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Abstract

targets that are initially less accessible.

Background: Micro (mi)RNAs comprise a large family of small non-coding RNAs that are thought to regulate a
large fraction of protein-coding genes. Generally, miRNAs downregulate messenger (m)RNA expression by binding
to the 3" untranslated regions (UTRs) of the RNA molecules. An important factor for binding specificity is the
matching in the seed region. In addition, target site accessibility is thought to be crucial for efficient repression of
miRNA targets. Several recent studies indicated that miRNA repression can be facilitated by RNA-binding proteins.
In this study, we examine the conjecture that RNA-binding proteins are involved in ushering miRNAs to bind

Results: We analyzed human 3-UTR sequences containing potential binding sites of 153 conserved miRNA
families, and ranked sequences around the sites according to their miRNA accessibility. By applying a rank-based
motif search tool to these miRNA targets, we found motifs that are enriched among less accessible targets. As
expected from our ranking method, most of the significant motifs were GC-rich. However, one AU-rich motif was
found to be enriched among miR-410 less accessible targets. This motif resembles the Pumilio homolog 1 (PUMT)
consensus binding site. We observed a stronger enrichment of the PUM1 motif in conserved targets than in non-
conserved targets; moreover, the enrichment of this motif was found to be conserved in a subset of placental
mammals. Further, we analyzed publicly available gene expression data, and found that the mutual expression of
PUM1 and miR-410 has a greater negative influence on the expression of low accessibility targets than on other
targets, an effect that was stronger than when considering both miR-410 and PUM1 separately.

Conclusions: Taken together, our findings suggest a cooperative relationship between miR-410 and PUM1 in
regulating human highly structured 3"-UTRs. This kind of cooperation can allow a second level of regulation of
such targets. Considering cases in which miRNAs bind low accessibility targets may help to improve current miRNA
prediction tools and to obtain a better understanding of the mechanisms underlying miRNA regulation activity.

Background

Micro (mi)RNAs are small RNA molecules (approxi-
mately 22 nucleotides) participating in a large variety of
cellular processes in animals, plants and viruses [1-3].
miRNAs act by binding to the 3’-untranslated region
(3-UTR) of messenger (m)RNAs, forming hybrids that
consist of the binding site in the 3’-UTR and of the
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miRNA seed region (positions 2-8 in the miRNA) [4,5].
miRNAs regulate mRNAs through two main mechan-
isms: mRNA degradation and inhibition of mRNA trans-
lation [6]. It has been shown that the match between the
mRNA and the miRNA seed region is important for tar-
get recognition [1,7]. However, the number of nucleo-
tide matches in the seed is not the only factor that
determines site functionality, and other factors such as
site accessibility influence the target recognition [8].
Several recent reports have demonstrated that miRNA
repression can be reversed or modulated by RNA-bind-
ing proteins (RBPs) interacting with the 3’-UTR of tar-
get mRNAs. It was reported that the RNA-binding
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protein ELAVL1 (embryonic lethal abnormal vision-like
protein 1; also known as HuR) reverses miR-122 repres-
sion of SLC7A1 (also known as CAT-1) mRNA in
human hepatocarcinoma cells subjected to stress [9].
This effect on SLC7A1 is mediated by ELAVLI translo-
cation from the nucleus to the cytoplasm upon stress,
and is accompanied by SLC7A1I release from processing
(P) bodies, structures involved in RNA metabolism,
leading to active translation of the message. The process
requires the association of ELAVL1 with AU-rich
sequences in the 3’-UTR region of the SLC7A1 mRNA,
through an as yet unknown mechanism. RBP modula-
tion of miRNA-mediated repression has also been
reported for dead end homolog 1 (DND1). In zebrafish,
it alleviates miR-430 repression of nanosl and tdrd7 in
primordial germ cells [10,11]. DND1 can also relieve the
repression of cyclin-dependent kinase inhibitor 1B
(CDKN1B) mediated by miR-221 and the repression of
LATS2 by miR-372 in HEK293T cells [10]. In zebrafish
and in humans, DNDI1 counteracts miRNA-mediated
repression by binding to uridine-rich regions located
near the miRNA binding sites within the 3’-UTR of the
message. DND1 binding to these sequences might inter-
fere with miRNA-mRNA interaction. Another indication
of the functional relationship between miRNAs and
RBPs was found in the rat hippocampal neurons, for
which treatment with brain-derived neurotrophic factor
(BDNF) was shown to partially relieve miR-134
mediated repression of LimkI [12]. When miRNAs reg-
ulate mRNAs, they are assembled into ribonucleoprotein
complexes known as the miRNA-induced silencing com-
plex (miRISC) [2]. In contrast to ELAVL1, DNDI1 and
BDNF, which relieve the miRNA repressive function,
the TRIM-NHL protein family (NHL-2 in Caenorhabti-
dis elegans [13] and TRIM32 in mouse [14]) increase
the activity of specific miRNAs, including let-7, by bind-
ing to miRISC components.

