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Abstract

We describe an iterative method to combine seismicity forecasts. With this method, we produce the next generation
of a starting forecast by incorporating predictive skill from one or more input forecasts. For a single iteration, we use
the differential probability gain of an input forecast relative to the starting forecast. At each point in space and time,
the rate in the next-generation forecast is the product of the starting rate and the local differential probability gain.
The main advantage of this method is that it can produce high forecast rates using all types of numerical forecast
models, even those that are not rate-based. Naturally, a limitation of this method is that the input forecast must have
some information not already contained in the starting forecast. We illustrate this method using the Every Earthquake
a Precursor According to Scale (EEPAS) and Early Aftershocks Statistics (EAST) models, which are currently being
evaluated at the US testing center of the Collaboratory for the Study of Earthquake Predictability. During a testing
period from July 2009 to December 2011 (with 19 target earthquakes), the combined model we produce has better
predictive performance - in terms of Molchan diagrams and likelihood - than the starting model (EEPAS) and the input
model (EAST). Many of the target earthquakes occur in regions where the combined model has high forecast rates.
Most importantly, the rates in these regions are substantially higher than if we had simply averaged the models.
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Background
Despite a growing number of reasonably reliable and
skillful numerical seismicity forecast models, operational
earthquake forecasting remains a daunting challenge. One
of the fundamental difficulties is that operational fore-
casts require high expected earthquake rates to make
substantial decisions (e.g., evacuation or other emergency
actions), but the probabilities derived from statistical seis-
micity models are still quite small (Jordan and Jones 2010).
One potential approach to this problem is to combine
models in a way that maximizes overall predictive skill.
It is well known that combining many models or clas-

sifiers that describe the same data may yield higher per-
formances than any individual member. These ensemble
learning techniques include methods such as Bayesian
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model averaging (Marzocchi et al. 2012) and, in the con-
text of classifiers, boosting (Hastie et al. 2008). In the first
case, the combined model is a weighted sum of individual
posterior probabilities, the weights being new parameters
that can be learned from the data. For boosting, weighted
data are used to train a collection of classifiers; during
iteration, previously misclassified data get higher weight.
These approaches are similar in that the combined mod-
els or classifiers are of the same abstract nature, meaning
that each gives a statistical description of the same data
set. In our approach, we combine models of different
natures. For example, alarm-based and rate-based fore-
cast models both give a description of the seismicity in
a region. However, alarm-based models do this through
a space-time alarm function, generally not normalized,
whereas rate-based models give a description in terms of
space-time Poisson event rates. The combination of two
such models cannot be cast into the classical form used
in ensemble techniques. Furthermore, the vast majority
of current seismicity models are based only on catalogs
of past earthquakes, and there is some hope that addi-
tional geological, geodetic, and physical information could
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improve forecast performance. Combining such informa-
tion should be done in a complementary fashion so as
not to increase uncertainty and thereby degrade forecast
performance. This challenge cannot be met by tradi-
tional methods, and a new method to combine forecasts
should identify what additional information a model can
contribute to an existing forecast.
It is often difficult to verify the presence of additional

predictive information in an earthquake forecast model,
but researchers are attempting to address this prob-
lem with the Collaboratory for the Study of Earthquake
Predictability (CSEP). In CSEP testing regions around the
world (e.g., California, Italy, New Zealand, the western
Pacific, Japan, and the globe), various forecast mod-
els are evaluated in a standardized way (Jordan 2006;
Gerstenberger et al. 2007; Zechar et al. 2010a; Zechar
and Jordan 2010; Zechar et al. 2010b; Rhoades and
Gerstenberger 2009; Nanjo et al. 2011; Tsuruoka et al.
2012; Eberhard et al. 2012; Taroni et al. 2014). One sub-
tle benefit of these centers is that all forecasts are sys-
tematically archived. Therefore, one can test methods of
combination using archived prospective forecasts. Most
forecasts within CSEP testing centers are rate-based fore-
cast models with a time step of 1 day, 3 months, or 5 years,
and testing regions are gridded with square cells of 0.1◦
and a class interval of earthquake magnitude of 0.1 from
M ≥ 3.95 earthquakes. For a much longer period, several
alarm-based models have been developed and tested by
various research groups. Known examples are the global
and regional tests of M8, CN, and RTP (Keilis-Borok
and Kossobokov 1990; Keilis-Borok and Rotwain 1990;
Peresan et al. 1999; Shebalin et al. 2006; Romashkova and
Kossobokov 2004; Zechar 2010).
Researchers have suggested a few methods for combin-

ing models and/or earthquake precursors. For a set of
rate-based models, a weighted average is a natural solu-
tion (Rhoades and Gerstenberger 2009; Marzocchi et al.
2012; Rhoades 2013). In the current implementation of
such approaches weights do not depend on space; rather,
they are chosen according to a relative performance of
the model observed during some testing period. A direct
product of functions describing precursory behavior was
used in the RTL prediction algorithm (Sobolev et al. 1996).
In this case, even if the initial functions are probabilis-
tic, the output is a nonprobabilistic alarm-based model.
Another way to combine models is by using Bayes’ for-
mula for conditional probabilities (Sobolev et al. 1991).
However, when using this approach, it is difficult to take
into account the interdependence of the combined ele-
ments, and resulting estimates are hardly probabilistic.
Shebalin et al. (2011) suggested a method based on

differential probability gains to convert alarm-based to
rate-based earthquake forecast models. Thus, nonprob-
abilistic forecast models or seismic precursor maps can

be converted to probabilistic rate-based models. In this
article, we generalize this differential probability gains
approach to combine all types of time-varying forecasts.

