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Abstract

to ensure a stable global food supply.

breeding technology for future rice improvement.

Background: Rice, Oryza sativa L., is the staple food for half the world’s population. By 2030, the production of rice
must increase by at least 25% in order to keep up with global population growth and demand. Accelerated genetic
gains in rice improvement are needed to mitigate the effects of climate change and loss of arable land, as well as

Findings: We resequenced a core collection of 3,000 rice accessions from 89 countries. All 3,000 genomes had an
average sequencing depth of 14x, with average genome coverages and mapping rates of 94.0% and 92.5%,
respectively. From our sequencing efforts, approximately 18.9 million single nucleotide polymorphisms (SNPs) in rice
were discovered when aligned to the reference genome of the temperate japonica variety, Nipponbare. Phylogenetic
analyses based on SNP data confirmed differentiation of the O. sativa gene pool into 5 varietal groups — indica,
aus/boro, basmati/sadri, tropical japonica and temperate japonica.

Conclusions: Here, we report an international resequencing effort of 3,000 rice genomes. This data serves as a
foundation for large-scale discovery of novel alleles for important rice phenotypes using various bioinformatics and/or
genetic approaches. It also serves to understand the genomic diversity within O. sativa at a higher level of detail. With
the release of the sequencing data, the project calls for the global rice community to take advantage of this data as a
foundation for establishing a global, public rice genetic/genomic database and information platform for advancing rice
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Data description

Purpose of data acquisition

For much of the world’s poor, rice (O. sativa L.) is the
cereal that provides the majority of daily calories in their
staple diet. Rice is also known for its tremendous
within-species genetic diversity and varietal group differ-
entiation [1,2]. Rice productivity has more than doubled
in recent decades, resulting primarily from the Green
Revolution and continued breeding efforts since the
1960s. However, in order to meet the demands imposed
by the projected increase in global population, the
world’s rice production has to increase by 25% or more
by 2030 [3]. This increase has to be achieved under less
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land, less water and under more severe environmental
stresses due to climate change. Thus, accelerated genetic
gains are needed in the next few decades to improve
yield potential and stability, and grain quality of rice.
This requires more complete knowledge of the genetic
diversity in the O. sativa gene pool, associations of di-
verse alleles with important rice traits, and systematic
exploitation of this rich genetic diversity by integrating
knowledge-based tools into rice improvement using in-
novative breeding strategies [4-6].

To date, a few studies on rice have been undertaken to
discover allelic variants through next generation sequen-
cing (NGS) [7-9]. Unfortunately, these studies have been
unable to provide a complete picture of the total genetic
diversity within the O. sativa gene pool, due to either
the small sample size of sequenced accessions [7], or the
low-coverage sequencing depth of the genomes [8,9].
Here, we report an international effort to extend signifi-
cantly our understanding of the total genetic diversity
within the O. sativa gene pool by re-sequencing 3,000
O. sativa genomes using Illlumina-based NGS. Our
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ultimate goal is to establish, through collective efforts by
the international scientific community, a public rice
database containing genetic and genomic information
suitable for advancing rice breeding technology.

Selection of germplasm

A total of 3,000 germplasm accessions were chosen for
sequencing, including 2,466 accessions from the Inter-
national Rice Genebank Collection (IRGC) at the Inter-
national Rice Research Institute (IRRI), and 534 accessions
from the China National Crop Gene Bank (CNCGB)
in the Institute of Crop Sciences, Chinese Academy of
Agricultural Sciences (CAAS). The 2,466 accessions (in
Additional file 1: Table S1A ) contributed by IRRI represent
a panel that was randomly selected from a core collection
of 12,000 O. sativa accessions that was established by a
semi-stratified selection scheme from more than 101,000
rice accessions in the IRGC; taking into account factors,
such as the country of origin, eco-cultural type and var-
ietal grouping with even coverage of the name space while
limiting potential duplicates from each country, and com-
plemented by specific, nominated entries from IRRI and
the Centre de Coopération Internationale en Recherche
Agronomique pour le Développement (Cirad). The 534
accessions (in Additional file 1: Table S1B) contributed by
CAAS included a mini-core collection of 246 accessions
selected from a core collection of 932 accessions estab-
lished in the same way from the 61,470 O. sativa
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accessions preserved in the CNCGB [10], plus 288 acces-
sions selected based on their isozyme diversity [1], and
used as parental lines in the international rice molecular
breeding network [2]. Together, the sampled 3,000 rice ac-
cessions came from 89 different countries/regions, 77.1%
of which are from the centers of rice genetic diversity
-Southeast Asia (33.9%), South Asia (25.6%) and China
(17.6%) (Figure 1).

