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Abstract
Background: NuMA is a protein that has been previously shown to play a role in focusing
microtubules at the mitotic spindle poles. However, most previous work relies on experimental
methods that might cause dominant side effects on spindle formation, such as microinjection of
antibodies, overexpression of mutant protein, or immunodepletion of NuMA-containing protein
complexes.

Findings: To circumvent these technical problems, we performed siRNA experiments in which
we depleted the majority of NuMA in human cultured cells. Depleted mitotic cells show a
prolonged duration of prometaphase, with spindle pole defects and with unattached, unaligned
chromosomes.

Conclusion: Our data confirm that NuMA is important for spindle pole formation, and for
cohesion of centrosome-derived microtubules with the bulk of spindle microtubules. Our findings
of NuMA-dependent defects in chromosome alignment suggest that NuMA is involved in stabilizing
kinetochore fibres.

Findings
NuMA, the protein of the 'Nucleus and Mitotic Appara-
tus', is a structural protein in vertebrates of approximately
230 kDa. It localizes to the nucleus during interphase, and
accumulates at the spindle poles during mitosis [1].
NuMA has been implicated in the formation of the
mitotic spindle, in particular in focusing the spindle poles
[2]. Moreover, in recent years it has been shown that part
of NuMA localizes to the cell cortex during mitosis where
it interacts with the protein LGN/pins [3,4]. It has been
suggested that cortical NuMA participates in spindle ori-
entation, a role that has also been attributed to related
proteins in Drosophila and Caenorhabditis elegans,

termed Mud or LIN-5, respectively [4-9]. So far, the major-
ity of experiments that tested the role of vertebrate NuMA
relied on methods such as antibody microinjection, over-
expression of NuMA mutants, or depletion of NuMA from
cytoplasmic extracts [10-22]. The cumulative evidence
from these experiments pointed towards a function of
NuMA in crosslinking microtubules at the spindle poles,
enabling the formation and maintenance of the bipolar
spindle apparatus. The shortcomings of these experiments
were that they could not distinguish between a direct
effect on NuMA function, and an indirect effect on inter-
acting proteins: 1) Antibodies are large proteins; there-
fore, upon microinjection they might sterically hinder the
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function of neighbouring proteins that are in close contact
with NuMA. Moreover, antibodies of the immunoglobu-
lin G type may induce crosslinking of NuMA and produce
dominant effects that are unrelated to the normal func-
tion of NuMA. 2) Similarly, overexpression of mutant
forms of NuMA might produce dominant effects due to
unphysiological behaviour of the mutant protein, or due
to protein aggregates resulting from the overexpression
itself. 3) Although depletion of NuMA from cytoplasmic
extracts that form spindles or microtubule asters in vitro
seems an interesting experimental alternative, it can be
disputed as to how closely these assays reflect the mecha-
nisms of real mitosis in a living cell. Furthermore, it can-
not be excluded that during depletion of NuMA,
interacting proteins are co-depleted that are themselves
essential for regular mitosis. Interestingly, a very recent
report documented the properties of a loss-of-function
allele of NuMA in mouse cells [23]. This mutant form of
NuMA lacked exon 22 and was therefore thought to lack
binding to spindle microtubules in mitotic cells. Cells
expressing this mutant allele and lacking full-length
NuMA displayed spindle pole defects, and showed defects
in metaphase chromosome alignment [23]. However, it
can't be excluded that the mutant allele produced domi-
nant effects, as already discussed for other NuMA
mutants.

Several reports have taken advantage of silencing NuMA
expression with siRNA [4,24-28]. In these reports, NuMA
was found to be important for cell survival, and in mitosis
it was found to interact with tankyrase 1 and to contribute
to the formation of multipolar spindles in cancer cells
[4,24-26]. However, the potential importance of NuMA in
spindle assembly was not clarified. To test this, we per-
formed RNA silencing of NuMA in HeLa cells. Using
siRNA oligomers against two different target sequences,
we depleted 85 to 90% of NuMA with each oligomer (Fig.
1). The double-stranded siRNA oligomers had the follow-
ing target sequences: control, CGTACGCGGAATACT-
TCGA (corresponding to luciferase, [29]); NuMA siRNA1,
GGCGTGGCAGGAGAAGTTC [29]; NuMA siRNA2,
CTAGCTGAGCTCCATGCCA. The depletion was well vis-
ible by immunofluorescence of interphase nuclei (Fig. 1),
whereas in mitotic cells some remaining protein was still
detectable at the spindle poles. Photometric measure-
ments of NuMA immunofluorescence indicated that the
intensity at the poles decreased to 21 to 45% in depleted
cells (n = 24). Previous measurements of GFP-NuMA in
living cells had revealed that the spindle poles occupy
approximately 8% of the volume of the mitotic cell, but
concentrate 25% of NuMA, whereby the remaining NuMA
is diffusely distributed in the cytoplasm ([30], and unpub-
lished observation). Because the cytoplasmic pool of
NuMA was nearly invisible after siRNA, we concluded that
almost all of NuMA that resisted depletion concentrated

at the poles. With this assumption, a reduction of total
NuMA levels to 10% would correspond to an intensity of
40% at the poles, thus matching well our measurements.
Most depleted cells were able to form bipolar spindles,
but we often observed 'immature' spindles that resembled
early stages of prometaphase, occasionally containing
unfocused spindle poles (Fig. 2). A small percentage of
mitotic cells with supernumerary spindle poles was also
seen. In many depleted cells, the centrosome seemed dis-
connected from the main body of the spindle, and spindle
microtubules appeared slightly twisted (Fig. 2). An overall
increase of prometaphases was seen among mitotic cells
in depleted cultures (27% in controls, compared to 58%
in depleted cells, Fig. 3). A strikingly high number of these
prometaphases showed chromosomes that were not