Methods
Evaluation of forecast models
Following the CSEP standards, we discretized forecasts in
space and time according to a predefined grid and a given
time step. In prospective tests, all forecasts are given for
the next time step and a finite magnitude range.

Molchan tests
Molchan tests are used to compare an alarm-based model
with a reference model of seismicity defined on the same
spatial grid (Molchan 1990). For any space-time region
(x, t), the reference model provides the rate λ(x, t) of
target earthquakes. The alarm-based model is entirely
defined by its alarm function A(x, t). Where this alarm
function exceeds a given threshold value A0, an alarm
is issued and a target earthquake is expected to occur.
Although it is not necessary, it is usually assumed that A
values are ordered from smallest to largest according to
the probability of occurrence of a target event. In almost
all cases, numerical forecast models can be easily con-
verted to an alarm-based forecast because the information
provided by a numerical value assignment on a given
space-time grid can be used as an alarm function.
A Molchan test takes the form of a diagram comparing

rates of types I and II errors for varying threshold values
A0 (i.e., a level of alarm). For different A0 values, type I
errors are measured by

τ(A0) =

∑
A(x,t)≥A0

λ(x, t)
∑

λ(x, t)
, (1)

where the sum symbols refer to the space-time regions in
which the subscript condition is satisfied. The τ value is
often interpreted as a fraction of the space-time region
occupied by alarms (Kossobokov and Shebalin 2003;
Molchan 2010). Here, it is important to emphasize that
this fraction is given by a referencemodel thatmay depend
on time. Type II error rates are the miss rates ν(A0), the
fraction of target earthquakes that occurred in space-time
bins in which A < A0.
In a Molchan diagram, the (τ , ν) curve constructed for

all A0 values is called the Molchan trajectory (Molchan
1990; Zechar and Jordan 2008). This trajectory runs from
the point (0, 1) to the point (1, 0) for a decreasing A0
value. The diagonal connecting these two points corre-
sponds to an unskilled forecast. Below this diagonal, the
alarm function may bring additional predictive power
(Shebalin et al. 2006) with respect to a given level of sig-
nificance α (Zechar and Jordan 2008, Equations 2 and 3).
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The closer the Molchan trajectory is to the y axis, the
more skill the forecast has. It is often desirable to char-
acterize forecast skills by a scalar value, the so-called
loss function. Examples of loss functions are the mini-
mal summary error (Molchan 1990, max(1 − τ − ν)), the
minimax loss function (Molchan 1990, inf(max(ν, τ))),
the area above the Molchan curve (Zechar and Jordan
2008; 2010), and the maximal probability gain (Aki 1996,
max((1 − ν)/τ)). If there are a large number of target
events, we can also suggest here the target-weighted prob-
ability gain (i.e., max((1 − ν)2/τ)). Note the singularity
at τ = 0 for many of these expressions. Furthermore,
there is always a trade-off between the rates of false
alarms and failures to predict so that the best scalar
value may depend on the goal of the forecast (Molchan
1990). In all cases, one should plot the two-dimensional
Molchan diagram to visualize the vector data that are
processed.

Likelihood tests
Likelihood tests are commonly used to evaluate rate-
based models of seismicity. Their forecasts are tested
against the number ω(x, t) of observed target earthquakes
in each bin (Schorlemmer et al. 2007). For simplicity, indi-
vidual rates are assumed to follow independent Poisson
processes. For all magnitude classes, the complete like-
lihood counts the Poisson joint log-likelihood of the
observed number ω(x, t) given the forecast λ(x, t):

L(t) =
∑

(−λ(x, t) + ω(x, t) log(λ(x, t)) − log(ω(x, t)! ).
(2)

The closer the joint log-likelihood is to zero, the better
the forecast is.
The spatial likelihood is a reduction of the complete

likelihood applied to a forecast with rate value normalized
to match the total observed number of targets (Zechar
et al. 2010a). In each spatial bin, the single rate values are
obtained by summing the expected event rates over the
whole range of magnitudes (Kossobokov 2006). For the
total duration of the experiment, the total sum of log like-
lihoods over all time steps can be calculated and divided
by the total number of observed events to estimate a log
likelihood per earthquake.
Likelihood tests applied to forecasts defined on a high-

density spatial grid are often criticized because of poten-
tial earthquake interactions (Molchan 2012). However,
the problem of bin independence cannot be solved easily
and it is generally thought that the dependence is condi-
tional on earthquake occurrence. For example, we expect
many aftershocks after large earthquakes, but a prospec-
tive forecast experiment requires any interbin dependence

to be provided in advance, before one knows about the
large earthquake (Zechar 2010).

Testing forecast models at CSEP
Likelihood and Molchan tests are complementary and
both can be used to estimate the performance of the fore-
cast models. The likelihood tests, however, do not apply
to nonprobabilistic alarm-based models.
At CSEP testing centers, all the rate-based models are

evaluated by using likelihood tests. In contrast, alarm-
based models are only tested at the California testing
center using Molchan tests and the related ROC and
ASS tests (Zechar and Jordan 2008; Zechar 2010). Unfor-
tunately, alarm- and rate-based models are still tested
independently. The main reason for this is that the like-
lihood tests cannot be applied to an alarm-based model
with a nonprobabilistic alarm function. To address this
problem, Shebalin et al. (2012) proposed a method to
convert alarm-based models to rate-based forecasts. In
addition, two rate-based models can be compared by
using Molchan diagrams. In practice, the complete rate-
based model should be reduced to a single rate value by
summing over a given range of magnitude. The reduced
model can be treated as a rate-based model and/or
as an alarm-based model. Its alarm function is sim-
ply composed of the single rate value in each spatial
cell.
In summary, all requirements are satisfied for system-

atic implementation of both likelihood andMolchan tests.
The next challenge is to identify the regions of particu-
lar skill for each model and combine models in a way that
increases the expected event rates.