Genetic stocks derived from the O. sativa accessions
were generated for each of the sampled 3,000 rice acces-
sions by one or more cycles of single-seed descent puri-
fication under field or screen-house conditions. New
accession numbers were assigned to seeds derived from
one or more rounds of multiplication starting from a
single plant of each source accession. As of March 2013,
new accession numbers have been assigned to 1,958 of
the IRRI accessions. Purified seeds of the sequenced ac-
cessions are (or will be available) from the IRGC or
CNCGB as genetic stocks. Information on obtaining
seeds from the IRGC can be found at [11] and from the
CNCGB at [12].

Sequencing

Genomic DNA was prepared from bulk harvested leaves
of a single young plant for each sampled accession by a
modified CTAB method either at IRRI or at CAAS. Gen-
omic DNA samples were then shipped to BGI-Shenzhen
and were used to construct Illumina index libraries
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Figure 1 Geographical distribution of the 3,000 sampled rice accessions from 89 countries (see Additional file 1: Tables S1A and S1B).
The numbers in the parentheses after each region are the numbers of the countries in the region.
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following the manufacturer’s protocol. Following quality
control, at least 3 pg genomic DNA of each sample was
randomly fragmented by sonication and size-fractionated
by electrophoresis, and DNA fragments of approximately
500 bp were purified. Purified 500 bp DNA fragments
from each of the 24 accessions were labeled independently
using distinct 6 bp nucleotide multiplex identifiers,
followed by pooling prior to library construction for NGS.
Each sequencing library was sequenced in six or more
lanes on the HiSeq2000 platform and 90 bp paired-end
reads were generated. Subsequently, the reads from each
sample were extracted based on their unique nucleotide
multiplex identifiers as 83 bp reads (90 — 6 — 1, where 1 is
the ligation base “T”). To ensure high quality, raw data
was filtered by deleting reads having adapter contamin-
ation or containing more than 50% low quality bases
(quality value < 5).

Data generation and analyses

Read alignment and variant identification

The clean reads were mapped to the temperate japonica
Nipponbare reference genome — the unified-build re-
lease Os-Nipponbare-Reference-IRGSP-1.0 (IRGSP-1.0)
[13], using the BWA software with default parameters
except for “aln -m 10000 -0 1 -e 10 -t 4”. The alignment
results were then merged and indexed as BAM files
[14,15]. SNP calling was based on alignment using the
Genome Analysis Toolkit 2.0-35 (GATK) and Picard
package V1.71 [16]. To minimize the number of mis-
matched bases for SNP and InDel calling, all reads from
each accession were further cleaned by:

(1) deleting the reads that are unmapped to the
reference in the alignment result;

(2) deleting duplicate reads;

(3) conducting alignment by the IndelRealigner package
in GATK; and

(4) recalibrating realignments using the
BaseRecalibrator package in GATK.

SNP and InDel calling for each sample were performed
independently using the UnifiedGenotyper package in
GATK with a minimum phred-scaled confidence thresh-
old of 50, and a minimum phred-scaled confidence
threshold for emitting variants at 10. To ensure the qual-
ity of variant calling, the conditions for every site in a
genome were set at >20 for mapping quality, >50 for vari-
ant quality and >2 for the number of supporting reads for
every base.

SNP and InDel calling at the population level (i.e., for
all sequenced genomes concurrently) was performed
using the UnifiedGenotyper package in the GATK pipe-
line with 50 for the minimum phred-scaled confidence
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threshold for variant calling, 30 for the minimum phred-
scaled confidence threshold for variant emitting, >20 for
the mapping quality, MAF >0.001 for every SNP, and >2
sequence depth for genotypes in every sample. Five inde-
pendent, randomly selected sets of 200,000 SNPs with
minimum missing data were then selected for phylogen-
etic analysis.