Pumilio family (PUF) proteins constitute a highly con-
served family of RNA-binding proteins that regulate tar-
get mRNAs via binding to their 3’-UTRs [15]. PUF
proteins are vital in developmental processes, including
stem cell maintenance [16-18]. They are also required
for long-term memory, and control neuron excitability
and development [19-21]. PUF proteins bind specific
RNA sequences in 3’-UTRs that contain a core ‘'UGUR’
tetranucleotide followed by sequences that vary between
members of this family. mRNA-PUF protein complexes
are thought to trigger translational repression or pro-
mote mRNA degradation [22-24]. PUF proteins have
been recently shown to be associated with miRNAs. It
was observed that predicted miRNA binding sites are
enriched among validated PUF targets near PUF-binding
motifs in humans [25]. In C. elegans, the Pumilio homo-
log PUF-9 is suggested to cooperate with let-7 family
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members to repress hbl-1 in the hypodermis and the
ventral nerve cord [26]. This repression requires a
region of the hbl-1 3’-UTR that contains binding sites
for PUF and let-7.

Overall, many examples suggest extensive crosstalk
between RBPs and miRNAs. It is likely that additional
cases of RBPs modulating miRNA interactions exist.
Because efficient repression of miRNA targets is strongly
dependent on site accessibility [8], RNA-binding proteins
might function as ushers that mediate the opening of the
structure, thereby allowing interaction between miRNA
and its low-accessibility targets. In this study, we describe
a computational approach to seeking evidence for such a
mechanism. The approach makes use of a statistical pro-
cess that includes thermodynamics-based ranking. We
highlight one of the cases for which we found significant
evidence. Our findings suggest a cooperative mechanism
associating the RNA-binding protein Pumilio homolog 1
(PUM1) with miR-410 targeting of low-accessibility tar-
get sites in human 3’-UTRs. We found enrichment of the
PUM1 binding motif in less accessible miR-410 targets.
This association between miR-410 and PUML in the con-
text of low-accessibility targets was also significant in
other placental mammals (chimpanzee and horse).
Furthermore, as a sequence-independent test, we ana-
lyzed publicly available gene expression data. We found
an inverse relationship between the mutual expression
profile of PUM1 and miR-410, and between the expres-
sion profiles of the least accessible targets. This inverse
relationship was significantly stronger for the combina-
tion of PUM1 and miR-410 than for each of them sepa-
rately. To summarize, by demonstrating a significant
association between PUMI1 binding sites and highly
structured miR-410 targets, our findings suggest that this
pair of RBP and miRNA may work together to repress
low accessibility targets. Further experiments will be
needed to prove this suggested mechanism.

Results

Our conjecture in this work was that RNA-binding pro-
teins might assist miRNAs in their repression of low-
accessibility miRNA targets, with the RBP binding med-
iating the opening of the secondary structure, thus
allowing the miRNA to access the mRNA. This kind of
cooperation between RBP and miRNA requires a region
of the target 3’-UTR to contain binding sites for both
RBP and miRNA. The approach we developed for the
exploration of such cooperative pairs of RBP and
miRNA is described below.

Approach description

To seek cooperative mechanisms for miRNA activity
from sequence data, we implemented a computational
process as follows (described schematically in Figure 1):
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miR-410 low-accessibility targets.

Figure 1 Identification of motifs enriched among low-accessibility targets of micro (mi)RNA family p: the complete process. Given a
miRNA family and its binding sites in 3'-untranslated regions (predicted by TargetScan), we extracted sequence elements such that the seed
binding site (red V in the figure) was placed in the middle surrounded by 70 base pairs upstream and downstream. We ranked these sequences
according to the global accessibility score of , and searched for enriched motifs. The motif UGUAUAUAU was found to be enriched among
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1) For a given miRNA family y, we obtained all the
conserved predicted targets of y, including positions of
the seed in the 3’-UTR. The predictions were taken
from TargetScan [27-29].

2) For every seed occurrence (red V in Figure 1), we
considered 70 base pairs on each side.

At the end of this step, we obtained a collection of
sequences of length 147 bp with the binding site for p
in the middle, denoted as Sy,..,Sy (.

3) To reduce overlap of sequences, we reduced the
collection containing S;,..,S () using a maximal indepen-
dent set algorithm (see Methods).

We performed this process for every conserved
miRNA family, defined according to [29]. Consequently,
for every conserved miRNA family we obtained a set of
minimally overlapping conserved sequences containing
the predicted target site at the centre of the sequence.
The sequences contained the miRNA seed binding site
surrounded by 140 bases (70 upstream and 70 down-
stream), which is sufficient for a reliable prediction of
local secondary structures [8].

To detect sequence elements playing a role in struc-
ture-driven cooperation with the miRNA of interest
given a target sequence S;, we defined a criterion that
reflects miRNA accessibility to S;. Accessibility is
reflected by the global accessibility score of each
miRNA family to each S;. The score takes into consid-
eration both the accessibility of the entire target
sequence and the local accessibility of the miRNA bind-
ing site (for more details, see Methods). We ranked the
target sequences of the miRNA family according to
miRNA accessibility, with the least accessible targets
located at the top of the list and the more accessible tar-
gets ranked lower in the list. Furthermore, to avoid
motifs that overlap with the miRNA binding site or with
its reverse complement, we masked the miRNA binding
site (located at the centre of the sequence) and the
nucleotides that are predicted to form base pairs with it.
We next sought motifs enriched among the least acces-
sible targets in comparison with the accessible targets.
This was done using DRIM [30], which was adapted for
finding RNA motifs. To reduce the number of false
positive results, we concentrated on relatively long
motifs of length 9 bp.