A differential probability gain approach for combining two
earthquake forecast models
Here, we generalize the concept of differential probabil-
ity gain to combine different types of earthquake fore-
cast models. The main idea is to successively create new
generations of a rate-based model by injecting into the
current generation the additional information provided
by other input models. In what follows, we describe one
iteration of the combination procedure using a current
model (the initial rate-based forecast model at the first
iteration) and an input model (any type of numerical
forecast model) to compute a new rate-based forecast
model.
The entire procedure is based on the Molchan dia-

gram that evaluates retrospectively the performance of
the input model with respect to the current model. For
this reason, the input model must be expressed through
an alarm function A in each of the considered magnitude
ranges. For example, the alarm function of a rate-based
model may be simply calculated as a sum of the rates over
a magnitude range (Kossobokov 2006).
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In a Molchan diagram, we can define the probability
gain as

Gcurrent
input (A0) = (1 − ν)

τ
=

∑
A0≤A(x,t)

ω(x, t)
∑

A0≤A(x,t)
λ(x, t)

×

∑
λ(x, t)

∑
ω(x, t)

,

(3)

where A0 is the threshold value of the alarm function, and
the sum symbols refer to the space-time regions in which
the subscript condition is satisfied. This G value is a fac-
tor that integrates the increase of the rate of the current
model within the space-time region in which A > A0 (Aki
1981; Molchan 1991; Zechar and Jordan 2008). To iso-
late smaller areas and specific behaviors associated with
different ranges of the alarm function, we work with the
differential probability gain function that can be defined
as the derivative of a continuous Molchan trajectory,

gcurrentinput = −∂ν/∂τ . (4)

With the small samples we have in practice, the Molchan
trajectory is always a steplike function. We smooth this
function using a limited number of segments to avoid
overfitting the differential probability gain function (see
Appendix 1). Finally, for each segment and the corre-
sponding range [A0; A0 + δA0] of alarm function values,
we have a differential probability gain of

gcurrentinput = −	ν/	τ =

∑
A0≤A(x,t)<A0+δA0

ω(x, t)
∑

A0≤A(x,t)<A0+δA0

λ(x, t)
×

∑
λ(x, t)

∑
ω(x, t)

,

(5)

where the sum is taken over to the space-time regions in
which the subscript condition is satisfied. Considering all
segments, we can assign a specific gcurrentinput value to any
A value of the input model. Having done that, we can
produce space-time maps of the differential probability
gain of the input model and combine them with the cur-
rent rate-based model. Then, the next generation of the
rate-based model is defined as

λnew = gcurrentinput (A(x, t))λcurrent, (6)

that is, the initial rates of the current model increase
or decrease according to the local gcurrentinput value. The
gcurrentinput values are always estimated retrospectively over
long times to be used in future applications.
This method of model combination is similar to con-

volving the current model with the input model. For this
reason, in the following, we denote one iteration of this
procedure by

new model = (current model) ∗ (input model).

Results and discussion
Combining Every Earthquake a Precursor According to
Scale and Early Aftershocks Statistics forecast models in
California
The Every Earthquake a Precursor According to Scale
(EEPAS) and Early Aftershocks Statistics (EAST) models
are forecast models installed at the CSEP Testing Center
in California. They are of special interest for this study
because, based upon the joint evaluation using Molchan
tests outside the official CSEP testing process, it was found
that they both yield statistically significant better forecasts
than a Relative Intensity (RI) reference model, a time-
independent model that is commonly used as a reference
model in Molchan tests (Kossobokov and Shebalin 2003;
Helmstetter et al. 2006; Molchan and Keilis–Borok 2008;
Zechar and Jordan 2008).
The EEPAS model (Rhoades and Evison 2004; 2007)

is a medium-term forecast model based on the precur-
sory scale increase phenomenon and associated predic-
tive scaling relations (Evison and Rhoades 2004). In this
model, every earthquake is a precursor according to scale,
with the scale referring to larger earthquakes to follow in
the medium to long term. Then, smaller earthquakes are
‘witnesses’ of the seismogenic process and not ‘actors’ as
in the well-known branching model ETAS (Ogata 1989).
Several versions of the EEPAS model have been used to
generate forecasts of seismicity for the next 3 months.
They have been tested at the California CSEP testing cen-
ter since January 2008. Among the five versions of this
forecast model, we chose the EEPAS-0F model (hence-
forth referred to as simply the EEPAS model) because it
performs the best against the RI reference model.
The EAST model is an alarm-based earthquake fore-

cast model that uses early aftershock statistics (Shebalin
et al. 2011). This model is based on the hypothesis that the
time delay before the onset of the power-law aftershock
decay rate decreases as the level of stress, and the seismo-
genic potential increase (Narteau et al. 2002; 2005; 2008;
Narteau et al. 2009). In contrast to the EEPAS model, the
EAST model is not a model of seismicity rates. Instead, it
possesses a nonprobabilistic alarm function that is dedi-
cated to detecting places with a higher level of stress where
an earthquake is more likely to occur. These zones are
identified by relatively low values of the geometricmean of
elapsed times between mainshocks and early aftershocks.
The three-month class EAST model has been archived at
the California CSEP center since July 2009.
To perform all the likelihood tests for CSEP testing