For each of these five sets, distance matrices using the
p-distances model were calculated, and Neighbor Joining
trees were constructed with 1,000 bootstraps using the
TreeBeST software [17]. Consensus trees were exported
as Newick format and imported into DarWIN v5.0.158
for topology visualization [18]. For each of the five con-
sensus trees, prior information on variety group designa-
tion (based on SSR or isozyme classification) was used
to define assignment to one of the five groups — indica,
aus/boro, basmati/sadri, japonica (tropical or temperate).
Groupings assigned for each of the five trees were com-
pared using a majority rule criterion (i.e., a minimum of
three trees to support the assignment). Those accessions
that failed this test were labeled as intermediate types.

Findings

Using IRGSP-1.0 as the reference, the 3,000 sequenced
genomes had an average depth of ~14x, ranging from ~4x
to greater than 60x, and yielded a combined total of ap-
proximately 17 TB of high quality sequence data. Of the
3,000 entries, 2,322 accessions had >10x sequence depths.
When aligned with IRGSP-1.0 using the BWA software,
the average genome coverage and mapping rate were
94.0% and 92.5%, respectively. BWA alignment followed
by variant calling using GATK identified approximately
18.9 million single nucleotide polymorphisms (SNPs)
(Table 1). The distribution of the identified SNPs across
different chromosomes varies considerably, with chromo-
somes 4, 1 and 11 having the highest numbers of SNPs
and chromosomes 9, 10 and 5 having the lowest. Most
SNPs were detected in intergenic regions and introns,
based on comparison with gene annotations provided by
MSU v7 [13,19]. Only 18.24% of the detected SNPs occur
in exons, of which ~40% are synonymous.

The phylogenetic analyses revealed clear differenti-
ation of the 3,000 accessions into two major groups —
indica and japonica, two small varietal groups — the
aus/boro and basmati/sadri types, plus a small group
(134) of intermediate (admixed) types (Figure 2). The
indica group represented the largest and most diverse
group comprising 1,760 (58.2%) accessions in five major
subgroups of diverse origins. The japonica group con-
tains 843 (27.9%) accessions, which had two well-
differentiated subgroups — 388 temperate japonicas and
455 tropical japonicas. The aus/boro group is composed
of 215 accessions and is more closely related to indica,
while the aromatic basmati/sadri group is more closely
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Table 1 Characteristics of the single nucleotide polymorphisms (SNPs) identified in the 3,000 rice genomes when aligned
to the reference japonica Nipponbare genome IRGSP-1.0

Chrom.  Gene mRNA  5’-UTR CDs Intron  3-UTR Intergenic Total Syn Non-syn  Total  Non-syn/Syn
Chn 634912 630396 25880 291817 286601 26098 1252989 1887901 118095 173722 291817 1471
Chr2 528417 524172 20087 243967 238738 21380 1013475 1,541,892 97,306 146,661 243,967 1.507
Chr3 490402 487,611 19899 223,196 224129 20387 962,304 1,452,706 88,477 134,719 223,196 1.523
Chr4 730310 727473 19018 388220 301,071 19,164 1,176274 1906584 160,101 228115 388220 1425
Chr5 489,370 485848 13,623 257327 200,307 14,591 867,799 1,357,169 103,723 153,604 257,327 1481
Chré 560,506 557361 16943 280933 242635 16850 1023473 1583979 114625 166308 280933 1451
Chr7 548266 546,569 16210 280994 231,797 17568 973,670 1521936 115332 165662 280,994 1436
Chr8 582,068 580,181 16396 302,785 244,991 16,009 998,651 1,580,719 124,025 178,759 302,785 1441
Chro 436,037 434440 10692 222916 190025 10807 763,771 1,199808 90299 132617 222916 1469
Chr10 476,710 473,603 11,735 258,013 192214 11,641 806,940 1,283,650 109451 148,561 258,013 1.357
Chr11 684,803 681,891 16642 354874 291,049 19326 1,148,735 1,833,538 140,772 214,101 354,874 1.521
Chr12 607,336 603,783 16549 319401 251,103 16,730 1,055,044 1,662,380 12929 190,105 319401 1470
ChrUn 19,706 19,706 0 12615 7,091 0 26,669 46,375 5819 6,796 12615 1.168
ChrSy 11,463 11,463 0 7913 3,550 0 15,043 26,506 3,846 4,067 7913 1.057
Total 6,800,306 6,764,497 203674 3444971 2905301 210551 12084837 18885143 1401,167 2,043,797 3,444,971 1459

