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Abstract

have not been characterized yet.

during cell migration and tumorigenesis.

Background: Sorting nexins are a large family of proteins that are associated with various components of the
endosome system and they play many roles in processes such as endocytosis, intracellular protein trafficking and
cell signaling. The subcellular distribution patterns of many of them remain controversial and their in vivo functions

Results: We investigated the subcellular distribution and function of SNX16 in this study. SNX16 is detected on
Rab5-positive endosomes localized adjacent to focal adhesions at cell cortex. Inhibition of SNX23, polymerization of
microtubule filaments as well as the PI3-kinase all disrupt the cell cortex distribution of SNX16. Ectopic expression of
SNX16 reduces the migration and the tumor formation activity of MCF-7 cells.

Conclusion: Our results indicate that, in addition to the PI3P, there is a SNX23- and microtubule-dependent cargo
transport pathway required for the proper subcellular distribution of SNX16. SNX16 plays a negative regulatory role

Background

Sorting nexin family proteins (SNXs) all contain a
Phox-homology (PX) domain which binds to certain
phosphoinositides and targets the host protein to organ-
elles rich in those lipids [1,2]. SNX genes are present in all
eukaryotes from yeast to mammals and 33 SNX family
members have been identified from the mouse and human
genome. Twelve members of the mammalian SNX family
(SNX1, 2, 4-9, 18, 30, 32 and 33) contain a BAR (Bin,
amphiphysin, Rvs) domain next to the PX domain and
they are grouped into the PX-BAR subfamily of SNXs.
The BAR domain can sense membrane curvature and
many of the PX-BAR subfamily SNX members are in-
volved in the retromer-dependent vesicular trafficking
[3-5]. The classic mammalian retromer consists of a
cargo-selective adaptor (Vps26-29-35) and a membrane-
bound heterodimer of SNX1/2 and SNX5/6. It regulates
the retrograde trafficking of cargos such as the cation-
independent mannose-6-phosphate receptor (CI-MPR)
from endosomes to the Golgi apparatus. Recently, SNX3
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which is a PX-domain-only SNX family member has been
demonstrated to play an essential role in a novel type of
retromer-dependent trafficking of Wntless [6,7]. SNX10
is another PX-domain-only SNX protein which is able
to regulate the subcellular distribution of vacuolar-type
H"-ATPase (V-ATPase) [8] and it has recently been impli-
cated in hereditary osteopetrosis in human [9-12].

Many SNX family members contain protein domains
other than the PX or BAR domain. For example, SNX17
contains a FERM (4.1, Ezrin, Radixin, Moesin) domain
[13,14] and it has been implicated in the intracellular
sorting and trafficking of membrane proteins including P-
selectin [15], low density lipoprotein receptor (LDLR) [16],
LDLR related protein (LRP) [17,18], integrin [19,20], Jagl
[21], etc.. SNX27 contains a PDZ (postsynaptic density
protein-95, Discs-large, Zona-occludens-1) domain and a
Ras-association domain in addition to the PX domain. It
is involved in the regulation of the G protein-gated in-
wardly rectifying potassium (GIRK) channel [22,23], the
Bo-adrenoreceptor [24,25], the 5-hydroxytryptamine type
4 receptor [26], the N-methyl-D-aspartate receptor 2C
[27] as well as the glutamate receptors [28]. SNX23 (also
known as KIF16B) contains a kinesin motor domain and it
can regulate the microtubule-dependent Golgi-to-endo-
some transport of the fibroblast growth factor receptor
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(FGFR) [29] or the cell peripheral transport of early
endosomes [30]. SNX16 is another unique member of the
SNX family in that it contains a coiled-coil (CC) domain
next to the C-end of the PX domain. The PX domain
binds to the phosphatidylinositol 3-phosphate (PI3P) and
targets SNX16 to the early and late endosomes [31]. More
detailed analysis reveals that SNX16 is distributed to the
Rab7-positive late endosomes but not the phospholipid
lysobisphosphatidic acid (LBPA)-positive late endosome/
multivesicular endosomes [32]. In COS-7 cells, SNX16
co-localizes with the transferrin receptor (TFR) and is
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able to enhance the EGF-induced degradation of EGF re-
ceptor [33]. In drosophila cells, SNX16 is detected at early
endosomes and it can activate the BMP signaling which is
required for synaptic growth [34].

