Carlton 2008; Gustafsson et al. 1999;
Juette et al. 2008). Furthermore, in single-molecule
localization methods, the imaging depth that supports
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good 3D PSF fitting is very limited because of optical
aberrations that rapidly degrade the PSF along the op-
tical axis (z). In structured illumination 3D SR methods,
such as 4Pi and ISO STED, refractive index changes are
causing even more severe problems, because distorted
wavefronts (of excitation and/or depletion beams) lead
to loss of resolution and/or incomplete depletion.
However, despite these challenges, 3D images with un-
precedented clarity were already resolved far below
100 nm along the optical axis (Aquino et al. 2011).
Recently we developed a novel approach to superreso-
lution, which we termed Superresolution Optical
Fluctuation Imaging (SOFI) (Dertinger et al. 2009;
Dertinger et al. 2010a; Dertinger et al. 2010b). We were
able to show that SOFI works on data acquired by a
conventional lamp-based widefield microscope without
any hardware modifications, achieving a factor of five
in resolution enhancement using quantum dots (and a
factor of four using conventional dyes (Dertinger et al.
2010b; Geissbuehler et al. 2011) while concomitantly
eliminating background and out-of-focus light. Further,
we showed that the achieved resolution enhancement
is taking place along all three dimensions. Here we
expand on the inherent 3D sectioning and the
enhanced axial resolution attributes of SOFI by demon-
strating straightforward 3D superresolution imaging of
a whole cell using a widefield, lamp-based optical
microscope.

© 2012 Dertinger et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
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average of 2000 frames. Scalebar 20 pm.

Figure 1 Lateral cross-sections. Subset of images recorded along the optical axis (in steps of 1.2um, starting with e lowest slice on the left
side). Upper panels: Original widefield fluorescence images Lower panels: SOFI images. The optical sectioning capabilities are evident as well as
the resolution gain along x-y. The SOFI images were processed using 2000 frames per z-position. Fluorescence images are representing the

Methods

The tubulin network of fixed HELA cells was immuno-
stained with infrared emitting quantum dots (QD800,
LifeTec, USA). A conventional LED-based (Aura light
engine, Lumencor Inc., USA) widefield microscope
(Nikon Eclipse Ti, Nikon Inc. USA) equipped with a
piezo objective holder was used to successively acquire
movies at different foci. 2000 frames were acquired per
given height, with 32 height steps of 200 nm each. Exci-
tation wavelength was 460—480 nm. Data were recorded
using a 600 nm long pass. The acquisition time per
given height was 60s. Each movie (single height) was
processed using the SOFI algorithm adjusted for time
lag zero only using cross-cumulants (see (Dertinger
et al. 2010a)). Data analysis was done with home-written
Matlab routines. Imaris (Bitplane, USA) was used for 3D
rendering.

Results and discussion

Figure 1 shows a sub-set of the original widefield fluores-
cence and corresponding SOFI images of the tubulin
network of fixed HeLa cells immuno-stained with infra-
red emitting quantum dots (the fully 3D-rendered cell
can be found in the Additional files 1 and 2, displaying
at a x10 stretched optical axis). The sub-set represent a
stack of different height images with height steps of
1.2 pm (skipping 6 slices at a time, 0 pum, 1.2 pm, 2.4 pm
etc.) along the z-axis. The sectioning, background sup-
pression and resolution enhancement afforded by SOFI
are apparent for the stack. To determine the resolution
gain along the optical axis, we took an x-z cross-section
of the 3D stack and analyzed an intensity profile along
the z-direction. Such an analysis indeed demonstrates an
increased resolution along the optical axis, as shown in
Figure 2. The resolution enhancement along the optical
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Figure 2 Vertical cross-sections. Vertical (x-z) cross-sections of the three dimensional dataset. The scale for the z-axis is x10 times that of the x-
axis. Upper panel: Original fluorescence image. Lower panel: SOFI image. Nearest neighbor smoothing was performed for the SOFI image in order
to filter high frequency noise originated from long blinking intermittency of the quantum dots along the z axis (the acquisition time of each slice
is 60s). Blue and red lines indicate the same cross-sections for the original and SOFI images respectively. Right Panel: the corresponding cross-
sections for the original (red) and the SOFI (blue) images. The SOFI intensity profile clearly shows increased resolution along z. Scalebar: 1 um
along z and 20 um along x.
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Figure 3 FFT-Spectrum. FFT spectra along the axis k, =k, =0 axis of the original fluorescence and SOFI data. Blue line: Fluorescence. Red line:
SOFI. A clear cut-off frequency cannot be determined. Therefore the support of both these spectra cannot be estimated.
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axis is however difficult to estimate, since the axial reso-
lution of the original widefield data set is ill-defined (a dif-
fraction limited axial resolution is well defined for a
confocal microscope, but not for a widefiled microscope).
We can however give an upper bound for the SOFI reso-
lution along the z-axis of 1.2 um, as this is the distance
between the resolved peaks in Figure 2.