centers, a rate-based version of the EAST model has
been developed by Shebalin et al. (2012). Here, this new
rate-based model called EASTR can be described as a
combination of EAST (i.e., the input model) and the
RI time-independent reference model (i.e., the current
model). If the new rate-based model performs similarly to
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the initial alarm-based model, its forecast skill is likely to
depend on the conversionmethod. This is also true for the
combining method developed here, especially since it can
be applied to two time-dependent models.
In all our tests, we consider two testing regions: the offi-

cial CSEP California testing region and a subset, with the
idea that the subset will reduce the problem of reduced
earthquake detectability in the ocean and outside the USA
(Shebalin et al. 2011). We also consider a retrospective
period from January 1984 to June 2009 and a quasi-
prospective time period from July 2009 toDecember 2011.
The official CSEP test started on 1 July 1 2009, for the
EAST model and earlier for the EEPAS model, and all
model parameters for EEPAS, EAST, and gEEPASEAST were
fixed beforehand. Note that to set up the EASTmodel and
to calculate the functions gEEPASEAST , we only use the testing
region subset.

Cross-evaluation of earthquake forecast models
To underline how different forecast models may pro-
vide independent information about seismicity, we per-
form a cross-evaluation of the EASTR and EEPAS models
using Molchan diagrams (Figure 1). In both retrospec-
tive (Figure 1a) and quasi-prospective tests (Figure 1b,c),
Molchan trajectories are below the diagonal, indicating
that each model provides a gain in prediction with respect
to the other (see Subsection ‘Molchan tests’). Although at
first glance these results might appear contradictory, we
interpret this as an indication that the EASTR and EEPAS
models are complementary. Because they focus on differ-
ent relevant aspects of seismicity, each of them gives an
additional amount of predictive information.

This complementary nature of two independent mod-
els of seismicity is difficult to detect using likelihood tests
(Table 1). However, we stress the point that it may be an
important property for earthquake forecasting and cer-
tainly the best case to combine two independent models.
Then, the method to combine must preserve the knowl-
edge gain that each model offers.
Here, we use the differential probability gain method to

combine two forecast models. We infer that the increase
in expected rates may be locally high, particularly if sev-
eral models are successively combined. For one iteration,
the combination is driven by the slope of the Molchan tra-
jectories. Therefore, it is ideal to have two models that
are substantially complementary in their forecasts. As
shown by Figure 1, this condition is satisfied by the EAST
and EEPAS models, and their combination may yield new
predictive information on California seismicity.

A combination of EAST and EEPAS forecast models using
differential probability gains
As shown by (Shebalin et al. 2012), there is no significant
difference in the predictive power of the EAST and EASTR
models. Therefore, to avoid potential noise introduced
by the RI reference model or the conversion method, we
combine directly the EAST and EEPAS models. To con-
struct the differential probability gain functions gEEPASEAST ,
we consider the retrospective period and three magnitude
ranges of [4.95; 5.45), [5.45; 5.95), and [5.95;∞). Within
each of those intervals, the combined model inherits the
magnitude distribution of the EEPAS model, which is not
constrained to follow the Gutenberg-Richter relation in
each cell. Figure 2 shows for each interval the Molchan
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Figure 1 Cross-evaluation of the EEPAS and EASTR models in California forM ≥ 4.95 target earthquakes. (a) Retrospective period from
January 1984 to June 2009. (b and c) Quasi-prospective period from July 2009 to December 2011. We consider the entire CSEP testing region in
(b) and a reduced region in (a) and (c) to exclude off-coast and outside USA areas (Shebalin et al. 2011). Using Molchan diagrams, we compare the
forecasts of the EASTR model with respect to the EEPAS model (red lines) and vice versa (blue lines). The dashed diagonal line corresponds to an
unskilled forecast. The shaded area indicates the zone in which the prediction of the tested model outperforms the prediction of the reference
model at a level of significance α = 1%. For both the EEPAS and the EASTR models, we consider single rate values obtained by summing the
expected rates ofM ≥ 4.95 target earthquakes.



Shebalin et al. Earth, Planets and Space 2014, 66:37 Page 6 of 14
http://www.earth-planets-space.com/content/66/1/37

