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Abstract

Background: Quantitative structure-activity (QSAR) models have enormous potential for reducing drug discovery
and development costs as well as the need for animal testing. Great strides have been made in estimating their
overall reliability, but to fully realize that potential, researchers and regulators need to know how confident they
can be in individual predictions.

Results: Submodels in an ensemble model which have been trained on different subsets of a shared training pool
represent multiple samples of the model space, and the degree of agreement among them contains information
on the reliability of ensemble predictions. For artificial neural network ensembles (ANNEs) using two different
methods for determining ensemble classification – one using vote tallies and the other averaging individual
network outputs – we have found that the distribution of predictions across positive vote tallies can be reasonably
well-modeled as a beta binomial distribution, as can the distribution of errors. Together, these two distributions can
be used to estimate the probability that a given predictive classification will be in error. Large data sets comprised
of logP, Ames mutagenicity, and CYP2D6 inhibition data are used to illustrate and validate the method. The
distributions of predictions and errors for the training pool accurately predicted the distribution of predictions and
errors for large external validation sets, even when the number of positive and negative examples in the training
pool were not balanced. Moreover, the likelihood of a given compound being prospectively misclassified as a
function of the degree of consensus between networks in the ensemble could in most cases be estimated
accurately from the fitted beta binomial distributions for the training pool.

Conclusions: Confidence in an individual predictive classification by an ensemble model can be accurately
assessed by examining the distributions of predictions and errors as a function of the degree of agreement among
the constituent submodels. Further, ensemble uncertainty estimation can often be improved by adjusting the
voting or classification threshold based on the parameters of the error distribution. Finally, the profiles for models
whose predictive uncertainty estimates are not reliable provide clues to that effect without the need for
comparison to an external test set.

Keywords: Artificial neural network ensemble, ANNE, Classification, Confidence, Error estimation, Predictive value,
QSAR, Uncertainty
Background
Drug discovery and development is an expensive business
and its costs continue to rise. Exploitation of quantitative
structure activity relationships (QSARs) and related in
silico methods have the potential to speed development
and reduce costs considerably, and regulatory agencies
have expressed support for doing so [1-3]. Considerable
progress has been made in recent years on assessing the
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overall predictive reliability of QSAR models, but research
and regulatory applications both require good ways to esti-
mate the accuracy of individual predictions. Considerable
work has been done on ways to identify compounds for
which predictions are unlikely to be reliable – i.e., on
applicability domains [4-6] and on quantitative estima-
tions of uncertainty for regression models [4,7-13]. Some
prior work has made use of ensemble variance for categor-
ical estimation of confidence [14,15]. To our knowledge,
however, the degree of ensemble consensus in terms of
votes has not been utilized to make quantitative estimates
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of predictive classification uncertainty for individual
predictions.
A key first step on the path to successfully exploiting

ensemble variance for classification error analysis was to
move away from the traditional truth table assessment
of classification performance based on four classes of
predictive outcome – true positives, true negatives, false
positives and false negatives – and to look instead at
distributions of predictions and errors as a function of
the level of consensus among the individual submodels
making up the ensemble. In particular, we investigated
how predictive classification error rates (errors/predic-
tion) relate to the number of positive “votes” obtained
from an ensemble model composed of artificial neural
networks [16] – e.g., classification ANNEs generated by
the ADMET Modeler™ module of ADMET Predictor™ –
each of which is trained on a different subset of a shared
training pool. If each network were fully independent
and had the same probability p of misclassifying a com-
pound, the contingent probability P that k of K networks
in an ensemble will mistakenly assign a “negative” com-
pound to the “positive” class or a “positive” compound to
the “negative class” would be expected to follow a bino-
mial distribution:

P kjK ; pð Þ ¼ K
k

� �
pk 1−pð ÞK−k ð1Þ

Such a scheme was explored (data not shown), but
proved unsatisfactory. In retrospect, this is not sur-
prising, since the networks are not independent and
have different probabilities of making an erroneous
prediction for different compounds. When such “over-
disperse” distributions are encountered in biometrics
problems, researchers have found beta binomial distri-
butions (BB) useful [17-19]:

BB kjK ; α; βð Þ ¼ K
k

� �
B k þ α;K−k þ βð Þ

B α; βð Þ ð2Þ

Here, B is the beta function:

B α; βð Þ ¼ Γ αð ÞΓ βð Þ
Γ αþ βð Þ ð3Þ

where Γ xð Þ is the gamma function [20], which is a con-
tinuous extension of the factorial (Γ(n + 1) = n !). Unlike
the binomial distribution, the beta binomial can be con-
vex as well as concave. The former is the case for α < 1
and β < 1 whereas the latter holds for α > 1 and β > 1.
When α = β = 1, the beta binomial distribution reduces
to the discrete uniform distribution on the interval 0
to K.
We attempted to fit beta binomial distributions to

uncertainty profiles (i.e., the misclassification or error
rate as a function of the number of K networks making
k positive votes for a given compound) directly but the
results were not satisfactory. On the other hand, separate
beta binomials fit distributions of ensemble predictions
and error counts for the training pool reasonably well.
This is not altogether surprising, since both distributions
result from a series of K events that are related but not
independent. There are two possible outcomes in both
cases: “the compound in question is a positive or a
negative” for predictions and “the prediction is correct
or incorrect” for errors. What is somewhat surprising is
that the distributions fitted to the training pool match
the corresponding distributions seen for large external
validation sets as well.
The distributions of votes and errors can then be

combined to yield an ensemble uncertainty profile using
a method rooted in elementary probability theory. Let
P(ε|k) be the probability that a given prediction is in
error given that it receives k positive votes, which we
equate with the predictive uncertainty of the classifi-
cation. Let P(k|ε) be the probability that a prediction re-
ceives k positive votes given that it is erroneous
(misclassified). Finally, let P(ε) be the overall probability
that a prediction is in error and let P(k) represent the
probability that a prediction receives k positive votes.
Application of Bayes’ theorem yields:

P ε kÞP kð Þ ¼ P k εÞP εð Þjðjð ð4Þ

To distinguish between underlying population distri-
butions and estimated distributions fitted to samples,
we introduce the following notation. Let φ(k) represent
our estimate of P(k), the probability distribution of
positive vote tallies across all predictions or simply the
“prediction distribution”. Let ε(k) represent our esti-
mate of P(k|ε), the probability distribution of all mis-
classified predictions as a function of k, which we refer
to as the “error distribution”. P(ε|k) is the probability of
an error in classification (i.e., the uncertainty of a pre-
diction) that receives k positive votes; our estimate of it
will be represented by u(k) and referred to as the uncer-
tainty profile or distribution.
Finally, P(ε) is the overall probability of an error or

simply the misclassification rate (MR) of the model. Our
estimate of the uncertainty of a prediction receiving k
votes is then given by:

u kð Þ ¼ MR � ε kð Þ=ϕ kð Þ ð5Þ

MR is obtained from the overall misclassification rate
(i.e., overall number of incorrect predictions divided by
the total number of predictions) for the training pool,
and ε(k) and φ(k) are estimated by fitting beta binomial
distributions to the training pool errors and predictions,
respectively, as functions of k.
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Our protocol for vote-based ensemble classifications
can be summarized by the following:

1. Build an ensemble of K submodels.
2. Establish a classification threshold for each

submodel that determines its vote.
3. Tally the number of positive votes k for each

prediction.
4. Establish a decision rule for the ensemble.
5. Classify each ensemble prediction for the training

pool as being correct or incorrect.
6. Count the number of errors for each vote tally k.
7. Add a continuity correction to the count for each

tally by adding 1 to each prediction tally and adding
0.5 to each error count.

8. Find the alpha and beta parameters of a beta
binomial distribution, φ(k), that best matches the
cumulative voting distribution as a function of k by
minimizing the Kolmogorov-Smirnov (K-S) statistic
[21] between the observed and beta binomial
distributions.

9. Find the optimal beta binomial distribution, ε(k),
that best matches the observed distribution of the
errors by similarly minimizing the K-S statistic
between the cumulative distributions.

10. Estimate the uncertainty distribution as
u(k) =MR*ε(k)/φ(k).

The remainder of this paper is devoted to showing ap-
plications of this protocol to data sets of varying quality
and showing the influence of imbalances in class size.
Most of the examples described involve models where
the ensemble decision is determined by voting: decision
thresholds are established independently for each network
and the classification “votes” that result are tallied to de-
termine the ensemble classification. For unbalanced data
sets, resetting the ensemble voting threshold to match the
mean of ε(k) may substantially improve the overall balance
between specificity and sensitivity.
One application makes use of an alternative method in

which individual network outputs are averaged and com-
pared to an aggregate classification threshold. In such
cases, the model benefits from resetting the threshold to
the geometric mean of the averaged threshold and the
mean of ε(k). Working with large validation sets proved
essential to getting good enough sampling of errors to
meaningfully assess how well our uncertainty estimation
method works. Typically, the numbers of predictions and
errors receiving k votes is small for intermediate values of
k (i.e., those not near the extremes of 0 and K), which can
result in low counts in this region unless the validation
set is comprised of thousands of compounds. This is es-
pecially true for good models. The desire to maximize
the size of the validation set to minimize the effects of
noise in assessing the performance of the model led us
to use an unusually small fraction of the available data
to train the models – 10 to 30% instead of the typical 80
to 90%. It also helped to demonstrate that the method-
ology does not require large training sets to work.
Note that though the examples examined here all in-

volve artificial neural network ensembles, the algorithm
above is cast in more general terms: we expect the
method to be applicable to any ensemble of reasonably
robust submodels, regardless of their source.

Results and discussion
Balanced data sets
S+logP is the ANNE regression model for octanol:water
partition coefficient provided in ADMET Predictor [22].
Its excellent performance in third-party evaluations
[23,24] reflects the high quality of the large (12,580 com-
pound), heavily curated data set upon which it is based.
For our first example, that data set was split roughly in
half for classification purposes by categorizing compounds
having log P ≥ 2.0 as “positive” and those having log
P < 2.0 as “negative”. Doing so yielded data set “logP2”,
which was comprised of 5946 positives and 6634 nega-
tives. The bulk (90%) of the data was set aside for use as
an external validation set and was not used or referred to
in any way for model building.
The remaining 10% of the data set was used to cre-

ate artificial neural network ensemble classification
models (ANNEs), each made up of 33 individual net-
works. All networks in an ensemble have the same
architecture (same number of neurons and descriptor
inputs) but are trained with different subsets of the
shared training pool. Details of the model construction
are provided in the Methods section, but they are un-
likely to affect the general phenomena and conclusions
discussed herein.
Figure 1 compares the distribution of erroneous pre-

dictions in the target space (i.e., as a function of logP
values) with the entire logP distribution for one such
model, logP2-1. The error scale at the right in Figure 1
is doubled (relative to the scale on the left) to highlight
the fact that the uncertainty is very close to 0.5 at the as-
signment threshold of logP = 2.0; the model is simply
guessing at that point. The number of misclassified com-
pounds falls off sharply for logP to either side of that
threshold. Indeed, there is a finite experimental uncer-
tainty (generally about 0.2 in the vicinity of observations
for which logP ≈ 2) in the experimental determination of
logP, so some of the nominal misclassifications are for
compounds that are actually miscategorized in the data
set itself. A “false negative” with a data set entry for logP
of 2.03, for example, may have a “true” logP value of
1.98, which would make it a false false negative. There
will, however, be a similar number of cases in which a



Figure 1 Distribution of classification errors for the logP2 data
set. Observed logP values for compounds in the data set were
binned at intervals of 0.1 and counts within each bin are
represented by the blue curve. Data for compounds with logP
values below −4 are omitted for clarity, as are those above 8. The
distribution of logP values for compounds misclassified by model
logP2-1 is shown in red. Note that the scale for error counts is given
at the right of the figure and is magnified by a factor of 2.
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compound miscategorized in the data set is misclassified
by the model, so the overall uncertainty is close to 0.5 at
the threshold itself.
The distribution of errors is only roughly symmetrical

in this case, in part because the distribution of observed
logP values is not quite symmetrical and in part because
the positive examples appear to be slightly harder to
learn. This is reflected in the difference between the
Table 1 Performance statistics for the models described here