The MSU V7.0 rice gene annotation for 55,986 genes and 66,338 mRNA [13] as a raw dff3 file type was downloaded from the Rice Genome Project Annotation ftp
site [19]. Prior to categorization of SNP types, the raw gff3 file was processed 1) to remove all but the primary mRNA transcript and 2) to select the gene models
with the highest support in cases where there are overlapping gene models. Hence, SNP characteristics are reported here for 55,107 of the 55,986 gene models.
Characteristics of SNPs in pseudogenes or where the reference base is N (unknown or missing) are not reported. Syn = synonymous; Non-syn = non-synonymous.
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Figure 2 Classification of 3,000 rice accessions into five distinct varietal groups based on 5 sets of 200,000 random sets from the 18.9
million discovered SNP variants.
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related to japonica and consists of 68 accessions primar-
ily from South Asia.

Availability and requirements

Data availability

The sequencing data of the 3,000 rice genomes project
(3K RGP) is now deposited in the GigaScience database
(GigaDB) and has a citable digital object identifier
(DOI) [20]. The dataset consists of separate directories
for sequences from each of the 3,000 rice genomes.
These directories are named by the DNA_UNIQUE_IDs
given in Additional file 1: Tables S1A and S1B. If the
DNA_UNIQUE_ID contains a space, the space is re-
placed by an underscore. Each directory contains from
12 to 40 Fastq (fq) files of trimmed, filtered reads that
are compressed using GNU zip (gzip, .gz). The dataset
consists of about 15.4 terabytes (Tb) of files. Individual
data files can be downloaded using tools such as File
Transfer Protocol (FTP). In order to obtain the complete
dataset, use of FTP is not possible due to the time re-
quired for file transfer and bandwidth consumed; other
tools will be needed.

Dataset name: The 3,000 rice genomes project data
Operating system: Platform-independent, UNIX/Linux
preferred

License: Creative Commons 0 (CC0) public domain dedi-
cation (https://creativecommons.org/publicdomain/zero/1.0)

Data requirements

After download or acquiring, depending on the task, from 8
Gb (reference-guided alignment and variant calling) to 16 Gb
(de novo genome assembly) or more main memory is needed
and from 16 to 64 Gb or more swap space allocated for each
pipeline; computation will require from 7 hours (alignment
and calling) to 3 days (assembly) per core per pipeline.

Discussion

This 3,000 rice genomes dataset provides an unprece-
dented resource for rice genomic research. With access
to the genome sequences of the 3,000 accessions repre-
senting various varietal types of diverse origins and avail-
ability of additional high-quality rice reference genomes,
further comparisons can be made among the 3,000 ge-
nomes and reference genomes of different rice types.
These analyses are expected to uncover the within-
species diversity and genome-level population structure
of O. sativa in great detail. Thus, we hope that this data
note will be the beginning of a new round of accelerated
discoveries in rice science. Here, we would like to call
for an international effort to analyze and mine the data-
set. The expected information explosion from follow-up
studies of the project will provide a foundation to
revolutionize rice genetics and breeding research.
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Ultimately, this could lead to a more thorough under-
standing of the molecular, cellular and physiological ma-
chineries/networks responsible for the growth and
development of rice plants and their responses to vari-
ous abiotic and biotic stresses.

This data note is accompanied by a ‘Commentary’ article,
where the intent and plans for the projected uses of the
3,000 rice genomes dataset are further expanded [21].
Through the public release of this dataset, we encourage the
global science community to analyze the data and to con-
tribute in building a public rice genetic/genomic database
and information platform that will accelerate rice breeding.

Availability of supporting data

The data set supporting the results of this article is avail-
able in the GigaScience GigaDB Database [20]. Informa-
tion on SNP variants will be available on analysis of the
population-level genome diversity of the 3,000 rice ge-
nomes. Raw sequence data is also available from the
SRA at PRJEB6180.
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