We report here that SNX16 is often detected on vesi-
cles at cell cortex. These vesicles are Rab5-positive and
they are distributed close to the focal adhesions. The ac-
tivity of SNX23, the microtubule filaments as well as the
PI3-kinase are all required for the cell cortex distribution
of SNX16. Over-expression of SNX16 reduces the mi-
gration of cells while knockdown of SNX16 has the
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Figure 1 Subcellular distribution of SNX16. (A) The subcellular distribution of tagged SNX16 in MCF-7 cells. Cells were transfected with

the indicated constructs and immunofluoresence staining was performed 48 hrs post transfection. Rab5 is an early endosome marker and it
co-localizes with SNX16 at cell cortex (indicated by an arrow). The endogenous Paxillin is detected using a specific antibody and used to indicate
the position of focal adhesions. (B) The cell cortex distribution of SNX16 is detectable in a variety of cell lines. (C) A home-made polyclonal
antibody to human SNX16 can detect the ectopically expressed SNX16. (D) Immunofluoresence staining of endogenous SNX16 on frozen
sections prepared from adult mouse heart. Pre-incubation of the sample with soluble SNX16 protein blocks the staining.
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opposite effect. Furthermore, ectopic expression of
SNX16 is able to reduce the in vivo tumorigenic activity
of a breast cancer cell line in the mouse model.

Results

Cell cortex distribution of SNX16 in vitro and in vivo
SNX16 has been detected at various endosome com-
partments including early endosomes, late endosomes/
lysosomes or recycling endosomes; however, the exact
subcellular distribution of SNX16 appears to be cell line
dependent [31-34]. We initially investigated the distribu-
tion of ectopic SNX16 (Flag- or GFP-tagged) in MCEF-7
which is a commonly used cell line derived from human
breast cancer. We found that, in addition to the peri-
nuclear region of cytoplasm, SNX16 vesicles are accu-
mulated at certain cell cortex (indicated by arrows in
Figure 1A). These vesicles are Rab5-positive so they are
likely to be early endosomes. This distinct distribution
pattern of SNX16 prompted us to investigate whether or
not it is related to the focal adhesions, where a cell is
linked to the extracellular matrix. Paxillin is a focal
adhesion-associated adaptor protein and it is used to in-
dicate the position of focal adhesions. We found that the
cell cortex fraction of SNX16 is always adjacent to the
Paxillin staining signals but they usually do not co-
localize with each other. So we conclude that SNX16
vesicles are accumulated near certain focal adhesions at
the peripheral cytoplasm in MCF-7 cells.

We then investigated whether or not the cell cortex dis-
tribution is a general feature for SNX16. We transfected
SNX16-GFP into various cell lines and determined the sub-
cellular distribution of SNX16 in these cells. We found that
the cell cortex localization of SNX16 is clearly detected in
all cell lines examined, which include a cervical cancer cell
line (Hela), liver cancer cell lines (HepG2 and Bel7402) and
lung cancer cell lines (GLC-82 and NCI-H460) (Figure 1B).
We then investigated whether the cell cortex distribution
of SNX16 can be found in vivo. We first developed a poly-
clonal antibody against SNX16 and this antibody suc-
cessfully detects the ectopically expressed SNX16-GFP in
MCE-7 cells (Figure 1C). SNX16 is enriched in brain and
muscles in mouse [31], so we tested whether SNX16 is dis-
tributed to the cell cortex in these tissues. We performed
immunofluorensence staining on mouse heart frozen sec-
tions using our home-made antibody. Cell cortex staining
of SNX16 is detected at mouse heart sections but not the
same sample pre-blocked with the purified SNX16 soluble
protein (Figure 1D). This result suggests that the staining is
specific and we conclude that a fraction of SNX16 is
present at cell cortex both in vitro and in vivo.