Data set Model Architect.b Threshold Sensitiv

logP2 1 33×6×40 16.5 0.849

2 33×3×45 16.5 0.861

Ames 1 33×2×26 16.5 0.791

2 33×4×24 16.5 0.700

logP3 1a 33×4×44 16.5 0.882

1b 33×4×44 24.5 0.840

2a 75×4×42 37.5 0.889

2b 75x4x42 53.5 0.858

CYP2D6 1a 33×3×35 16.5 0.721

1b 33×3×35 27.5 0.604

logP3 3ae 33×3×24e 16.2 0.874

3b 33×3×24 20.3 0.862
aPerformance statistics are for compounds in the validation set. Beta binomial param
misclassifications. b“Architect”. indicates the network architecture, given as network
specificity – 1. d“MR” is the misclassification rate for the training pool. eBoldface na
determined using the averaging method.
validation set sensitivity (0.849) and specificity (0.882)
shown for model logP2-1 in Table 1. The former is the
fraction of positives correctly classified as such, whereas
the latter is the fraction of negatives classified correctly.
Figure 2A shows the distribution of predictions and er-

rors as a function of the tally of positive network votes
along with curves for the corresponding fitted beta bino-
mial distributions. The default (naïve) voting threshold
used to determine the output classification is simple ma-
jority rule: if more than half of the network votes are
positive (k > 16.5), the compound in question is classified
as a positive; otherwise, it is classified as a negative. True
and false negatives lie to the left of the threshold,
whereas true and false positives lie to the right of the
threshold. Figure 2B shows the observed error rate along
with the estimated uncertainty profile calculated from
the fitted beta binomials in Figure 2A; it is not fitted to
the observed error rate profile.
There are several things to note about Figure 2A. The

first is that the scale on the vertical axis is logarithmic.
Most networks agree on most predictions and, where
they all agree, the consensus prediction is correct nearly
all of the time. Though most errors lie at the extremes
of the plot where ensemble consensus is high, the number
of predictions there is even higher, so the uncertainty
(error rate) is low.
Secondly, the data are very noisy at intermediate

values of k because the sampling rate is low. The stand-
ard error of a rare event count is equal to its square
root, so the relative standard error is large for counts
below 10. As a result of the noisy data and low sampling
counts, all that can be claimed for the training pool is
that the uncertainty profile calculated from the training
pool prediction and error beta binomials is consistent
and their beta binomial parametersa

ity Specificity Jc α β MRd

0.882 0.731 0.695c 0.772 0.083

0.857 0.718 0.635 0.571 0.087

0.596 0.387 0.926 0.537 0.222

0.676 0.376 0.489 0.462 0.239

0.892 0.774 1.229 0.469 0.077

0.921 0.761 0.925 0.323 0.066

0.885 0.775 1.163 0.472 0.089

0.910 0.768 1.037 0.415 0.083

0.789 0.510 1.561 0.447 0.211

0.873 0.476 1.350 0.294 0.164

0.862 0.736 0.891 0.263 0.095

0.874 0.742 0.690 0.306 0.096

eters shown are those obtained by fitting to the distribution of training pool
s × neurons × inputs. cJ is Youden’s index [28], which is equal to sensitivity +
mes and architectures indicate models in which ensemble classifications were



Figure 2 Estimating the uncertainty profile for the logP2 data set. The model shown (logP2-1) has six hidden neurons and uses 40 structural
descriptors as input. The voting thresholds (indicated by the vertical black dotted lines) was 16.5. The horizontal dotted lines running across the
thresholds indicate where an error rate of 0.5 would fall. Error counts include a continuity correction of 0.5 (see text for details). (A) Distribution of
predictions (blue) and errors (red) for the training pool, with fitted beta binomial distributions shown as dashed lines. (B) Distribution of observed error
rates (red symbols) for the training pool and the uncertainty calculated from the fitted prediction and error beta binomials (dashed black line).
(C) Distribution of predictions (blue) and errors (red) for the external validation set. Dashed lines represent the fitted beta binomial distributions for the
corresponding training pool results, scaled to account for the larger size (10x) of the validation set. (D) Observed (red symbols) error rate profile for the
validation set and uncertainty profile (dashed black line) estimated using the beta binomials fitted to the training pool.
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with what is actually observed. Note, too, that this
“calculated uncertainty profile” crosses the ensemble
voting threshold just below the theoretical threshold
error rate of 0.5 (indicated by the horizontal dotted
line in Figure 2B).
Finally, a continuity correction of 0.5 [25] has been

applied to all error counts in Figure 2. This addresses a
fundamental disconnect: the counts are integers, whereas
the beta binomial probabilities to which we are fitting
them can take on any value between 0 and 1. Hence un-
corrected counts from finite samples can lead to poor
estimates for the actual distribution parameters, espe-
cially when the expected number of errors (ε(k)*N) for a
particular value of k is low. The error rate when there is
only one prediction, for example, is 0.0 if the prediction
in question is correct and 1.0 if it is not, and neither
proportion is likely to be a good estimate of the uncer-
tainty. Indeed, in the extreme case where there are no
training pool predictions at all – erroneous or otherwise –
the uncorrected error rate is equal to 0/0, which is in-
determinate. This problem is often encountered when
estimating frequencies of rare events, and adding a
continuity correction of 0.5 is a standard way to deal
with it [25]. A complementary continuity correction of
1 was added to each prediction count, yielding a
Figure 3 Variability of calculated uncertainty profiles. Model logP2-2 u
threshold (indicated by the vertical black dotted line) was 16.5. The horizon
rate of 0.5 would fall. (A) Distribution of predictions (blue) and errors (red)
binomial distributions for the corresponding training pool results. (B) Obse
uncertainty profile (dashed black curve) calculated from the prediction and
sample error rate of 0.5 for values of k for which the
training pool contains no predictions at all.
Figures 2C and D show the distribution of predic-

tions and errors and of error rates for compounds in
the external validation set along with the beta binomial
distributions and uncertainty profiles generated using
the distribution parameters derived from fitting to the
training pool results. The deviations observed are small
in both figures, remarkably so for the validation set’s
error rate profile (Figure 2D). That the error rate for
the validation set tracks the uncertainty profile calcu-
lated from the training pool data more closely than the
training pool’s own error rate tracks it is due in large
part to the validation set having ten times as many ob-
servations, which significantly reduces the noise. Note
that the observed error rate is again quite close to 0.5
at the ensemble voting threshold of 16.5 (Figure 2D).
Figure 3 shows validation set profiles for a different

model (logP2-2). This model was generated using a dif-
ferent random number seed, which results in different
training pool splits and different initial neural network
weights. Not surprisingly, validation set performance
statistics for the two models are similar, although the
network architectures differ (Table 1). Note, however,
that the specificity for logP2-2 is slightly lower than that
ses three hidden neurons and 45 descriptors as input. The voting
tal dotted lines running across the thresholds indicate where an error
for the external validation set. Dashed lines represent the fitted beta
rved (red symbols) error rate profile for the validation set and
error distributions fitted to the training pool.
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for logP2-1 (0.857 vs. 0.882; Table 1), which is reflected
in more false positives in the test set (errors to the right
of the voting threshold of 16.5) for the former. Its ob-
served error rate profile is shifted slightly to the right,
just as the lowered value of β shifts the predicted uncer-
tainty profile to the right (Figure 3B vs Figure 2D).
The Ames mutagenicity data set (taken from the pub-

licly available compilation by Hansen et al. [26]) repre-
sents a more “real world” classification problem than the
logP2 data set. The authors compiled it with admirable
care, but the data set can at best be categorized as
medium quality, given that variability between laborator-
ies limits the reproducibility of the underlying assay to
only about 85% [26,27]. Here, too negatives are roughly
balanced with positives and about 10% of the data set
was allocated to the training pool.
Figure 4 shows results for two models – Ames-1