Table 1 Complete and spatial likelihood results for the forecasts

Period Ntargeta EAST ∗ EEPAS EAST + EEPAS EASTR EEPAS RI

Complete likelihood

Jul-Aug 2009 2 −13.62 −15.71 −15.96 −15.58 −18.64

Sep-Dec 2009 2 −17.65 −18.82 −19.42 −18.44 −20.93

Jan-Mar 2010 2 −24.97 −24.56 −26.76 −23.57 −25.17

Apr-Jun 2010 8 −74.79 −76.13 −77.82 −77.35 −81.69

Jul-Aug 2010 2 −14.87 −14.25 −17.47 −16.71 −19.65

Sep-Dec 2010 0 −2.18 −1.88 −1.36 −2.40 −1.78

Jan-Mar 2011 1 −8.22 −7.94 −11.62 −7.70 −11.07

Apr-Jun 2011 1 −12.50 −12.23 −12.12 −12.40 −11.55

Jul-Aug 2011 0 −1.75 −1.74 −1.36 −2.12 −1.78

Sep-Dec 2011 1 −13.48 −12.81 −12.29 −13.41 −11.66

Jul 2009-Dec 2011 19 −184.04 −186.07 −196.17 −189.66 −203.91

Jul 2009-Dec 2011b 14 −137.68 −140.08 −138.63 −146.48 −151.46

Spatial likelihood

Jul-Aug 2009 2 −10.64 −12.45 −12.67 −12.46 −15.15

Sep-Dec 2009 2 −13.44 −13.68 −15.15 −13.15 −15.47

Jan-Mar 2010 2 −16.18 −16.27 −17.76 −15.40 −16.65

Apr-Jun 2010 8 −42.07 −44.76 −45.20 −46.11 −51.93

Jul-Aug 2010 2 −11.49 −10.69 −13.75 −12.81 −15.51

Sep-Dec 2010 0 0.00 0.00 0.00 0.00 0.00

Jan-Mar 2011 1 −6.24 −6.01 −9.84 −5.55 −9.02

Apr-Jun 2011 1 −10.70 −10.42 −10.41 −10.43 −9.72

Jul-Aug 2011 0 0.00 0.00 0.00 0.00 0.00

Sep-Dec 2011 1 −11.64 −10.98 −10.61 −11.36 −9.83

Jul 2009-Dec 2011 19 −122.40 −125.27 −135.39 −127.27 −143.29

Jul 2009-Dec 2011b 14 −88.93 −92.39 −92.45 −96.62 −103.87

aNtarget is the number ofM ≥ 4.95 earthquakes during the indicated periods.
bReduced region to exclude off-coast and outside USA areas. Complete and spatial likelihood results for the forecasts of the EAST∗EEPAS, linear combination
EAST+EEPAS (half and half), EASTR, EEPAS, and RI reference models.

diagrams, their approximation by segments, and the dif-
ferential probability gain functions of the EAST model
with respect to the EEPAS model. We observe that the
gEEPASEAST values are greater than one for almost two orders
of magnitude of the alarm function of the EAST forecast
model (Figure 2d,e,f ).
For three magnitude intervals we use the corresponding

functions gEEPAS
EAST and the rates λEEPAS of the EEPAS model

in Equation 6 to obtain the rates of the new rate-based
model EAST∗EEPAS. Figure 3 shows Molchan diagrams
used to evaluate the forecast of the EAST, EEPAS, and
EAST∗EEPAS models with respect to the RI reference
model during the quasi-prospective period. The compar-
ison of these Molchan trajectories shows that the com-
binedmodel works better than the two initial models from
which it has been derived. This is particularly the case
for the smallest τRI value, for which both initial models

perform better than the RI reference model at a signif-
icance level below α = 1%. Results of total likelihood
and spatial likelihood (Table 1) indicate also a gain of the
EAST∗EEPAS model with respect to the EEPAS model.
Quantitatively, the log-likelihood gain is 0.30 and 0.26 per
earthquake for total and spatial likelihoods, respectively.
With respect to the EASTR model, these gains are 0.34 and
0.43, respectively.
During the quasi-prospective period, many of the tar-

get earthquakes occurred in the ocean or outside the
USA. In those zones, the catalog of M ≥ 1.8 early after-
shocks is incomplete and the alarm function of the EAST
model is less precisely defined (Shebalin et al. 2011). In
the subset of California that we used in the retrospective
analysis, the likelihood gain of the EAST∗EEPAS model
with respect to the EEPAS model is more than 0.5 per
earthquake. The gain with respect to the EASTR model
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Figure 2 Differential probability gain functions for EAST model with respect to EEPASmodel. Estimation of the differential probability gain
functions, gEEPASEAST , of the EAST forecast model with respect to the EEPAS model for California from January 1984 to June 2009. (a, b, and c)Molchan
diagrams, in which we smooth the Molchan trajectory (red line) by a set of segments (black lines; see Appendix 1). The gEEPASEAST value is the local slope
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nonoverlapping magnitude intervals of [ 4.95; 5.45) in (a) and (d), [ 5.45; 5.95) in (b) and (e), and [5.95;∞) in (c) and (f). Note that for (a) and (d), we
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Figure 3 Quasi-prospective evaluation of the EAST∗EEPAS, EASTR, and EEPASmodels. Quasi-prospective evaluation (July 2009 to December
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is smaller, 0.05 for total likelihood and 0.25 for spatial
likelihood.
Figure 4 illustrates how our combining method works

using the outputs of the EAST, EASTR, EEPAS, and
EAST∗EEPAS models for the forecast period from April
to June 2010 along the USA-Mexico border. This space-
time region includes the M 7.2 El Mayor-Cucapah earth-
quake of 4 April 2010. Figure 4a shows the map of
the EAST alarm function values. For rate-base models
(Figure 4b,c,d), the rates are calculated for M ≥ 4.95
events by summation of all model rates in correspond-
ing magnitude bins. All models exhibit a clear maximum
near the epicenter of the El Mayor-Cucapah earthquake.
However, in an area extending northward from this epi-
center, the EAST∗EEPASmodel gives rates that are almost
one order of magnitude larger than the rates of the two
individual models. This example demonstrates that our
combining method sharpens these individual forecasts,
providing higher expected earthquake rates in more con-
fined areas. These local increases of the forecast event
rates are compensated by decreases in other places so
that the total event rate over the whole territory does not
significantly change (see Appendix 2).