Signals required for the cell cortex distribution of SNX16
SNX23/KIF16B is a kinesin family protein that can regu-
late the microtubule-based peripheral transport of early
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endosomes. It is reported to co-localize with early endo-
some marker EEA1 at the cell cortex in Hela cells [30].
This distribution pattern of SNX23 is similar to what we
observed for SNX16 here, so we compared the subcel-
lular distribution patterns of SNX16 and SNX23. We
co-transfected SNX16 and 23 into the MCEF-7 cells and
found that they co-localize with each other at cell cortex
(Figure 2A). Since SNX23 is a motor protein that can
regulate the cell peripheral transport of early endosomes,
we determined whether the SNX23 transport pathway is
required for the cell cortex distribution of SNX16. We
knocked-down SNX23 by siRNAs then determined the
subcellular distribution pattern of SNX16. Our siRNAs
effectively down-regulate the mRNA level of SNX23
(Figure 2B) and we found that down-regulation of SNX23
abolishes the peripheral distribution of SNX16. In fact,
the majority of SNX16 vesicles are now detected at the
perinuclear regions (Figure 2C, similar result was ob-
served for siSNX23-2). The microtubule filaments are
required for the SNX23-mediated cargo transport [30],
so we investigated whether the microtubules are involved
in the trafficking of SNX16 vesicles. Pretreatment of
MCE-7 cells with colchicine, an inhibitor of microtubule
polymerization, disrupts the cortex localization of SNX16
vesicles. On the other hand, inhibition of the actin fila-
ments by cytochalasin B does not affect the cell cortex
distribution of SNX16 (Figure 2D). So, the SNX23- and
microtubule-dependent transport route is required for the
cell cortex distribution of SNX16 vesicles.

The PX domain of SNX16 can bind to PI3P thus the
PI3-kinase pathway is able to regulate the early endosome
localization of SNX16 [31,33]. We analyzed whether the
PI3-kinase pathway is involved in the cell cortex distribu-
tion of SNX16 as well. We found that the inhibition of
PI3-kinase by small chemical wortmannin abolishes the
cell cortex localization of SNX16 vesicles (Figure 2D). On
the other hand, inhibition of mTOR which is a PI3K-
related kinase by rapamycin does not induce similar ef-
fect. Treatment of cells with an inhibitor of intracellular
protein trafficking (monensin), a general inhibitor of pro-
tein kinases (staurosporine) or an inhibitor of serine/
threonine protein phosphatases (okadaic acid), does not
disrupt the cell cortex distribution of SNX16 (Figure 2D).
Together, these results suggest that both the PI3-kinase
pathway and the SNX23/microtubule system are involved
in the establishment or maintenance of SNX16 vesicles at
cell cortex.

SNX16 regulates cell migration but not growth

Previous studies have implicated SNX16 in the signaling
pathways such as EGF, BMP and Wnt pathways [33,34].
These pathways have diverse functions in regulating pro-
cesses such as cell survival, proliferation or migration.
Our observation that SNX16 is present close to focal
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Figure 2 SNX23 and PI3-kinase are required for the cell cortex distribution of SNX16. (A) SNX16 co-localizes with SNX23 to cell cortex.
MCF-7 cells were transfected with the Flag-tagged SNX16 and the GFP-tagged SNX23 and the subcellular distribution of them determined as
described above. (B) Efficiency of siRNAs to SNX23 as determined by real-time RT-PCR. (C) Down-regulation of SNX23 by siRNA disrupts the cell
cortex distribution of SNX16. (D) The effects of small chemical inhibitors on the subcellular distribution of SNX16. Cells expressing SNX16-GFP
were treated with the indicated inhibitors and the subcellular distribution of SNX16 determined as described above. Inhibition the polymerization
of microtubules by colchicine or inhibition the activity of PI3-kinase by wortmannin abolishes the cell cortex distribution of SNX16. Inhibition of
actin filaments (cytochalasin B) or mTOR (rapamycin) does not affect the cell cortex distribution of SNX16. Treatment of cells with monensin,
staurosporine or okadaic acid has no effect on the cell cortex distribution of SNX16.
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adhesions further suggests that it might be involved in
cell migration. In order to test this possibility, we first
established cell lines stably expressing SNX16 in MCEF-7
and HT1080 cells. We compared the migration activity of
SNX16-expressing cells to the empty vector infected cells
using the Cell Motility HCS Reagent Kit. We found that
ectopic expression of SNX16 reduces the migration of
both cells to less than half of the control levels (Figure 3A
and B, P=24x10" for MCF-7, P=3.4x10""" for HT1080).
We then performed loss-of-function assay on SNX16 and
found that the siRNA mediated knockdown of SNX16 en-
hances the migration of MCEF-7 cells (Figure 3C and D,
P=0.04 for siSNX16-1 and 0.02 for siSNX16-2 when

compared to siCK). We compared the growth curve and
cell cycle profile between the vector and SNX16 express-
ing MCE-7 stable cell lines and found that they are not af-
fected by SNX16 over expression (Figure 3E and F).
Together, these results suggest that SNX16 is involved in
cell migration but not growth.