(Figure 4A and B) and Ames-2 (Figure 4C and D) –
obtained with different random number seeds. The
statistics for both (Table 1) are inferior to the model
performances reported by Hansen et al. [26], but that
is to be expected given the much smaller training set used
here. Nevertheless, estimating the reliability of confidence
estimates for relatively weak models is perhaps an even
more critical need than making such estimates for models
with strong performance statistics.
Ames-1 does a good job of predicting uncertainties at

intermediate vote tallies, but underestimates errors
somewhat at the extremes. Having some errors at the
extremes is consistent with the rather modest historical
accuracy rate of 85% for the Ames assay. The fact that
most or all of the networks agree on how these com-
pounds should be classified, however, suggests that some
of them may be miscategorized due to mistakes in the
literature occurring in the course of publication and
subsequent data compilation – i.e., that a number of the
misclassifications may in fact be false false negatives. We
have found confidence analysis of the sort described here
a valuable tool for identifying such potential errors in
data sets.
Ames-2 does a better job of matching the observed

error rates at the extremes, but consistently underesti-
mates them (and therefore overestimates confidence in
the predictions) at intermediate levels of consensus.
These may well be compounds that are borderline in
their mutagenicity, but the practical outcome with re-
spect to the reliability of confidence estimates is the
same: the profile is less useful than it could be for confi-
dence estimation.
Fortunately, Ames-2 provides a clue to its weakness

even in the absence of any external validation set, in that
its calculated uncertainty profile crosses the voting
threshold well below 0.5 – below 0.4, in fact (Figure 4D).
To appreciate why this is indicative of a problem,
consider a compound receiving a number of positive
votes just above or below the voting threshold. A small
change in the properties reflected by the model descrip-
tors could flip it from being correctly classified to being
misclassified. There has to be a point between the ex-
tremes where the threshold is perfectly placed, but as
that point is approached, the prediction becomes a guess
(at best) and the expected uncertainty will converge to 0.5
(or higher) at the threshold. The fact that the predicted
uncertainties at the voting threshold are reasonably close
to 0.5 for Ames-1 (Figure 4B) and for the logP2 models
described above (Figures 2 and 3) is consistent with their
confidence estimations being reliable.
The central flattening evident in Figure 4D, in con-

trast, should be taken as a warning flag. The associated
model itself (as opposed to the uncertainty estimate)
need not necessarily be discarded, however, especially if
it is a case of the profile being distorted by undersam-
pling of the error distribution. When this occurs, it may
be preferable to provide aggregate class confidences –
i.e., positive and negative predictive values – in lieu of
individual confidence estimates.

Unbalanced data sets
Data sets in which there are many more observations
in one class than another are problematic for many
classification methods. Rather than trying to balance
the training pool (e.g., by undersampling the larger
class), ADMET Modeler addresses such imbalances by
scaling the terms in the objective function by class size
and by relying on Youden’s index J [28] to set classifi-
cation thresholds (see Methods for details). Doing so
provides robust performance statistics across a wide
range of data sets, but can complicate confidence esti-
mation. To illustrate, an imbalanced logP data set was
created by categorizing compounds having log P ≥ 3.0
as “positive” and those having logP < 3.0 as “negative”.
Doing so yielded a high-quality data set (logP3) comprised
of 3161 positives and 9419 negatives, by coincidence a
ratio just over 1:3. The fraction used as the training pool
was increased from 10% to 15% to offset the reduced
number of positive examples.
Model logP3-1a was built using 33 networks and the

naïve majority-voting rule – i.e., with a voting threshold
of 16.5. The results are shown in Figures 5A and B for
the training pool prediction and error distributions along
with their fitted beta binomial distributions. There is a
notable stretch of tallies to the right of the threshold
(enclosed by the gray box in Figure 5A) for which the
prediction and error counts are nearly equal. This repre-
sents a very high error rate across a range that contains
only a few positive observations, as well as a sharp dis-
continuity in the error rate at the threshold (Figure 5B).
This suggests that the model could be improved by



Figure 4 Estimating the uncertainty profile for the Ames data set. The validation set results shown in panels A and B are for a model
(Ames-1) having two hidden neurons and 26 descriptors as input, whereas the results shown in panels C and D are for a model (Ames-2) having
four hidden neurons and taking 24 descriptors as input. Different random number seeds were used to split the respective training pools into
training and test sets and to initialize the individual ANN weights. The voting threshold for both (indicated by vertical black dotted lines) was
16.5. (A and C) Distribution of predictions (blue) and errors (red) for the external validation set. Dashed lines represent the fitted beta binomial
distributions obtained from the corresponding training pool results. (B and D) Observed (red line) error rate profile for the validation set and
predicted uncertainty profile (dashed black line) based on the training pool.
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Figure 5 Adjusting the voting threshold for an unbalanced logP data set. The vertical dotted lines indicate the applicable voting thresholds.
(A) Training pool distribution of predictions (blue lines) and errors (red lines) for Model logP3-1a, for which the naïve majority rules threshold of
16.5 was used. Observed distributions are represented by the solid lines and fitted beta binomials by dashed lines. (B) Observed and predicted
error rate distributions for Model logP3-1a. The red line represents the observed values and the dashed black line represents the predicted profile
calculated from the beta binomials shown in panel A. (C) Training pool distribution of predictions (blue) and errors (green) for Model logP3-1b,
for which the voting threshold was shifted to 24.5. Observed distributions are represented by solid lines and fitted beta binomials by dashed lines.
(D) Observed and predicted training set error rate distributions for Model logP3-1b. The green line represents the observed values and the
dashed black line represents the predicted profile calculated from the fitted beta binomials in panel C.
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shifting the voting threshold to the right, i.e., to a
higher tally. We have found that the error beta bino-
mial distribution’s mean (given by α/(α + β)) provides a
good alternative threshold that consistently improves
specificity without undue loss of sensitivity (or vice
versa, when the positive class is larger)a. Keeping the
same networks as in model logP3-1a, but refining the
model by shifting the voting threshold to the beta bi-
nomial mean, produces model logP3-1bb. The effect of
the shift is shown in Figures 5C and D, along with the
refitted error beta binomial and the refined uncertainty
profile. Note that shifting the voting threshold has no
effect on the distribution of predictions; which is deter-
mined by the classification thresholds for the individ-
ual networks, which do not change. The sensitivity and
overall misclassification rate drop somewhat while the
specificity increases (Table 1).
Figure 6 shows the effect of shifting the voting threshold