Comparing combiningmethods
Using the weighted average of two rate-based models is
straightforward and therefore the most common combin-
ing method (Rhoades and Gerstenberger 2009; Marzocchi
et al. 2012) . In addition, the use of weighted averages
may increase the total predictive skill of the resulting
model by locally giving more importance to high and low
extreme rate values of each model. However, it remains
an averaging method. Then, if the combined model keeps
the total expected earthquake rate (convex combina-
tion) unchanged, local rates cannot be higher (or lower)
than the maximum (minimum) rates of the two mod-
els. One exception is the combination of models that
concentrate on forecasting different seismic patterns (for
example, so-called mainshocks and aftershocks (Rhoades
and Gerstenberger 2009)). In that case, it is not neces-
sary to keep the total rate unchanged, and the combined
rates may exceed the maximum of the two models being
combined.
Here, we compare the EAST∗EEPPAS model to the

EASTR+EEPAS model, the simple average of the EAST
and EEPAS forecast models. Then, using Molchan dia-
grams, we compare the two combined models to the
RI reference model. Figure 5 shows that the forecast
of the EAST∗EEPAS model outperforms the forecast of
the EASTR+EEPAS model, especially for the smallest
τRI value, for which both the EAST and EEPAS models
perform the best.
The results of the likelihood tests are quite different

than those for Molchan diagrams. In fact, if the Molchan

trajectory of a linearly combined model is likely to run
between the trajectories of the initial models, Table 1
shows that the log likelihood for the linearly combined
model is closer to zero than for themodels fromwhich it is
derived. However, the EAST∗EEPAS model again exhibits
better performance than the EASTR+ EEPAS model. The
gain in log likelihood per earthquake is 0.11 for total
likelihood and 0.15 for spatial likelihood. In the reduced
region, the EAST∗EEPPAS performs better than the lin-
early combined model, which now has a score between
that of EEPAS and that of EASTR.
Figure 6a shows the cumulative distribution func-

tions of the rates predicted by the EAST∗EEPAS and
EASTR+EEPAS models. This plot indicates that the
EAST∗EEPAS model explores a much wider range of
values than the EASTR+EEPAS models. In addition, we
observe that more than 50% of target earthquakes occur
for only 2% of the highest rates and that, for these events,
the rates of the EAST∗EEPASmodel are about twice those
of the EASTR+EEPAS model. This difference indicates
that the combination based on differential probability gain
is currently better than a linear combination at increasing
the predicted event rates in the limit of high rate val-
ues. Obviously, the opposite is true in the limit of low
range value. Nevertheless, in this case, both models fail
to predict the target earthquake and a possible gain in
trying to combine them is worth discussing. Simultane-
ously, these results confirm that the only restriction for
performing a combination is the need to use two comple-
mentary forecast models, i.e., two models that ensure a
nontrivial Molchan diagram with respect to one another
(gcurrentinput > 1 in Equation 6).
Figure 6b,c compares the single rate values of the

EAST∗EEPAS and EASTR+EEPAS models in space-time
regions where a target earthquake occurred. In the limit
of high rates, the rate values of the EAST∗EEPAS model
are double those of the EASTR+EEPASmodel (Figure 6b).
This demonstrates that a combination of forecast mod-
els based on differential probability gains can increase
earthquake probabilities in rate-based forecast models.

Conclusions
There are different types of earthquake forecast mod-
els, all of which are related to specific sets of observa-
tions (e.g., catalogs of seismicity, fault maps, strain rates,
and seismic precursors). As illustrated by the outputs of
alarm-based and rate-based models, individual forecasts
may fall into different classes of statistical models. In this
specific context, it is still impossible to combine all types
of forecast using ensemble classification methods. Hence,
we proposed here a practical method to combine forecasts
based on differential probability gains.
This method can be described as an operational device

to identify and join independent sources of information
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Figure 4 Three-month forecasts of EAST, EASTR, EEPAS, and EAST∗EEPASmodels. Three-month forecasts of the EAST (a), EASTR (b), EEPAS (c),
and EAST∗EEPAS (d)models forM ≥ 4.95 earthquakes from April to June 2010 in northern Baja, California along the USA-Mexico border. Blue circles
correspond toM ≥ 4.95 earthquakes that occurred in this area during this period. For the EAST model the color map varies from zero to the
maximum of the alarm function Ea1 (Shebalin et al. 2011). For other models, the same color bar is used to represent the forecast rates ofM ≥ 4.95
earthquakes. Note the higher contrast for the EAST∗EEPAS forecasts and the increase in event rate in zones where both the EASTR and EEPAS
models have high event rates. Straight line is the USA-Mexico border.
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Figure 5 Comparison of forecasts of the EAST∗EEPAS and the EASTR+EEPASmodels using Molchan diagrams. The tests were done in the
entire California CSEP testing region (a) and in a reduced region (b) that does not include off-coast and outside USA areas (Shebalin et al. 2011).
Using Molchan diagrams, we compare the forecasts of the EAST∗EEPAS (black lines) and EASTR+EEPAS (magenta lines) models with respect to the
RI reference model. In the linear combination EASTR+EEPAS, the rates issued from both forecast models have the same weight. The dashed
diagonal line corresponds to an unskilled forecast. The shaded area indicates the zone in which the forecast of the tested model outperforms the
forecast of the reference model at a level of significance α = 1%. For both combined models, we consider single rate values obtained by summing
the expected rates ofM ≥ 4.95 target earthquakes.

related to earthquake phenomena. The quality of the
combined model does not have to depend on causal rela-
tionships between the different models being combined.
Actually, the procedure applies to any forecast models that
have additional forecast skill. Nevertheless, since we can-
not formulate it in terms of traditional classification prob-
lems without a loss of generality, the overall performance
of a combined forecast model can only be established on
purely empirical grounds.