The Pumilio binding motif is enriched in miR-410 low
accessibility targets

To search for RNA-binding motifs that may be asso-
ciated with low accessibility target sites, we repeated the
process described above for the 153 conserved miRNA
families known for humans [29]. We found 163 enriched
motifs for the 153 miRNA families that passed the mini-
mum hypergeometric (mHG) score threshold of 10
(see Methods). Every motif is associated with a miRNA
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family y, such that it is enriched among the least acces-
sible targets of p. As expected from our accessibility
score and ranking approach, sequences appearing at the
top of the ranked list tended to have greater GC content
than did those located at the bottom of the list (see
Additional file 1, Figure S1). Therefore, we expected to
find enrichment of GC-rich motifs in low-accessibility
targets.

Furthermore, we clustered the identified motifs into
groups based on sequence similarity, considering only
clusters containing > 3 motifs (Figure 2A). As control,
we conducted the process described above for Saccharo-
myces cerevisiae 3’-UTRs, working with human miRNAs
and using a similar number of targets as in humans.
Because the miRNA machinery is not known to exist in
S. cerevisiae, we considered the results we obtained here
as being random (or as negative control). In the S. cere-
visiae control, we found 33 enriched motifs versus 163
motifs in humans (at mHG < 10™*). Clustering the S.
cerevisiae motifs yielded clusters containing only one or
two motifs (see Additional file 1, Figure S2 for the mHG
scores of human motifs versus S. cerevisiae motifs; for
more details on this control, see Methods).

Among the results for humans, we detected one
exceptional cluster having a relatively low GC content
(the multiple sequence alignment for this cluster is
shown in Figure 2B). In this cluster, the motif found for
miR-410 (UGUAUAUAU) contained only one G (11.1%
GC). Interestingly, no motif having such low GC con-
tent was found in the S. cerevisiae control (at mHG
score < 10™*). This motif perfectly contains the consen-
sus binding site of PUM1 and PUM2, which is UGUA-
HAUA [25,31], suggesting an association between the
RNA-binding proteins of the Pumilio family and the
miR-410 low accessibility targets (the motif is shown in
Figure 2C, its enrichment among miR-410 low accessi-
bility targets is illustrated in Figure 2D, and the low
accessibility targets containing the motif are listed in
Table 1; see Additional file 1, Figure S3 for their
structures).

Controls

To further study the proposed association, we con-
ducted a list of control experiments, described below.
Previous studies have shown that miRNA binding sites
are occasionally found in multiple copies in 3’-UTRs
[32,33]. Multiplicity of miRNA binding sites has been
suggested to be correlated with degree of repression.
Because the presence of multiple binding sites of miR-
410 in the 3’-UTRs could influence our results, we
checked whether binding site multiplicity was correlated
with our ranking for miR-410 targets. We found that
miR-410 binding site multiplicity did not correlate with
the accessibility ranking of miR-410 predicted targets
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Figure 2 Clustered motifs found to be enriched among micro (mi)RNA low-accessibility targets in humans. (A) The motifs found to be
enriched among miRNAs low-accessibility targets were clustered according to sequence similarity. Clusters containing at least three motifs are
shown. For each cluster, we calculated the average GC content over all motifs in the cluster. The clusters were sorted according to their GC
content. Note that the GC content axis is variable. (B) The multiple sequence alignment of the motifs belonging to the cluster with the lowest
GC content is shown. For each member of the cluster, the miRNA family for which it was found and the enrichment P value are mentioned. (C)
The logo of the motif enriched among miR-410 least accessible targets is shown. This motif holds the lowest GC content found. (D) On the left,
the occurrences of UGUAUAUAU among miR-410 predicted targets are shown. The targets were ranked according to the miR-410 global
accessibility score. The location of the miRNA binding site is marked with a pink rectangle on the x axis. In the middle, the occurrences vector
plot illustrates the number of motif occurrences in each sequence (black for one occurrence, blue for two occurrences). On the right, the actual
motif accumulated occurrences versus the expected motif accumulated occurrences in a random dataset are shown, highlighting the observed
enrichment. The dashed line (and asterisk) indicates the minimum hypergeometric (mHG) cutoff used for partitioning the sequences into two
subsets (such that the motif is enriched in the upper subset).
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Table 1 MiR-410 low accessibility targets containing the motif UGUAUAUAU

Gene Gene name PANTHER molecular function
symbol
FAM120C Family with sequence similarity 120C Unclassified
Cl4orf102 Chromosome 14 open reading frame 102 Unclassified
NRIP1 B-cell CLL/lymphoma 11B (zinc finger protein) Zinc finger transcription factor Nucleic acid binding
DGKG Diacylglycerol kinase, gamma 90 kDa Kinase
RAI Retinoic acid induced 1 Transcription factor
MCAM Melanoma cell adhesion molecule CAM family adhesion molecule
STARD13 START domain containing 13 Other G-protein modulator
CELSR1 Cadherin, EGF LAG seven-pass G-type receptor 1 (flamingo homolog, G-protein coupled receptor Cadherin
Drosophila)
ZC3H7B Zinc finger CCCH-type containing 7B Nucleic acid binding
NDST1 N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 1 Other transferase
FZD5 Frizzled homolog 5 (Drosophila) Molecular function unclassified
HACET HECT domain and ankyrin repeat containing, E3 ubiquitin protein ligase 1 Ubiquitin-protein ligase
TEC Tec protein tyrosine kinase Non-receptor tyrosine protein kinase
PRRX1 Paired related homeobox 1 Homeobox transcription factor Other DNA-binding

protein

Fourteen genes at the subset of top 105 low accessibility targets contain the motif UGUAUAUAU. Their gene symbols, gene names and PANTHER [49] molecular

functions are shown.