on validation set performance: the fit to the errors to the
left of the threshold (the false negatives) is greatly im-
proved, and the size of the discontinuity in the error rate
profile is attenuated. The naïve calculated uncertainty
Figure 6 Effect of model refinement on error distributions and uncer
(for which the naive 50% voting threshold was used) is shown in red and t
voting threshold to 24.5) is shown in green. The corresponding thresholds
dashed lines. The distribution of predictions for both models and its fitted
respectively. (B) The calculated uncertainties and observed error rates for m
Observed and predicted error rates are represented by solid lines and dash
profile that was obtained by using the refined uncertainty profile below th
profile (the red dashed line in Figure 6B) is in good
agreement with the probability that a given positive
prediction (one to the right of the threshold) will be
correct, but underestimates the confidence one can
have that a negative prediction (one to the left of the
threshold) is correct. On the other hand, the uncertainty
estimate obtained after shifting the threshold (the green
dashed line in Figure 6B) provides good estimates of the
uncertainty associated with negative classifications, but
underestimates somewhat the uncertainty for positive
predictions that are not unanimous or nearly so. The
distribution of errors between the thresholds is key to
getting both curves correct, and a better error prediction
profile is a composite that incorporates the discontinuityc.
That said, the revised uncertainty profile does well enough
for most purposes. The count scale in Figure 6A is loga-
rithmic, so the number of positive predictions in the area
of overestimation is usually small for unbalanced models
with acceptable performance statistics.
Note that the two predicted uncertainty profiles

bracket 0.5 at the refined threshold. The discontinuities
near the thresholds arise because Youden’s index is used
tainty for the validation set. (A) The error distribution for logP3-1a
he error distribution for logP3-1b (which was refined by shifting the
are shown as dotted lines and the fitted beta binomials are shown as
beta binomial are represented by the solid and dotted blue line,
odels logP3-1a and logP3-1b are shown in red and green, respectively.
ed lines. The black dashed line represents the composite uncertainty
e threshold and the naïve uncertainty profile above it.
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to set the classification thresholds for the individual net-
works. For a large training pool and a well-trained
model, the density of negative predictions will be high
near 0 for each network and fall off as one moves to the
right, towards 1. Similarly, the density of positive pre-
dictions will be high near 1 and fall off as one moves to
the left. In the limit of an infinite training pool, maxi-
mizing Youden’s index will place the classification
threshold at a point where any shift to the left will in-
crease sensitivity less than it will decrease specificity.
Similarly, any increase in specificity achieved by a shift
to the right will be more than offset by a decrease in
sensitivity.
The 3-to-1 imbalance in the logP3 data set results in

the classification threshold for each network being set at
a point where the density of positive predictions is 1/3
the density of negative predictions; if the relative density
were higher than that, a further shift to the left would
increase J. Hence the error rate approaching the threshold
from the left will be about 1/3 the error rate approaching
from the right – once one gets close enough to it. The ex-
pected uncertainty exactly at the threshold will still be 0.5,
but it will be approached from below that value from the
Figure 7 Effect of increasing the number of networks in an ensemble
than of the default 33. Symbols have been omitted for clarity. (A) The valid
of 37.5 was used) is shown in red and the error distribution for logP3-2b (r
thresholds are shown as vertical dotted lines and the fitted beta binomials
beta binomial are the same for both models; they are represented by the s
observed error rates for models logP3-1a and logP3-1b are shown in red a
represented by solid lines and dashed lines.
left and from above that value from the right when the
number of negatives in the populations (or the ease of
their classification) exceeds the number of positives. If
this rationale is correct, then the discontinuity should
disappear when the network thresholds are set so as to
maximize concordance instead of Youden’s index. It does
indeed disappear – at the cost of a disproportionate
increase in errors for the minor class (details not shown).
The discontinuity is exacerbated by the compression

of positive (negative) tallies as the threshold is shifted to
the right (left), which can be relieved to some extent by
increasing the number of networks in the ensemble.
This is illustrated in Figure 7, where the number of net-
works was increased from 33 to 75. Note that the gap
between the two predicted uncertainties is smaller than
that seen in Figure 6 for a 33-network model. The error
rate is somewhat underestimated at intermediate tallies –
i.e., the number of errors to the left of the threshold is
overestimated. The expected error counts are all below
10, however, so the residual deviation may be due to
undersampling.
As noted earlier, the logP data sets are somewhat arti-

ficial. High-throughput screening data for CYP2D6 [29]
. Models logP3-2a and logP3-2b were comprised of 75 networks rather
ation set error distribution for logP3-2a (for which the naïve threshold
efined voting threshold: 53.5) is shown in green. The corresponding
are shown as dashed lines. The distribution of predictions and its fitted
olid and dotted blue line, respectively. (B) The uncertainty profile and
nd green, respectively. Observed and calculated uncertainties are
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inhibition provides an alternative, real-world example
of an unbalanced data set. It is composed of 13331
observations, 1643 of which (12.3%) were categorized
as “positive”. The reproducibility of this type of data is
limited [30], so a larger fraction of the data set (30%)
was used for model building than in the other examples
discussed here.
Representative results are shown in Figure 8. The un-

certainties and observed errors for negative predictions
by CYP2D6-1a are very low and their distributions are
relatively flat: one can have high confidence that a com-
pound predicted not to be an inhibitor truly is not. The
chance of a positive prediction being a misclassification
is much higher, exceeding 80% near the refined threshold
and nearing 90% for the naïve threshold. This equates to a
high level of false alarms, which may be tolerable if the
cost of confirming a prediction (e.g., secondary screening)
is acceptably low. Even for the composite uncertainty
profile, however, the discrepancies for negative predic-
tions are rather large. The plot for the training pool
(Figure 8B) is very similar to that for the validation set
(Figure 8D), so the limited usefulness of individual confi-
dence estimates in this case is clear, even in the absence of
a large external validation set. It is also suggested by
the failure of the composite profile to bracket 0.5 at the
refined threshold, though it only barely fails to do so.
Increasing the number of networks did not improve the

situation in this case (details not shown). One possible al-
ternative strategy for estimating uncertainty is to replace
beta binomial profiles with average class uncertainties cal-
culated for the training pool: �u0 for the negative class and
�u1 for the positive classd. The resulting estimates are
shown by the dotted gray lines in Figure 8B. As expected,
the average error rates underestimate uncertainty except
at the extremes of consensus, with �u1 clearly inferior to
the composite beta binomial estimate for positive pre-
dictions. While the latter overestimates uncertainty for
negative predictions by a factor of 2–3, �u0 underesti-
mates them by a similar factor. The more conservative
option – in this case, underestimating uncertainty – will
be preferable in most circumstances, especially if the
degree of over- and underestimation is similar.