We also evaluated the normalized FFT power
spectrum of both (widefield and SOFI) data sets along

the k, =k, =0 axis in order to examine if the support of
the original FFT spectrum is indeed extended for the
SOFI processed data set. An extended support is the
manifestation of the achieved superresolution along the
optical axis. The FFT spectra shown in Figure 3 indeed
differ from each other, however a clear cut-off frequency
cannot be deduced, leaving the determination of the
resolution enhancement inconclusive (we note, however,
that in a previous publication we were able demonstrate

)
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Figure 4 Lateral resolution gain. Estimating the resolution gain in the x-y-plane. A) Fluorescence image. B) SOFI image. The boxed regions are
displayed magnified and intensity-normalized in C) and E). Blue and red lines indicate where the cross-section was taken in order to evaluate the
resolution gain. D): intensity profiles along the lines of C) and E). Blue line: Cross-section of the original fluorescence image. Red line: Cross-section
of the SOFI image. As can be seen the blue line displays a dip indicating a higher resolution. The distance between the vertical black lines
amounts to 215 nm, which is 14% higher than the theoretically expected resolution of 188 nm. Scalebar in A) and B) 20 um; C) and E) 1 um.
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the axial resolution enhancement by measuring the PSF
of a single blinking QDs (Dertinger et al. 2009)). Since
different slices were acquired at different times, the gain
in axial resolution was somewhat compromised. Ideally,
several z-slices should be acquired simultaneously in
order to simultaneously capture blinking statistics of
different voxels along z.

To prove concurrent resolution enhancement in x, y
and z, we also estimated the resolution gain in the lat-
eral direction (x-y-plane) by taking an intensity cross-
section of a single image z-slice. The result is shown in
Figure 4. As expected, the resolution gain amounts to
almost a factor of two. The theoretical resolution limit
can be calculated wusing the Rayleigh criterion:
0.61*800 nm/1.3 = 375 nm. Therefore for the SOFI
image we expected a resolution of no better than
188 nm, which is the limit for a noise-free dataset.
Since our dataset contains noise, the achievable reso-
lution will be less than a factor of two. The achieved
SOFI resolution was 215 nm, slightly higher than
expected, most likely due to non-perfect optics and
noise.

Conclusion
We demonstrated SOFI-based 3D superresolution imaging
of a whole cell using a conventional, unmodified, widefield
microscope. These findings demonstrate the power and
increased utility of the SOFI algorithm and could possibly
allow extending these capabilities to deep tissue 3D super-
resolution imaging in the future. While QDs have many
advantages, a drawback for SOFI analysis is their non-triv-
ial power-law intermittency (blinking) behavior (Kuno
et al. 2000). While for the second-order SOFI images the
power-law blinking is not problematic, it has a stronger
impact on higher order SOFI images (see discussion in
(Dertinger et al. 2009)). A Poisson blinking process (as for
triplet states of dyes and fluorescent proteins) does not
suffer from this limitation and therefore is more amenable
for higher order analysis.

Further axial resolution enhancement is expected if a
multi-z-view acquisition is employed.

Additional files

Additional file 1: Shows the 3D rendered version of the original data
set. The optical axis is displayed x10 stretched.

Additional file 2: Shows the 3D rendered version of the SOFI data set.
The optical axis is displayed x10 stretched.
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