(Pearson correlation coefficient = 0.062), thereby ruling
out multiplicity as a driver for the aforementioned
enrichment (for more details, see Methods).

An alternative explanation for the observed enrich-
ment of the Pumilio motif among low accessibility miR-
410 targets is that Pumilio binding sites are generally
more prevalent in highly folded targets. To test this, we
calculated the enrichment of the Pumilio consensus
motif [25,31] in UTR sequences ranked according to AG
calculated from the predicted secondary structure. Inter-
estingly, we did not observe any enrichment of the
Pumilio motif in highly structured UTRs (P = 0.24 for
the best enrichment among 100 repetitions; for more
details, see Methods). These results reinforce the asso-
ciation between miRNA accessibility and the observed
enrichment of the Pumilio motif in the least accessible
miR-410 targets.

To examine whether Pumilio binding sites are gener-
ally enriched among GC-rich sequences, we ranked the
predicted targets of each miRNA family in our list of
conserved miRNA families according to their GC con-
tent, and recalculated the enrichment of the Pumilio
consensus [25,31]. Among the 153 conserved miRNA
families (including miR-410), the best enrichment found
for the Pumilio motif had a P value of 0.21, thus exclud-
ing this explanation.

Furthermore, as a control for our ranking approach,
we took the 100 least accessible targets and 100 most
accessible targets (of miR-410) and searched for
enriched motifs in each subset, using MEME [34]. We
masked the miRNA binding site and its complement to
avoid enrichment of motifs derived from the miRNA

binding site. In the subset of least accessible targets, the
most enriched motif found was an AU-rich motif that is
similar to the Pumilio motif (its regular expression is
AU[AG][UCJAUAUAUAUAUA; e-value = 1.4 x 107°).
This motif (or any similar motif) was not found for the
subset of accessible targets. Moreover, the best e-value
per motif in the latter subset was 7.3 x 107,

To assess whether the observed association between
the Pumilio motif and the predicted, least accessible
miR-410 sites could reflect a functional relationship
between the RBP and the miRNA, we generated a subset
of predicted miR-410 targets that are evolutionarily con-
served and thus more likely to be functional miR-410
sites [35]. We then compared the enrichment of the
Pumilio motif among predicted targets of human miR-
410 taken from three datasets: conserved targets, targets
with no restriction on conservation, and non-conserved
targets. We found that Pumilio was most significantly
enriched in the conserved dataset (P = 1.57 x 107°),
whereas it was less enriched in both the miR-410 pre-
dicted targets with no restriction on conservation (P =
2.15 x 107®) and in the non-conserved dataset (P = 4.2 x
10°%; for more details, see Methods). The higher enrich-
ment of Pumilio binding sites among the conserved,
least accessible miR-410 targets may indicate that this
association is related to miRNA function.

To further validate that the Pumilio motif is function-
ally related to miR-410, we used TargetScan to predict a
set of miR-410 pseudo-targets (computed based on
sequence match with the miRNA seed) in the 3’-UTRs
of organisms lacking miR-410 (C. elegans) or miRNAs
in general (S. cerevisiae). We then calculated the
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enrichment of the motif among low accessibility targets
for each organism (using broadly the same process
described above). As expected, the Pumilio motif was
not found to be enriched in any of these organisms (S.
cerevisiae: P = 0.35, C. elegans: P = 0.76). Next, we
applied the latter test to placental mammals in which
miR-410 is conserved [29]. For this analysis, we used the
dataset of conserved targets predicted by TargetScan for
chimpanzee, horse and dog. Here, again, the Pumilio
motif was found to be enriched among miR-410 low-
accessibility targets, specifically in chimpanzee (P = 5.28
x 10*) and horse (P = 1.4 x 10°*), but it was only
weakly enriched in dog (P = 3.3 x 107%). It is important
to note that these organisms were chosen because the
sizes of their datasets are very similar to that of the
human dataset, and thus the differences in P values can-
not be due to the size of the datasets.