SNX16 regulates tumorigenesis of MCF-7 cells

MCE-7 is a breast cancer derived cell line that can induce
tumor formation when injected subcutaneously into the
SCID mice. We investigated whether or not the ectopic
expression of SNX16 has an effect on the tumorigenic ac-
tivity of this cell line. Stable MCE-7 cell lines expressing
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cycle profile (F) of MCF-7 cells. Data represent mean + SD in all cases.
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Figure 3 SNX16 regulates the migration but not proliferation of cells. (A) Stable cell lines expressing SNX16 or an empty vector were
established in the HT1080 or MCF-7 cells and the migration activities of these cells were evaluated by the cell migration assay. A typical result
of the assay is shown here. (B) Statistical analysis of (A). Ectopic expression of SNX16 reduces the migration of both HT1080 and MCF-7 cells.

(€) Both siRNAs to SNX16 efficiently reduce the mRNA level of SNX16 in MCF-7 cells as determined by real-time RT-PCR. (D) Down-regulation of
SNX16 by either siRNA enhances the migration of MCF-7 cells. (E, F) Ectopic expression of SNX16 does not change the growth curve (E) or cell
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the empty vector or SNX2 are used as the control. We
injected these cells into the SCID mice, monitored the
sizes of the tumors and finally determined the weights of
tumors 27 days post inoculation after the dissection of tu-
mors. We found that the ectopic expression of SNX16
but not SNX2 significantly reduces the tumor formation
activity of MCF-7 cells (Figure 4, P=0.001, 0.0002 and
0.27 for SNX16-1, SNX16-2 and SNX2 respectively). To-
gether, our results suggest that SNX16 is a negative regu-
lator of cell migration and tumorigenesis in vivo.

Discussion

SNX16 contains a PX domain and a C-terminal coiled-coil
domain, which is unique among SNX family members.
Previous biochemical studies demonstrate that the PX do-
main of SNX16 preferentially binds to PI3P. This binding
is required for the endosome association of SNX16 since
inhibition of PI3P synthesis by wortmannin, an inhibitor of

PI3-kinase, results in the diffused distribution of SNX16 in
the cytosol of COS-7 cells. The intracellular localization of
SNX16 has been investigated in several cell lines; however,
the exact distribution pattern of SNX16 appears to be cell
type dependent. It has been attributed to EEA1-positive
(early endosomes), TFR-positive (recycling endosomes)
or Rab7- and Lampl-positive (late endosomes/lysosomes)
dependent on the cell lines used. We demonstrate here
that SNX16 vesicles are aggregated near focal adhesions at
cell cortex in a variety of cell lines as well as in vivo. We
propose that these vesicles are early endosomes since they
are Rab5-positive. The cell cortex distribution of SNX16
is disrupted upon wortmannin treatment thus it is PI3-
kinase dependent, which is consistent with the previous
biochemical studies.