Confidence estimation when using averaging
It is perhaps not surprising that the uncertainty estimation
method described above works well on ensemble models
in which predictive classifications are determined by tallies
of independently determined positive votes, since in that
case the degree of network consensus reflects the variabil-
ity of outcomes fairly directly. To explore how broadly ap-
plicable the method is, we turned to ANNEs in which
classification is determined by averaging the individual
network outputs (which are logistic functions ranging
from 0 to 1 for classification models) and comparing that
average to an ensemble threshold. If the average output
lies above the ensemble classification threshold, the com-
pound is classified as a positive; if the average falls below
the threshold, the compound is classified as a negative.
The ensemble threshold that maximizes Youden’s index
across the training pool (the “Jmax threshold”) is used by
default. The vote tallies for estimating predictive uncer-
tainty are obtained by comparing each network’s output to
the ensemble threshold but are not themselves used for
classification.
Not all networks have an equal impact on prediction,

but all do contribute equally to uncertainty estimation.
Those whose output lies closest to one output extreme
or the other – i.e., to 0 or to 1 – shift the average most
and so have the greatest “voice” in the ensemble classifi-
cation; networks that dissent strongly enough from the
consensus classification can sway the ensemble classifi-
cation in their direction. Only in the case of unanimity
does the vote tally necessarily reflect the ultimate classi-
fication: if all network outputs fall below (or above) the
threshold, their average output must do so as well.
Figure 9 shows the distribution of output sums across

vote tallies for model logP3-3a, an averaging model with
four hidden neurons that takes 28 descriptors as input.
The Jmax threshold for the average output is 0.491, corre-
sponding to a threshold for the sum of 33 × 0.491 = 16.2
and represented by the horizontal dotted red line in
Figure 9. Though the correlation between summed out-
puts and tallies is high for this model (r2 = 0.983), they
diverge enough to spread the Jmax classification threshold
across several tally counts – from 13 to 20 in this case
(see the central box in Figure 9).
Figure 10 shows the results of applying our beta bino-

mial analysis to the training pool for model logP3-3a.
Here, the vertical dotted red lines indicate the value (16.2)
of the Jmax threshold for the summed outputs. It is pro-
vided for reference only; it does not separate positive from
negative predictions when averaging is used for ensemble
classification.
Just as for the individual network thresholds used in

the voting method, the default ensemble classification
threshold used in averaging maximizes J and can be
suboptimal in terms of predictive values. The mean of
the beta binomial distribution fitted to the training pool
for logP3-3a is 25.5, which is 0.772 on a per network
basis; however, we have found that shifting the ensem-
ble classification threshold to that value generally con-
stitutes an overcorrection. Averaging models are better
refined by shifting the threshold to the geometric mean
of the Jmax threshold and the mean of the beta binomial
fitted to the initial error distribution. In this case, re-
finement shifted the classification threshold for the sum
from 16.2 for logP3-3a to 20.3 for logP3-3b (the vertical
dotted green lines in Figure 10), which is equivalent to a
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(See figure on previous page.)
Figure 8 Estimating the predictive uncertainty profile for the CYP2D6 inhibition data set. The models shown have three hidden neurons
and make use of 35 descriptors. Vertical dotted lines indicate voting thresholds. (A) Distribution of training pool predictions (blue), errors for
model CYP2D6-1a (naïve voting threshold at 16.5; red), and errors for model CYP2D6-1b (threshold shifted to 27.5; green). Fitted beta binomial
distributions are shown as dashed lines. (B) Calculated uncertainty profiles and distributions of training pool error rates for model CYP2D6-1a
(naïve voting threshold at 16.5; red), and for model CYP2D6-1b (refined threshold at 27.5; green). Uncertainty profiles calculated from beta
binomial distributions are shown as red and green dashed lines. The dashed black line indicates average class uncertainties. (C) Distribution of
validation set predictions (blue), errors for model CYP2D6-1a (red), and errors for model CYP2D6-1b (green). Beta binomial distributions fitted to
the training pool are shown as dashed lines. (D) Calculated uncertainty profiles and distributions of observed validation set error rates for model
CYP2D6-1a (naïve voting threshold at 16.5; red), and errors for model CYP2D6-1b (refined threshold at 27.5; green). Uncertainty profiles calculated
from beta binomial distributions fitted to the training pools are shown as red and green dashed lines, whereas the composite uncertainty profile
is indicated by the black dashed line.
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shift in the threshold for the average from 0.491 to
0.616.
Shifting the averaging threshold affects the entire range

of tallies, not just those between the thresholds, and the
distribution of predictions is affected as well as that of er-
rors. The predictions most affected are those in which all
network outputs for a particular compound lie between
0.491 and 0.616: all networks in logP3-3a will classify it as
a positive, whereas all networks in logP3-3b will classify
such a compound as a negative. One of those ensemble
predictions will be wrong, of course, but the vote will be
unanimous in both cases – a tally of 33 positive votes for
logP3-3a vs. no positive votes for logP3-3b.
The model using a threshold based on Youden’s index

alone (logP3-3a) underestimates the error rates seen in
the validation set and thereby overestimates how much
confidence one can have in its individual predictions
(Figure 10D). This is in contrast to model logP3-3b (in-
dicated by green lines in Figure 10), which uses the same
Figure 9 Estimating the uncertainty profile using the averaging meth
neurons, employs 28 descriptors and uses averaging to determine ensemb
network outputs for all compounds in the validation set, whereas red symb
the latter are offset by 0.5 for clarity. The red horizontal dotted line indicate
dashed line is a linear fit of all summed network outputs to the tally of pos
classification threshold for the sum.
network outputs but a refined threshold and provides
more appropriate uncertainty estimates. Here again, the
less reliable model signals its weakness by having a pre-
dicted uncertainty profile that crosses its voting threshold
well below 0.5. The crossover point for the model with the
more robust confidence estimates, on the other hand, lies
reasonably close to 0.5.
Despite the unbalanced nature of the data set, the error

rate profiles seen in logP3-3a and logP3-3b both lack the
discontinuity near the threshold that is so evident for
models built on the same data set but using the voting
method to determine ensemble classification (Figure 10 vs
Figure 6). This is due at least in part to the transition zone
between positive and negative predictions being spread
across seven tally bins rather than concentrated in two.