Additional controls using validated Pumilio targets in
humans

To further investigate the relationship observed between
miR-410 and the Pumilio family and to show its depen-
dence on target accessibility, we used experimental
Pumilio binding data available for humans [25]. We
obtained 3’-UTR sequences of validated Pumilio targets
and ranked them according to their corresponding affi-
nity to Pumilio, as reported previously [25]. We then
calculated the enrichment of the miR-410 binding site
among validated Pumilio targets. The miR-410 binding
site was not found to be enriched among Pumilio tar-
gets (PUM1: P = 0.86, PUM2: P = 0.48). As a control,
we calculated the enrichment of the Pumilio recognition
motif (UGUAHAUA [25,31]) among validated Pumilio
targets, and found it to be strongly enriched among
PUMI targets (P = 2.47 x 10°) and weakly enriched
among PUM2 targets (P = 2.7 x 107%). To summarize,
the analysis presented here demonstrates that the miR-
410 binding motif is not generally enriched in Pumilio
targets (see Additional file 1, Figure S4). These findings
indicate that the observed association of Pumilio and
miR-410 cannot be explained by a general association
between them. They therefore support a more specific
role of Pumilio, closely associated to low-accessibility
miR-410 targets.

Next, we evaluated the association of Pumilio proteins
with other miRNAs in the context of low-accessibility
targets using the knowledge of experimentally validated
Pumilio targets [25]. We used mHG statistics to calcu-
late the enrichment of validated Pumilio targets in the
list of miRNA targets ranked according to global acces-
sibility (see Methods). We did this for all 153 human
miRNA families. Of the 153 experiments, the most sig-
nificant enrichment was found for miR-410 (P = 1.4 x
10%; 14 out of 388 miR-410 targets are validated
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Pumilio targets and all are in the list of the top 251
least accessible targets).

PUM1 cooperation with miR-410 based on gene
expression analysis

The aforementioned experiments suggest the involve-
ment of the Pumilio family in modulating miR-410
repression of low-accessibility targets. In this section, we
used gene expression data (on the NCI60 panel [36,37])
to test PUM1 cooperation with miR-410.

According to the suggested mechanism, two main
observations should hold. First, in the presence of high
levels of PUM1 and miR-410, there should be a stronger
repression effect on the set of least accessible targets
than in the presence of low levels of PUM1 and miR-
410. The set of least accessible targets (see Methods) is
hereby denoted by ®. The difference in the extent of
repression comparing the two states (defined according
to PUM1 and/or miR-410 expression levels) is hereafter
termed as ‘differential repression’. Differential repression
is expected to be more dramatic for @ than it is for
other (more accessible) miR-410 targets. Indeed, the sig-
nificance of differential repression of the least accessible
targets compared with the rest of the targets was 6.9 x
10* (for more details, see Methods). The second
expected observation is that the differential repression
of the least accessible targets, @, versus the rest of the
targets should be less significant than when partitioning
samples according to only miR-410 or only PUMI,
owing to the suggested cooperative interaction. Indeed,
the mutual differential repression was ~25-fold more
significant than when considering only miR-410, and
~10-fold more significant than when considering only
PUM1 (Figure 3, A-C).

To validate that the mutual repressive influence of
PUM1 and miR-410 is related to the low accessibility of
the miRNA targets, we repeated this process 1,000
times, each time for a randomly drawn subset of genes,
@’, taken from the pool of miR-410 predicted targets
(each @’ contains the same number of elements as ®@;
each @’ is disjoint from ®). As shown in Figure 3D, of
the 1,000 experiments, only one result was better than
6.9 x 10™* (P = 3.55 x 107™).

Discussion

The extent to which miRNAs interact with low accessi-
bility targets is not clear, but if such binding takes place
there could be a molecular mechanism allowing the
miRNA to bind highly structured targets, possibly by
involving RNA-binding proteins. To date, there is
increasing evidence for cooperation between miRNAs
and RBPs [9,10,12-14,26]; however, the possible role of
RBPs in facilitating miRNA binding to inaccessible sites
has yet not been examined carefully. In this study, we
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Figure 3 Cooperative repressive influence of PUM1 and miR-410 on least accessible targets. (A) In this test, we compared samples having
high levels of PUM1 and miR-410 expression with samples having low expression, and calculated the degree of differential repression for all
targets. We found that the set of least accessible targets was significantly differentially repressed compared with other targets (P = 6.9 x 10°%).
Note that the expression values of PUM1 and miR-410 are drawn schematically. (B,C) We repeated the test described in (A) but now ignored
PUM1 and miR-410, respectively. In each of these tests, the differential repression of the least accessible targets compared with other targets was
weaker than in (A) (P values obtained are indicated in the figure). (D) We repeated the test described in (A) for 1,000 randomly drawn subsets
instead of the subset of least accessible targets. Each random subset contained the same number of targets as the subset of least accessible
targets and was disjoint from it. The differential repression of 999 subsets was less significant than 6.9 x 107,
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sought sequence motifs that are enriched among
miRNA low-accessibility targets, because these motifs
may point to RNA-binding proteins that take part in
this kind of mechanism. We clustered the motifs found
into groups based on sequence similarity (see Methods).
The cluster containing the motif UGUAUAUAU that
was found for miR-410 (Figure 2B) was exceptional
because of its low average GC content (33%). The above
motif was especially interesting because it is the well-
characterized Pumilio recognition motif [25,31] and was
unusually AU-rich. The other motifs in the cluster com-
prised UG runs known as binding motifs of the hetero-
genous RNP protein trans-activation-response DNA
binding protein (TARDBP; also known as TDP-43) [38].