In contrast to linear methods, our procedure does
not average the local expected rates of different models.
Instead, it redistributes in space the rates of the current
model according to the additional knowledge carried by
the input model. Then, as shown by Figure 6, the com-
bined model may cover a larger range of rate values,
especially in the limit of high rates that are critical for
operational forecast. An essential property of this redistri-
bution process is to keep constant the total expected rate
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Figure 6 Expected rate distributions of EAST∗EEPAS and EASTR + EEPASmodels. (a) Cumulative distribution functions of the rate values (black
for EAST∗EEPAS and magenta for EASTR+EEPAS). Note the logarithmic scale. Dots show the rates in the space-time region where target earthquakes
have occurred during the quasi-prospective test from July 2009 to December 2011. Linear-scale (b) and logarithmic-scale (c) rates of the EAST∗EEPAS
model with respect to rates of the EASTR+EEPAS model in space-time regions where target earthquakes have occurred. Open circles correspond to
the entire CSEP testing region; black dots correspond to the reduced region that does not include off-coast and outside USA areas (Shebalin et al.
2011). The x = y line is shown for direct comparison. The curves in (a) are left-truncated at a rate of 10−5 per 3 months. The EAST∗EEPAS model has
remarkably higher rate values in the limit of large rate (b). These higher rates are compensated in the model by lower rates in the limit of small rate.
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of the current rate-basedmodel. This property can be eas-
ily demonstrated from simple geometric considerations
on the smoothed Molchan trajectories (see Appendix 2
and Figure 2). Nevertheless, if this conservation property
is verified for the retrospective period during which the
differential probability functions have been determined,
it may be only approximate during the quasi-prospective
and real-time tests.
The differential probability gain approach can be used

to combine successively different forecast models. How-
ever, each model brings not only additional information
but also some noise. Therefore, changes in the level of
noise must be estimated whenmanymodels are combined
together. In real-time testing, it is practically impossible
to quantify the level of noise in individual models because
the available case histories are always quite short. Accord-
ingly, making theoretical estimates of the overall noise is
not yet possible. Instead, we perform numerical experi-
ments (see Appendix 3). The test shows that even after 10
iterations with highly noisy simulated models, the result
remains quite similar to the original one.
Our combination method is not commutative. To

demonstrate this, we analyze the two combined models
that can be derived from EASTR and EEPAS models. We
note that the two possible combined models are quite
similar. Nevertheless, using Molchan and likelihood tests,
we observe that the EASTR∗EEPAS model performs bet-
ter (and is therefore different) than the EEPAS∗EASTR
model. The difference in log likelihood per earthquake is
about 0.1.
As shown in Figure 2d,e,f, we obtain nonmonotonic dif-

ferential probability functions gEEPASEAST , that is, the highest
alarm function values do not always correspond to the
highest gEEPASEAST values and high peaks may be observed
(Figure 2d). Such cases require special attention. For
example, it might be that the peaks are caused by after-
shocks of a large earthquake. In our particular case, we
checked the time and location of the earthquakes cor-
responding to the peaks and found only one case of
spatial clustering, a swarm of four 4.97 ≤ M ≤ 5.1
events in February 2008 preceded by a M 5.36 event in
May 2006 and followed by a M 4.96 event in November
2008. This sequence took place near the epicenter of the
future M 7.2 El Mayor-Cucapah earthquake of April 4,
2010. All these M ≈ 5 events are associated with a
multiple peak in Figure 2d for AEAST ≈ 2. However,
this specific range of alarm function is also associated
with 13 other target earthquakes. Hence, we infer that a
monotonic character of the differential probability gain
function g is not a necessary condition to combine two
models. The gain functions depend on the choice of the
learning interval. Some stronger smoothing or approxi-
mation might be preferable, particularly for operational
forecasts.

The major difference between Molchan and likelihood
tests resides in the way the rate variable is weighted.
Molchan tests are based on the sum of the expected event
rates, whereas likelihood tests are based on the sum of the
logarithm of these rates. The comparison of Figure 6b,c
illustrates the difference between these two tests:

1. In Molchan diagrams, the relative performance of
two models may be measured by the probability gain
(see Equation 3, Aki (1981), and Molchan (1990)).
For two rate-based models, this probability gain may
also be estimated as the slope of the best-fit line in a
cross-distribution of the rates (i.e., the diagram in
which the rates of one model are plotted with respect
to the other where target earthquakes have
occurred). In Figure 6b, this slope is close to 2. In
addition, we can graphically verify that events at high
rates have more weight than events at small rates in
determining this slope.

2. In likelihood tests, the relative performance of two
models is expressed as the difference of their log
likelihoods per earthquake (Equation 2). If the total
expected rates are the same in both models, this is
equivalent to the average vertical distance to the
diagonal in Figure 6c. In contrast to Aki’s probability
gain (Figure 6b), this averaging gives the same weight
to all rates. As a consequence, positive distances at
high rates and negative distances at low rates cancel
each other out.

This comparison highlights the advantage of our
method based on Molchan tests. Indeed, good forecasts
for low earthquake rates are not as important as for high
rates. In fact, earthquakes occurring in space-time regions
with low expected rates have to be considered as a ‘failure
to forecast’.
The combining method based on differential probabil-

ity gains shows promising results compared to individual
earthquake forecast models and other linear combination
techniques. Overall, this procedure opens new opportuni-
ties for operational forecasting by substantially increasing
the forecast event rates. One can also imagine applying
an iterative application of our method to combine several
forecast models of different types using the differential
probability gain method. At each step, any model that
does not provide additional knowledge with respect to
the current model would be ignored in this combina-
tion. Therefore, the combination will be best if the input
models are constructed from different concepts, data, or
seismic precursors. A potential important research path
would be to extend the scope of the current-generation
earthquake forecast experiments to move beyond testing
various models and begin evaluating different methods of
model combination.