Conclusions
Tallying votes and averaging submodel outputs are both
useful ways to assess the degree of consensus within an
od. The model whose results are shown (CYP2D6-3a) has four hidden
le classification. Blue symbols show the distribution of summed
ols represent network sums for misclassified compounds; tallies for
s the classification threshold that maximizes Youden’s index J. The
itive votes. The central box highlights tallies that straddle the



Figure 10 Estimating the uncertainty profile for ensemble models constructed using the averaging method. Thin and thick blue lines
represent the distributions of predictions for logP3-3a and logP3-3b, respectively; the corresponding error and error rate distributions are shown
in red and green. Uncertainty profiles and fitted beta binomials for error distributions are represented by dashed lines. Fitted prediction distribu-
tions have been omitted for clarity. Dotted vertical lines indicate thresholds for summed outputs and do not separate negative predictions and
errors from positive ones (see Figure 9 and text). (A) Distribution of errors and predictions for the training pool. (B) Distribution of uncertainties
and observed error rates for the training pool. (C) Distribution of errors and predictions for the validation set. (D) Distribution of uncertainties and
observed error rates for the validation set.
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ensemble. Fitting ensemble misclassification rates to a
binomial distribution to assess confidence is intuitively
appealing but flounders in practice because predictions
by the component submodels are not independent.
Using beta binomial distributions to model predictions
and errors works well, however, and the ratio of such
distributions can be used to estimate the likelihood that
a given prediction will be incorrect.
The corresponding distributions seen in large, held-

out validation sets match those seen for the training
pool remarkably well in most cases. Moreover, those
cases for which the predicted error rate profile is not re-
liable provide a good clue to that effect, in that their cal-
culated uncertainty profiles cross the model’s voting
threshold (or, in the case of averaging, the ensemble
classification threshold applied to the summed outputs)
well below the expected value of 0.5. Why this occurs is
not clear at this time but it may reflect a lack of diversity
in predictions among the networks that make up the en-
semble. If consensus is complete across the entire train-
ing pool, for example, all predictions and errors will lie
at the extremes and no information will be available re-
garding the distribution of predictions and errors in
between.
Models based on voting that are built on unbalanced

data sets and use Youden’s index as the criterion for set-
ting individual network classification thresholds tend to
have a discontinuity in observed error rates near the en-
semble voting threshold. Resetting that threshold to
match the mean of the beta binomial for the error, ε(k),
helps attenuate that discontinuity. In many cases, the
uncertainty profile can still be adequately described by a
combination of just two distributions – one fitted to the
training pool predictions and another fitted to the train-
ing pool errors. In other cases, four sets of distribution
parameters and a threshold value are required to create
a composite distribution, one pair applying to the left of
the threshold (where the true and false negatives are
found) and the other pair to its right (where true and
false positives are found). Models built using the aver-
aging method avoid this complication.
Though the examples discussed here all involve ANNE

classification models, the technique should be applicable
to any ensemble classification model in which the con-
stituent submodels represent subsamples of a shared
model space and the predictions for individual submo-
dels are accessible. Random forest models come to mind
as one example, but most methods that involve bagging
[31] probably also qualify. Most importantly, perhaps,
the training pool distributions should be equally applic-
able to external predictions – provided that, as is the
case in these examples, model building is done in a way
that avoids overtraining and the training pool is repre-
sentative of the population for which uncertainty
estimates are desired. If the model-building tool used re-
quires an artificially biased training pool, it needs to be
augmented with examples from the undersampled class
before the prediction and error beta binomials are fitted.
Applying this approach to the logP3 data set yields re-
sults qualitatively similar to those seen when using an
unbalanced training pool (details not shown), but full
validation of such an approach is beyond the scope of
this paper.
Our approach complements classical overall perform-

ance measures based on partitioning predictions into
true positive, false positive, true negative and false nega-
tive categories; it does not replace them. Implementing
it is straightforward: it was originally done using the
GAMMALN function and the Solver add-in for Excel
[32] to fit the beta binomial parameters. The uncertainty
values obtained thereby have subsequently been incorpo-
rated into many of the models distributed with ADMET
Predictor 7.0 as predictive “confidences” (equal to 1 – u
(k)). Such confidence values can also be generated for
classification models created using the ADMET Modeler
module of the program.

Experimental
Data sets
The log P data set is diverse and has been heavily curated.
It consists of the 12,580 values used to build and test
the S + logP model distributed with ADMET Predictor,
the bulk of which are derived from the BioByte database
[33]. Some entries have been modified to accommodate
discrepancies found with respect to literature references,
while others have been added from the original literature
in the interests of expanded coverage of chemistry and
property space. Categorizing compounds having log P ≥
2.0 as “positive” and those having log P < 2.0 as “negative”
yielded a relatively balanced data set (logP2) comprised of
5946 positives and 6634 negatives.
The Ames mutagenicity data set was taken from the

compilation by Hansen et al. [26] and contains data of
medium quality. A handful of structures were corrected
for structural errors and redundant entries were removed,
as were salts of metals other than sodium or potassium. It
is quite a balanced data set: of the 6471 entries surviving
curation, 2983 (46%) were categorized as “positives” based
on their having been classified as “active” in the original
publication.
High-throughput screening data on CYP2D6 inhibition

comes from PubChem AID 1851 [29,34] provided an ex-
ample of an unbalanced real-world data set. Here the
negative class was comprised of compounds for which no
significant inhibition was seen at any concentration of the
test compound (“activity outcome” = 1 [34]) or for which
the AC50 was ≥ 10 μM. The positive class was made up of
compounds for which the AC50 was < 10 μM.
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An indication of titration reliability was provided for
each compound and those labeled as reflecting dubious
titrations (“activity outcomes” of 3 [34]) were disregarded.
There were a substantial number of such unreliable titra-
tions: 35% of the positives and 70% of the negatives for
which an AC50 was obtained. Salts were split into their
constituent components and the largest component based
on number of atoms was retained. Organometallics were
eliminated and replicated evaluations [30] were resolved
by majority rule of their reliable titrations. In cases where
the number of valid positive and negative entries were
equal, the structure was discarded. This left a data set of
13331 observations, 1643 of which (12.3%) were catego-
rized as “positive”. The majority (70%) of the observations
were selected at random and set aside as a validation set
comprised of 1158 positives and 8180 negatives. The
remaining 3993 observations were used for model training
and ensemble selection.
Tautomeric ambiguities for all data set entries were re-