Testing the enrichment of the Pumilio motif among
miR-410 low-accessibility targets using various controls
strongly supported the conjecture that this association is
related to the miRNA accessibility of the targets. In
addition, the accessibility-dependent association between
PUMI1 and miR-410 was found to be conserved in
humans, chimpanzee and horse, and it was more signifi-
cant in the human conserved dataset than in the human
non-conserved dataset, implying functionality. Moreover,
analyzing publicly available gene expression data
revealed that mutual expression of PUM1 and miR-410
has a greater negative influence on low-accessibility tar-
gets than on other targets. Interestingly, mutual expres-
sion of PUMI1 and miR-410 had a greater negative
influence than did their individual influences separately,
supporting our conjecture that miR-410 and PUM1 act
together, possibly by facilitating the repression of low-
accessibility miR-410 targets.

In a previous study by Fiore et al. [21], it was demon-
strated that the miRNA cluster miR379-410 (containing
miR-410) is transcriptionally activated upon activation
of mouse cortical neurons, and that one component of
this cluster, miR-134, takes part in triggering activation-
dependent dendritogenesis. The latter study further sug-
gests that Pum?2 is a miR-134 target in this process.
Based on the verified cooperation between Pumilio and
the miR379-410 cluster in dendritogenesis, we speculate
that the cooperation between miR-410 and Pumilio sug-
gested in this study might be part of the process regulat-
ing dendritogenesis. Clearly, further experimental assays
should be carried out to validate this observed associa-
tion of miR-410 and PUMI1 in human 3’-UTRs, and to
explain the related mechanisms.

Conclusions

An association between miRNAs and Pumilio was sug-
gested previously [25], based on the observation that
predicted miRNA binding sites are enriched among vali-
dated Pumilio targets near Pumilio binding motifs. In
this work, we did in fact observe an association, specific
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to the context of low accessibility, between Pumilio
binding sites and miR-410 targets. We suggest that
PUMI1 and miR-410 may cooperate in repressing highly
structured targets, allowing a second level of regulation
of these targets. We hypothesized a mechanism in
which PUMI plays a role in ushering miR-410 to highly
structured targets. It is likely that additional pairs of
miRNAs and RBPs, as yet undiscovered, cooperate in a
similar way. Taking into account the possibility that
miRNAs can bind low-accessibility targets with the
assistance of RNA-binding proteins may help in improv-
ing the accuracy of miRNA target prediction tools and
in identifying novel regulatory mechanisms.

Methods

NCI60 dataset

This dataset comprised a panel of 60 cancer-derived cell
lines. For each of the 60 cell lines, we obtained mRNAs
and miRNA expression data from the literature [36,37].

Human validated Pumilio targets dataset

Lists of PUM1 and PUM2 target mRNAs in HeLa S3
cells were obtained [25]. The dataset included gene
information and numerical data related to the measured
affinity between Pumilio proteins and the potential
targets.

Maximal independent set

Given a set of sequence elements S;,..,S;, which are sub-
strings of a gene 3’-UTR, there can be overlap between
sequences. Each S; is associated with two coordinates
that define its start and its end positions in the 3’-UTR.
To reduce overlap between sequences, given S; and S;,
we required that start(S;)+100 be less than or equal to
start(S;) (that is, that the distance between the starts of
every two sequences in the set must be greater than 100
nucleotides). Consider the interval graph [39] G = (V,E),
whose set of vertices is V = {S;,..,S.} and set of edges is
E = {(S;S) | i <j and start(S;)+100 > start(S;)}. Without
loss of generality, the sequences are sorted according to
their starting positions, such that the starting point of S;
is minimal. To find a maximal set of minimally overlap-
ping sequences, we need to find a maximal independent
set in G. Because G is an interval graph, the optimal
solution can be found efficiently [39].

TargetScan

TargetScan predicts the biological targets of miRNAs by
searching for the presence of conserved eight-mer and
seven-mer sites that match the seed region of each
miRNA [27-29]. As an option, non-conserved sites are
also predicted. Sites with mismatches in the seed region
that are compensated for by conserved 3’- pairing are
also identified [29]. We used TargetScanHuman [40],
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which considers matches to annotated human UTRs and
their orthologs.

TargetScan provides a code that enables making cus-
tom predictions of miRNA binding sites for any arbi-
trary given set of syntactically valid sequences. We used
it to obtain predictions in a variety of organisms (such
as S. cerevisiae, even if they lack miRNA activity).

Conserved miRNA families were defined according to
previously published data [29]. They included broadly
conserved families (which are conserved across most
vertebrates, usually as far as zebrafish) and conserved
families (which are conserved across most mammals,
but usually not beyond placental mammals).

RNAfold and miRNA global accessibility score

RNAfold is a software application that predicts the sec-
ondary structures of single-stranded RNA or DNA
sequences [41].

Given a miRNA family p and a target sequence S;, we
defined the miRNA global accessibility criterion for S; as
follows:

+ We calculated the free energy of the entire sequence,
denoted as AG(S)).

+ We calculated the free energy of S; when the area
surrounding the seed binding site is forced to be
unpaired, denoted by AGpaskea(Si)-

» The free energy lost in opening the structure at the
binding site of y in S; was then defined as:

AGopen(si ) = AGall(Si )_AGmasked (Sl )

This number reflects the local accessibility of the
miRNA binding site; the more negative this value, the
greater the energy required for opening the target site
secondary structure.

