

POSTER PRESENTATION

CTS[™] immune cell SR for serum free culture and expansion of human T cells

Grethe Okern¹, Angel Varela-Rohena², Sandra Kuligowski², Brian Newsom³, Tanja Aarvak^{1*}

From 30th Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2015)

National Harbor, MD, USA. 4-8 November 2015

Background

The manufacture of a majority of clinical T cell products for immunotherapy applications requires *in vitro* T cell culture and expansion. Commercialization of T cell manufacturing processes requires reagents that meet regulatory guidelines and ultimately help reduce manufacturing cost of goods. A key component in many T cell culture protocols is human serum, which is expensive and requires extensive testing prior to use for the manufacture of cGMP-compliant T cell therapies. To this end, we have developed a xeno-free serum replacement, CTSTM Immune Cell SR, with defined components that can be used in combination with multiple cell culture media to support *in vitro* expansion of functionally intact T cells.

Results

T cells activated and expanded with Dynabeads[®] CD3/ CD28 CTSTM and cultured in CTSTM OpTmizerTM T cell Expansion SFM, X-VivoTM 15, or CTSTMAIM-V[®] supplemented with pooled human serum or serum free CTSTM Immune Cell SR showed similar growth kinetics, total fold expansion and transduction efficiency after 2 weeks in culture. Numbers of CD4⁺ and CD8⁺ T cells were comparable in cultures expanded with media containing human serum or CTSTM Immune Cell SR. T cells demonstrated efficacy when infused in an *in vivo* leukemia mouse model. T cell engraftment and leukemia control were similar between mice treated with T cells grown in media containing human serum or CTSTM Immune Cell SR.

Conclusions

These studies demonstrate that human serum may be replaced by a xeno-free formulation in combination

¹Thermo Fisher Scientific, Oslo Norway

with several commonly used T cell culture media to support *in vitro* expansion and lentiviral transduction of polyclonal T cells. Culturing T cells in CTSTM Immune Cell SR facilitates a favorable culture profile and immune function. Serum free CTSTM Immune Cell SR contains only fully tested human-derived or human recombinant proteins which facilitates supply security for large-scale production of clinical and commercial therapies.

Authors' details

¹Thermo Fisher Scientific, Oslo Norway. ²Thermo Fisher Scientific, Grand Island, NY, USA. ³Thermo Fisher Scientific, Frederick, MD, USA.

Published: 4 November 2015

doi:10.1186/2051-1426-3-S2-P1 Cite this article as: Okern *et al*:: CTS™™ immune cell SR for serum free culture and expansion of human T cells. *Journal for ImmunoTherapy of Cancer* 2015 3(Suppl 2):P1.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) BioMed Central

Submit your manuscript at www.biomedcentral.com/submit

© 2015 Okern et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http:// creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/ zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Full list of author information is available at the end of the article