Shebalin et al. Earth, Planets and Space 2014, 66:37 Page 12 of 14
http://www.earth-planets-space.com/content/66/1/37

Appendix 1
Automatic procedure to estimate differential probability
gain functions
Given a finite number N of target earthquakes and the
discretization of space, the Molchan trajectory is a step-
like function. To estimate the differential probability gain
function, we use a procedure that automatically smooths
a Molchan trajectory into Nseg segments. If N ≤ Nseg,
we consider a segment for each step of the Molchan tra-
jectory, and the vertical coordinates of the segments are
i/N with i ∈ {0, 1, . . . , N}. If N > Nseg, we only con-
sider Nseg segments, and the vertical coordinates of the
segments are 	N(Nseg − i)/Nseg
/N with i ∈ [0,N] and
where 	x
 is the largest integer less than or equal to
x. At each step where there is a vertical limit of seg-
ments, the horizontal coordinate of the segments is the
τ value that corresponds to the median of the distribu-
tion of the alarm function value for this step. Everywhere
in this study, we use Nseg = 20 (Figure 2), but we check
the stability of the results for 10 < Nseg < 30. From
our experience, we also infer that there is not a strong
impact of the smoothing method on the result as soon as
Nseg > 10.

Appendix 2
Conservation of the total expected rate in a combining
method using differential probability gains
g(A) is the differential probability gain function of the
Molchan diagram that evaluates the performance on an
input model of alarm function A with respect to a rate-
based forecast model. λcurrent(x, t) are the expected event
rates of this current version of the rate-based model in the
space-time region (x, t). Using our combining method, we
calculate the expected event rates of the new rate-based
model

λnew(x, t) = g(A(x, t))λcurrent(x, t). (7)

To estimate the differential probability gain function,
we smooth the Molchan trajectory using Nseg segments
(see Appendix 1). Let us denote by (τi, νi) and Ai, i ∈
{0, 1, . . . , Nseg}, the segment extremity coordinates and
the corresponding alarm function values of the input
model, respectively. The slope of these segments is the
differential probability gain gi, i ∈ {1, 2, . . . ,Nseg}. By
definition, we have

gi = νi − νi−1
τi − τi−1

. (8)
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Figure 7 Level of noise in combined forecast models using the differential probability gains approach. The EAST∗EEPAS model is
successively combined with 10 random rate-based models forM > 4.95 target earthquakes (see text). (a) Differential probability gain g(A)
estimated during the learning period from January 1984 to June 2009. (b) For the same period, comparison of two consecutive generation forecasts
before and after the 7th iteration using a Molchan diagram. This iteration exhibits the largest deviation from the diagonal. (c) Evaluation of the initial
(black line) and final (red line) generation forecasts with respect to the RI reference model for the testing period from July 2009 to December 2011.
In these Molchan diagrams, the dashed diagonal line corresponds to an unskilled forecast. The shaded area indicates the zone in which the forecast
of the tested model outperforms the forecast of the reference model at a level of significance α = 1%.
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For the current and the new model, we may group the
expected event rates according to the ranges of the input
model alarm function that correspond to the different seg-
ments of the Molchan diagram (Figure 2 and Appendix 1):

λicurrent =
∑

Ai−1<A(x,t)<Ai

λcurrent(x, t),

λinew =
∑

Ai−1<A(x,t)<Ai

λnew(x, t),
(9)

where the sum symbols refer to the space-time regions in
which the subscript condition is satisfied. We define the
total rates of the current and the new models as


current =
Nseg∑

i=1
λicurrent and 
new =

Nseg∑

i=1
λinew.

(10)

For the period in which the differential probability gain
function is estimated, we have

λicurrent = 
current(τi − τi−1). (11)

In that case, using successively Equations 7, 11, and 8, we
obtain


new =
Nseg∑

i=1
giλicurrent = 
current

Nseg∑

i=1
gi(τi − τi−1)

= 
current

Nseg∑

i=1
(νi − νi−1) = 
current.

(12)

For a real-time test or a quasi-prospective test, this
conservation of the total expected rate is approximate.

Appendix 3
The level of noise in combined forecast models
Taking the EAST∗EEPAS model as the initial forecast
model, we study the impact of highly noisy alarm-based
models on the next-generation forecasts (Figure 3a). As
before, we used the period from January 1984 to June
2009 for learning and the period from July 2009 to
December 2011 for testing. For both periods, a single
magnitude interval for target events (M ≥ 4.95), and each
space-time region, we simulate 10 alarm-based models
by drawing random numbers from a uniform distribution
between 0 and 1. Then, we iteratively create the next-
generation forecasts by incorporating the predictive skills
of individual models into the current-generation forecast.
As described in Section ‘A differential probability gain
approach for combining two earthquake forecast models’
and Appendix 1, the g(A(x, t)) values are estimated dur-
ing the learning period (Figure 7a) and then injected into
the current-generation forecasts for both periods. For the
learning period, Figure 7b shows the Molchan diagram

that compares the forecasts before and after the 7th iter-
ation. This iteration exhibits the largest deviation from
the diagonal. For the testing period, Figure 7c shows the
Molchan diagram that evaluates the predictive skills of the
initial and final forecast models with respect to the RI ref-
erence model. We find that even after 10 iterations with
highly noisy simulated models, the result remains quite
similar to the original one. This result is consistent with
all the successive Molchan diagrams, which systemati-
cally show that two consecutive forecasts have no specific
skills with respect to one another. This analysis reveals
that, despite an unavoidable increase of noise, there is
no systematic erosion of the forecast skills of a model
during the combining procedure. Therefore, an obvious
recommendation is to avoid combining weak models.
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