« The global accessibility of S; to p binding is repre-
sented by:

GA(Si ) = AGopen (Si ) +AGy (Si ) = 2AGy, (Si )_AGmasked (Sl)

It should be noted that to calculate AGskea(Si), given
a sequence S;, we masked the area surrounding the tar-
get site in S; (25 bases in total, with the miRNA binding
site located in the middle) and calculated the free energy
of the modified sequence using RNAfold. Technically,
putting the letter N in any region in a sequence leads
RNAfold to avoid base pairing in that region (see Addi-
tional file 1, Figure S5) and thereby masks the region.

DRIM

DRIM (discovery of rank imbalanced motifs) is a software
application that identifies sequence motifs in lists of
ranked DNA sequences [30], and it has also been adapted
for RNA sequences [42]. DRIM employs a flexible
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threshold statistical approach [30,43] to discover motifs
that are significantly enriched at the top of a ranked list
of sequences compared with the rest of the list.

The motifs returned by DRIM are seed motifs that are
sufficiently significant to be passed as input to the heur-
istic search mechanism of DRIM. The default threshold,
which is also used here, is mHG score = 10™* (motifs
with greater scores are discarded).

S. cerevisiae control

We downloaded 3’-UTR sequences of S. cerevisiae from
the UCSC Table Browser [44] and predicted the (ima-
ginary) binding sites of human miRNA families within
these UTRs using TargetScan script. To allow the same
statistical power as in the human dataset, we used a
similar number of targets per miRNA family for the
tests described in this paper (if there turned out to be
more sequences than needed, we would then filter the
sequences in the middle of the ranked list). The number
of S. cerevisiae targets per miRNA is the same as in
humans, except for sporadic cases in which there are
fewer targets in S. cerevisiae (on average, the difference
between the number of targets in humans and the num-
ber of targets in S. cerevisiae per miRNA is 12).

Procedure for clustering motifs

Given two sequences s = s3,..,8, and t = ty,..t,, the i-level
distance between s and t is defined as i plus the number of
mismatches between the sequences sy,..,S,.; and ti, 1,..,tp.

Given two sequences s = $y,..,8, and t = ty,.,t,, the dis-
tance between s and t is defined as the minimal i-level
distance for i = 0,..,n-1.

Given two sets of sequences C; and C,, we defined
the distance between C; and C, as the average of dis-
tances between every two sequences s and t, such that
seC; and t € C,.

The clustering procedure we applied here is given as
its input a set of sequences to cluster and a parameter
denoted as diameter. It begins with clusters that are sin-
gletons; each sequence is a single cluster. It recursively
merges the pair of closest clusters, and halts when the
distance between the closest clusters is greater than
the diameter given as a parameter. This is a variant of
the nearest neighbour hierarchical clustering approach.

To produce the motif Shannon logo for a cluster, we
calculated the multiple sequence alignment for the
members of the cluster using ClustalW2 [45] and drew
the motif using WebLogo [46].

Multiplicity test

To test whether multiplicity is correlated with our rank-
ing, we counted the number of miRNA binding sites
within each predicted target sequence by counting the
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number of matches of the miRNA seed in the sequence.
In addition to Watson-Crick base pairing, we allowed
wobble base pairs (G-U). We also allowed one mismatch
between the miRNA seed and its binding site and
counted overlapping binding sites.

Testing possible association between Pumilio and AG

To calculate the enrichment of Pumilio in highly folded
targets, we generated 100 sets of UTR sequences and
ranked them according to their AG. The length of the
sequences and the size of each set were the same as for
the miR-410 dataset to allow for the same statistical
power. The UTR sequences in each set were chosen
randomly.

Conservation control

In this control, we used three datasets of miR-410 pre-
dicted targets in humans: conserved targets, non-con-
served targets, and targets with no constraint on
conservation. The conserved predicted targets dataset
and the non-conserved predicted targets dataset were
obtained from TargetScan. For the third dataset, we
downloaded human 3’-UTR sequences from the UCSC
Table Browser [44], and calculated miR-410 targets
within these sequences using TargetScan script. In this
control, as in the S. cerevisiae control, we used the same
number of targets for the three datasets. We calculated
the enrichment of the Pumilio motif among the target
sequences of each set.

Enrichment analysis (using mHG statistics)

An approach has been previously described [30] to iden-
tify the enrichment of a set of genes, A, in a ranked list
of genes using mHG statistics. Given a total number of
genes N, with B of these genes belonging to A, and n of
these genes being in the target set (for example, differ-
entially expressed genes), the probability that b or more
genes from the target set are also in A is given by the
hypergeometric tail (HGT):

n) N-n
min(n,B)

o
P(X2b)= HGTON, B )= Y, :

1)

If a ranked genes list g;,..,gx is provided in place of a
target set, we define a label vector A = A;,...Ax € 0,1
according to the association of the ranked genes to A,
that is, A; = 1 if and only if g; is in A. The mHG score is
then defined as:

mHG(A) = 1r<1311<r[1] HGT(b,(A); N, B,n)
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where

b= 3 4
i=1

In other words, the mHG score is the optimal HGT
probability that is found over all possible partitions
induced by the ranking. As such, this score must be cor-
rected for multiple testing. A dynamic programming
algorithm for computing the exact P value of a given
mHG score has been described previously [30]. More
specifically, given a ranked list of genes, a subset A, and
a corresponding mHG score s, the mHG P value tells us
the exact probability of observing an mHG score s’ < s
under the null assumption that all occurrence configura-
tions of A in the ranked list are equiprobable.