SNX23/KIF16B is another PX domain protein and it
contains a kinesin domain which is usually involved in
the microtubule filament-dependent transport of cargos.
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Figure 4 SNX16 negatively regulates tumorigenesis of MCF-7 cells in vivo. (A) Stable MCF-7 cell lines expressing SNX16, SNX2 or the empty
vector were injected subcutaneously into the SCID mice and the sizes of tumors formed at the indicated time (day) were determined. (B, C) Tumors
were dissected and weighted 27 days post inoculation. Over-expression of SNX16 but not SNX2 reduces the tumorigenic activity of MCF-7 cells. Data
represent mean + SD from 7 mice (for Vector or SNX16) or 5 mice (for SNX2).
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Indeed, it has been demonstrated that SNX23 is able to
regulate the microtubule-dependent transport of FGFR-
containing vesicles or early endosomes. We found that a
fraction of SNX23 co-localizes with SNX16 at cell cortex
and this observation suggests that SNX23 could be involved
in the transport of SNX16 to cell cortex. We performed
loss-of-function studies and revealed that SNX23 as well
as the microtubule filaments are both required for the
cell cortex transport of SNX16. It is interesting to note
that SNX16 does not localize to the LBPA-containing
multivesicular late endosomes in control Hela cells, how-
ever, it re-distributes to this endosomes after the inhibition
of microtubule [32]. These observations suggest that a
SNX23/microtubule dependent transport route is critical
for establishing proper subcellular distribution of SNX16.
We tried but failed to detect a direct association between
SNX16 and SNX23. It is possible that other adaptor pro-
teins are needed for the SNX23-mediated transport of
SNX16.

We report here that SNX16 plays a negative role during
the migration or tumorigenesis of MCEF-7 cells, but it is
dispensable for the growth of these cells. SNX16 mediated
vesicular trafficking is involved in signaling pathways such
as EGE, BMP and Wnt pathways. However, it is currently
unknown whether or not these signaling pathways are in-
volved in cell migration or tumorigenesis in MCF-7 cells.

Further studies are required to indentify the exact cargos
associated with SNX16 during these processes.

Conclusions

SNX16-containing vesicles are identified near focal adhe-
sions at cell cortex in addition to their cytosolic distribu-
tion. The SNX23/microtubule pathway and the PI3-kinase
pathway are both required for the cell cortex distribution
of SNX16. SNX16 negatively regulates cell migration
in vitro and tumorigenesis in vivo.

Methods

Molecular cloning

Molecular cloning was performed according to standard
protocols. Human SNX16, SNX2 and Rab5 genes were
amplified from cDNA and cloned into the eukaryotic
expression vector pCR3.1-uni-tagged with FLAG, GFP-
FLAG or N-GFP. SNX23 was purchased from FulenGen.
SNX16 and SNX2 were subcloned into the lentivirus vec-
tor PlxnB for establishing stable cell lines. All constructs
were confirmed by DNA sequencing. Detailed informa-
tion about these constructs is available upon request.

Cell culture, transfection and small chemical treatment
MCE-7, Hela, NCI-H460 and Bel7402 were cultured in
RPMI 1640/10% FBS at 37°C with 5% CO,. HepG2 and
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293T were cultured in DMEM/10% FBS and GLC-
82 was cultured in DMEM/10% FBS plus 2 mM L-
glutamine. HT1080 was cultured in DMEM/10% FBS
plus 0.1 mM non-essential amino acids (NEAA). Trans-
fection was performed using the Lipofectamine 2000
reagent (Invitrogen) according to the manufacturer’s
procedure. Stable cell lines were generated by infecting
the cells twice with viral supernatants prepared from
the 293T cells and colonies were established after selec-
tion using blasticidin (Invitrogen, 10 pug/ml) for 72 hrs.
The following small chemical inhibitors were used in
this study in MCF-7 cells: colchicine (Sigma, 50 pg/ml
for 30 min), cytochalasin B (Sigma, 5 pg/ml for 60
min), wortmannin (Sigma, 1 uM for 90 min), monensin
(Sigma, 0.1 uM for 90 min), rapamycin (Sigma, 1 nM
for 90 min), staurosporine (Sigma, 2 uM for 90 min)
and okadaic acid (Sigma, 1 uM for 90 min).