solved using the pKa predictions and microstate analysis
in ADMET Predictor 7.0.
Methods
Models considered here were ensembles of 33 artificial
neural networks (except as otherwise noted) constructed
in the ADMET Modeler module of a prerelease version
of ADMET Predictor 7.0, with all the networks in a
given ensemble having an identical architecture, i.e., the
same set of descriptor inputs and number of hidden
neurons. We do not expect that the conclusions drawn
here are limited in applicability by exactly how the par-
ticular ensemble models were constructed, but the gen-
eral procedure followed to build them is described in
some detail below.
Model construction
Data remaining after extraction of the external validation
set was further divided into a training pool (further
divided into “training” and “verification” sets) and an
external test set. The latter is used to help identify the
ensemble having the “best” architecture but is not used
during the model building process itself. A grid of en-
semble architectures is trained using a total of 165 net-
works per architecture from which the best 33 networks
are selected. Each architecture uses a different combin-
ation of neurons and inputs and each network has its
own training and verification set. Two thirds of the
training pool was used for training and the remaining
third served as a verification set. These training pool
splits were made randomly and independently for each
network in the ensemble.
Each input (descriptor) xi is assigned a weight wij for

each neuron j in the single hidden layer such that the
output fj for neuron j is a function of the input values as
given by:

f j ¼ tanh
X
i

wijxi−tj

 !
ð6Þ

where tj is the offset associated with neuron j. Those
neural outputs are combined using an output function g
defined by:

g ¼ lg
X
j

ajf j−b

 !
ð7Þ

where “lg” represents the logistic function, b is a network
offset, and aj is a weight associated with neuron j in the
hidden layer. The adjustable parameters wij, tj, aj and b for
each network are initialized independently with random
values, then adjusted iteratively to minimize the objective
function Obj:

Obj ¼
Xn
l¼1

c0 1−q lð Þð Þ g lð Þð Þ2 þ c1q lð Þ 1−g lð Þð Þ2 ð8Þ

where q(l) is the class indicator value for observation l
(0 for negatives and 1 for positives) and g(l) is the output
function evaluated on the input vector xl. The net effect
of minimizing Obj is to drive the outputs for observa-
tions in the negative and positive classes towards 0 and
1, respectively. The class weights c0 and c1 are the frac-
tions of observations in the positive and negative classes,
respectively, resulting in the smaller class having the
larger weight.
The verification set is used for early stopping [35],

which reduces the tendency to overtrain. The objective
function is evaluated against the verification set after
each iterative incremental improvement with respect to
the training set and network training is halted when the
objective function for the verification set fails to improve
for 15 consecutive iterations. A classification threshold
is then determined for each network that maximizes
Youden’s index J for the training set:

J ¼ sensitivity þ specificity – 1 ð9Þ
Unless otherwise indicated, 165 networks were trained

for each architecture (number of inputs and number of
neurons) and the 33 having the best performance (com-
bining training and verification statistics) were retained
in the final ANNE for that architecture. A matrix of ar-
chitectures is trained, varying the numbers of inputs
and neurons, and the architecture that provides the
best, statistically significant performance is selected as
the final model.
ADMET Modeler combines outputs from the con-

stituent networks in an ensemble model in one of two
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ways: one is to tally positive “votes” based on each indi-
vidual network’s own threshold (see above), whereas the
other is to compare the averaged output to an ensemble
threshold that maximizes J for the average. The former
is the “voting method”, whereas the latter is the “aver-
aging method”.
Candidate ensembles are compared on the basis of

their performance on the training and test sets that they
share. To ensure that the results obtained are qualita-
tively robust, experiments should be run across a range
of training pool/test set splits, a range of architectures
and a range of random number seeds – as was done for
the present study.

Confidence estimation
The distributions f and e of predictions and predictive
errors, respectively, are calculated as functions of the
number k of positive votes for compounds in the train-
ing pool, which ranges from 0 to K (the number of net-
works in the ensemble; K = 33 unless otherwise noted).
A continuity correction [25] of 0.5 error or 1 prediction
is added to the respective counts for each value of k to
help compensate for undersampling (see above). As a re-
sult, the observed contingent error rate is e(k)/f(k) = 0.5
for tallies with no predictions, 0.5/2 = 0.25 for tallies hav-
ing a single correct prediction, and 1.5/2 = 0.75 for tallies
with a single incorrect prediction.
Beta binomial distributions ε(k) and φ(k) are fitted to the

cumulative observed error and prediction distributions,
respectively. Intermediate tallies away from the extremes
tend to be sparsely sampled even for quite large data sets,
however, which can complicate direct fitting. This is ad-
dressed in part by the continuity correction described
above and in part by fitting cumulative beta binomials to
the respective cumulative observed distributions by min-
imizing the Kolmogorov-Smirnov statistic [21] rather than
carrying out a direct fit for the corresponding density
functions. The probability that a prediction having k posi-
tive votes is in error (the uncertainty) is then given by:

u kð Þ ¼ MR � ε kð Þ=φ kð Þ ð10Þ

where MR is the overall misclassification rate for the
training pool. Confidence in the prediction is reported
as 1 – u(k). In the case where the confidences are the
same for all compounds of a given class, this reduces to
the positive or negative predictive values for the respect-
ive classes.

Descriptors
Of the 366 molecular descriptors generated by default in
ADMET Modeler, the analyses presented here used a
subset of 221: substructure counts (e.g., nitro, amide,
ester groups, etc.) were omitted to maximize the size of
the applicability domain, as were molecular weight, total
bond count, number of hydrogens and four other de-
scriptors. The latter group was dropped because they
were highly correlated with more informative ones.
Other descriptors were set aside for individual analyses
if they had a coefficient of variation less than 1%, failed
to be nonzero in at least 4 cases, or had absolute correl-
ation coefficients with one or more other descriptors
above 0.98. The number of descriptors passing those filters
in each case ranged from 172 to 183 and included: counts
of common element and bond types, rings and molecular
volumes; electrotopological and connectivity indices; topo-
logical size measures; molecular and partial atomic charge
values; polarizabilities; and topological autocorrelation
vectors of various atomic properties such as partial
charge and Fukui indices.
The ranking of descriptors was determined using the

Input Gradient option in ADMET Modeler, wherein
candidate descriptors are ranked by analysis of their re-
sponse gradients. Trial neural networks with a specified
number of hidden neurons (here, 1 to 6) are built using
all descriptors, then the analytical sensitivity gradient is
extracted from that network for each candidate descriptor.
Then, a series of ensemble models are built for a given
number of neurons in which the number of descriptors
is progressively increased, selecting them based on the
ranking assigned by the Input Gradient procedure. The
resulting Input Gradient descriptor rankings are thus
dependent on the number of neurons used.

Endnotes
aThe means for the error beta binomials for the logP2

and Hansen data sets are very close to 16.5, and shifting
the voting threshold has little effect.

bModels whose names differ only by a terminal letter
have the same component networks but have different
classification criteria at the ensemble level.

cTo avoid ties, the actual threshold is calculated from
the theoretical threshold set to floor(mean)+0.5.

dNote that �u0 = 1 – (negative predictive value) and �u1 =
1 – (positive predictive value).
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