Enrichment of Pumilio experimentally validated targets
among low accessibility miRNA targets

The set of validated Pumilio targets contains 1,482
genes (comprising both PUM1 and PUM2 targets).
Given a miRNA family denoted as y, using the mHG
statistics we calculated the enrichment of Pumilio tar-
gets in the list of p targets ranked according to their
global accessibility scores (such that least accessible tar-
gets are at the top) as follows.

1) We used the list of conserved predicted targets,
S1,--5n ranked according to global accessibility, GA(S;)
of u (the calculation of GA(S;) is described above).

2) We produced a binary vector A(y) as follows:

For each sequence S; in the list of predicted targets for
i Ai(p) = 1 if and only if S; was reported as a Pumilio
validated target and also contained the Pumilio consen-
sus motif (UGUAHAUA [25,31]). We required S; to
contain the Pumilio motif in addition to being a vali-
dated target because Pumilio target genes have been
reported [25] without an indication of where the binding
sites reside in the 3’-UTR. In addition, we required that
the Pumilio binding site did not overlap with the pre-
dicted miRNA binding site or with its complement.

3) We used the mHG statistics on A(p) to calculate
the enrichment of validated Pumilio targets in low-
accessibility targets of p.

Differential expression

To compute the differential expression, we used the
threshold number of misclassifications (TNoM) score
and P value previously described [47].

Samples classification algorithm (used in the gene
expression analysis)

The expression analysis requires having two disjoint
subsets (denoted as A and B) such that A contains the
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samples in which PUM1 and miR-410 are highly
expressed, whereas B contains the samples in which
PUMI1 and miR-410 are expressed at low levels. To
identify an appropriate partition for this purpose, we
performed a class discovery process. Let the vector x =
x1,...%Xn be the expression profile of miR-410 in samples
1,..,N and let the vector y = y;,...,yn be the expression
profile of PUM1 in samples 1,..,N. Because (x;y;) is the
expression of miR-410 and PUM1 in the i*" sample,
respectively, we can define the set P € R” that contains
N points representing the expression of miR-410 and
PUM1 in the N samples.

We sorted P by constructing a two-dimensional k-
dimensional (kd)-tree ([48]) that would follow the sort-
ing order. At the root, we split the set P with a vertical
line into two subsets of roughly equal size. Pjeg, the sub-
set of points to the left or on the splitting line was
stored in the left subtree, and P,igp, the subset to the
right of the splitting line, was stored in the right subtree.
At the left child of the root, we split P into two sub-
sets with a horizontal line: the points below or on it
were stored in the left subtree of the left child and the
points above it were stored in the right subtree. Simi-
larly, the subset P.ig. was split with a horizontal line
into two subsets that were stored in the left and right
subtrees of the right child. At the grandchildren of the
root, we again split with a vertical line. In general, we
split with a vertical line at nodes whose depth was even,
and with a horizontal line at nodes whose depth was
odd. The algorithm terminates when all the subtrees are
leaves. Scanning the leaves from left to right produces
the sorted list.

The construction of the kd-tree uses O(N) storage and
takes O(NlogN) time.

Having the sorted list of points py,..pn, such that p; <
P2 < ... < pn, We defined the following configurations:

N
S, ={(ABy) | Ay ={bn_psrsPn} and B ={py,pp }} k=1,.“,[7J.

Given a figure of merit, we calculated the figure of
merit for all the configurations and took the configura-
tion S, = {A},By} that held the optimal value.

We now explain the figure of merit used in our pro-
cess. Consider a set ® of mRNAs of interest (for exam-
ple, miR-410 least accessible targets). We evaluated the
differential expression of ® due to miR-410 and PUM1
expression levels as follows.

1) Consider a configuration A, B.

2) For every miR-410 predicted target T we calculated
the TNoM P value, measuring whether its expression in
A was lower than its expression in B (termed as the dif-
ferential repression of 1).

3) We ranked miR-410 targets according to their
TNoM P values in increasing order.
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4) We calculated the enrichment of the genes of @ at
the top of this ranked list.

5) Finally, we selected the best configuration A, B
using the enrichment calculated in the previous step as
the figure of merit.

Definition of least accessible targets

Given a list of miRNA targets ranked according to
miRNA accessibility, the set of least accessible targets
(denoted as @) was defined as the top 20% targets of
the ranked list.

Additional material

Additional file 1: Supplemental Figures S1-S5. Supplemental Figure
S1 - Correlation between rank and GC content calculated for the targets
of every micro (mi)RNA family. Supplemental Figure S2 - Minimum
hypergeometric (mHG) scores of human motifs versus mHG scores of
Saccharomyces cerevisiae motifs. Supplemental Figure S3 - Predicted
structures of selected mRNA targets. Supplemental Figure S4 - The
enrichment of the Pumilio binding motif versus the enrichment of the
miR-410 binding motif in validated Pumilio targets. Supplemental Figure
S5 - lllustration of masking a region in a sequence.
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