siRNA treatment and real-time RT-PCR

siRNAs to human SNX16 and SNX23 were designed
and synthesized by Ribobio. The target sequences are:
siSNX16-1 (CTTTAGAAGAGACAAACTA), siSNX16-
2 (AGAAGCAACTTCATATAGA), siSNX23-1 (AGA
CGAAGTCACTTAGAGA) and siSNX23-2 (AAA
GACGCCTTCAGGATTT). Transfection of siRNAs
was performed using the DharmFECT transfection re-
agent (Dharmacon) according to the manufacturer’s
protocol and the final concentration of siRNAs was 50
nM. The efficiency of siRNA was determined by real-time
RT-PCR at 48 or 72 hrs post transfection. Briefly, total
RNA was extracted from cells using the Trizol reagent
(Invitrogen). cDNAs were prepared from 5 pg of RNA
with the ReverTra Ace® Kit (Toyobo). Quantitative PCR
was performed using the Premix Ex Taq™ (Takara) and
analyzed with CEX96 Touch™ Real-Time PCR Detection
System (Bio-Rad). Three independent assays were per-
formed for each sample and data represents mean + SD.
The primers used are: gapdh (GGGCTGCTTTTAACTC
TGGT and TGGCAGGTTTTTCTAGACGG), snx16
(AGAGATGTTTCCAGGTTTTCGAC and AGGCAGT
TAGCAATGTCCTTG), snx23 (AGCCCAGATTACGTT
TCACAAG and ACAGATCCGAGGTATTAAGCCA).

Immunofluorescence staining

Cells on glass coverslips were fixed in 4% paraformalde-
hyde/PBS for 30 min, washed with 2 mg/ml glycine/PBS
for 5 min and permeabilized in 0.2% Triton X-100/PBS
for 15 min. After two brief washes in PBS, cells were
blocked in 3% NGS/PBS for 1 hr at RT. Samples were
then incubated in primary antibody for 1 hr at RT. After
four washes with 1% BSA/0.05% Tween-20/PBS and three
washes with PBS, cells were incubated in Alex 488- or
568-conjugated goat anti-mouse or goat anti-rabbit IgG
(Molecular Probe, 1:200) secondary antibody for 1 hr.
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Cells were then washed four times with 1%BSA/0.05%
Tween-20/PBS and three times with PBS, counterstained
with DAPI (Sigma, 1 pg/ml) for 3 min and mounted.
Mouse heart frozen sections (about 4-5 pM) were pre-
pared using freezing microtome. Sections on slides were
fixed in ice acetone for 5-10 min, air dried and then
washed with PBS for 10min. Immunofluorescence stain-
ing on sections were performed as described above. The
anti-SNX16 rabbit polyclonal antibody was home-made
in our lab and used at the 1:50 dilution. To test the speci-
ficity of the antibody, purified human SNX16 protein
(5 pg/ml) was used to block the staining. Other primary
antibodies used are: mouse anti-Flag (Sigma, 1:100) and
rabbit polyclonal anti-Paxillin (Abcam, 1:25). Images were
obtained with the Leica SP2 confocal microscope.

Cell migration assay

Cell migration was assayed with the Cell Motility HCS
Reagent Kit (Cellomics). Briefly, blue fluorescent micro-
sphere solution was added to 24-well plate coated with
1% gelatin. The plate was washed twice with the Wash
Buffer after 1 hr incubation at 37°C in the dark. Cells
were seeded into the plate (2000 cells/well) and moni-
tored every 2 hrs. Images were analyzed using the Image-
Pro Plus 5.0 software (Media Cybernetics). Data repre-
sents mean + SD from three independent experiments.

Growth curve and cell cycle analysis

Cells were seeded into 24-well plate (20,000 cells/well,
triplicated) and cultured as described above. Cells were
dissociated from the plate and cell number counted
every 24 hrs. For cell cycle analysis, cells were fixed in
70% ethanol for 1hr at 4°C after washing in PBS/1% Glu-
cose and pelleted. Cells were then re-suspended in 1ml
of propidium iodide (PI) solution (50 pg/ml PI and 60
pg/ml RNase A) and incubated at 37°C for 1lhr. Cells
were filtered through 40-70 um mesh and cell cycle pro-
file was analyzed with the FACSCalibur flow cytometer
(BD). Data represents mean+SD from three independent
experiments.

Tumor formation assay

The study was conducted in accordance with the guide-
lines for the Care and Use of Laboratory Animals in
Guangzhou Institutes of Biomedicine and Health (GIBH,
CAS). Before transplantation, MCF-7 cells stably ex-
pressing SNX16, SNX2 or a control vector were re-
suspended in cell culture medium and cell number was
counted. Six-week old SCID mice (seven mice/group)
were inoculated subcutaneously with the MCEF-7 cells
(2x10° cells/mouse). Tumors were dissected and weighed
27 days post implantation.
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