Depletion of NuMA from HeLa cells by siRNAFigure 1
Depletion of NuMA from HeLa cells by siRNA. (A) 
HeLa cells were treated with control dsRNA, or two specific 
siRNAs against NuMA (siRNA 1 and 2; see main text for 
description of targeting sequences). Cells were lysed after 72 
hours, and lysates were analysed by immunoblot, using anti-
bodies against NuMA (monoclonal antibody NA09L, Calbio-
chem) or against alpha-tubulin (monoclonal antibody DM1a, 
Sigma-Aldrich). (B) Immunoblots of decreasing amounts of 
HeLa lysates from control cells, or cells treated with NuMA 
siRNA1 for 72 or 96 hours, respectively. Amounts were 
loaded as indicated. The blots were probed with antibodies 
against NuMA, or nucleolin as a loading control. Depletion 
efficiency was determined by scanning of the blots and com-
paring the intensity of NuMA from depletion experiments to 
the dilution series of control lysate. (C) Testing of the deple-
tion efficiency of NuMA by immunofluorescence. Left, cells 
treated with control RNA for 72 hours; right, cells treated 
with NuMA siRNA1. Bar, 20 μm.
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aligned at the equatorial plate (2% in controls, 15% in
treated cells after 72 hours; Fig. 3A, B). The kinetochores
of unaligned chromosomes in these cells stained posi-
tively for the markers BubR1 and Mad2, indicating that
the spindle assembly checkpoint remained active (Fig. 3).
Likewise, the small percentage of control cells that con-
tained unaligned chromosomes also stained positively for
BubR1 and Mad2 (data not shown). Consistently, cell
growth in depleted cell cultures was reduced (Fig. 3C).

To determine whether the formation of spindle microtu-
bules was inhibited in depleted cells, we performed assays
of microtubule re-growth after cold treatment (Fig. 4).
After 6 minutes, we observed four times less spindles in
depleted cells than in controls. Besides, many of these
spindles that started to assemble in depleted cells showed
a lower microtubule density and lacked obvious microtu-
bule bundles such as normally seen in kinetochore fibres
(Fig. 4). The full number of spindles was restored after 15
minutes. To determine whether the absence of NuMA had
an effect on the tension at kinetochores, we compared the

Unaligned chromosomes and spindle abnormalities in NuMA-depleted cellsFigure 2
Unaligned chromosomes and spindle abnormalities 
in NuMA-depleted cells. Depletion of NuMA was per-
formed with siRNA2, as described in Fig. 1. Immunofluores-
cence of microtubules (green) and NuMA (red) was 
performed using monoclonal anti-NuMA, combined with a 
rabbit antibody against tubulin. DNA was stained with 4',6-
diamidino-2-phenylindole (DAPI, blue). Arrows depict cen-
trosomes that are slightly disconnected from the main body 
of the spindle in NuMA-depleted cells. The top row shows a 
cell treated with control RNA, for comparison. Micrographs 
were taken with a Leica TCS SP confocal microscope, 
equipped with a PlanApo 100x/1.4NA objective lens (Leica 
Microsystems). Bar, 5 μm.

Silencing of NuMA activates the spindle assembly checkpointFigure 3
Silencing of NuMA activates the spindle assembly 
checkpoint. (A) Cells treated with NuMA siRNA1 and con-
trol cells were processed for immunofluorescence of centro-
meres with human CREST autoimmune serum (top, green), 
or with specific antibodies against the checkpoint proteins 
BubR1 (middle, green), and Mad2 (bottom, green). Antibody 
against BubR1 was provided by Dr Tim Yen (Fox Chase 
Center, Philadelphia, PA); antibody against Mad2 was from 
Berkeley Antibody Company. DNA was stained with DAPI 
(blue). Bar, 10 μm. (B) The percentage of mitotic cells in dif-
ferent phases is indicated for controls (blue) and cultures 
treated with NuMA siRNA1 for 72 hours (red). Standard 
deviations were calculated from n = 706 mitotic control cells, 
and from n = 601 depleted mitotic cells (data obtained in 
three independent experiments). The percentages of those 
prometaphases that show unaligned chromosomes besides 
mostly aligned chromosomes (as seen in A) are indicated 
separately on the left. (C) Growth curve of HeLa cells sub-
jected to control treatment or NuMA siRNA1.
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inter-kinetochore distances in control and depleted cells.
We found that in depleted cells, those kinetochores that
belonged to aligned chromosomes had slightly reduced
distances as compared to control cells in metaphase (1.35
versus 1.46 μm; Fig. 5A, B). Unaligned chromosomes in
depleted cells had a reduced interkinetochore distance of
0.99 μm, matching the values obtained from early pro-
metaphases in controls (Fig. 5A, B). Unaligned chromo-
somes were frequently seen to lack amphitelic attachment
(Fig. 5A, 1#). Altogether, our results suggest that in
depleted cells kinetochores are under reduced tension.
Despite such observed defects, NuMA-depleted cells
seemed to complete mitosis, as evidenced by the presence
of anaphase and telophase spindles (Fig. 5C and Fig. 3B).
Occasionally, single lagging chromosomes were seen. This
is consistent with our previously published findings [22]
and with findings by [23], which indicated that defects
due to NuMA inhibition do not interfere with completion
of mitosis after the onset of anaphase. Alternatively, it is
possible that upon siRNA treatment against NuMA, two
different populations of cells are produced: a population
in which the vast majority of NuMA is depleted and that
shows an arrest in prometaphase, followed either by
checkpoint slippage or cell death. A second population, in
which significant amounts of NuMA may remain in the
cell, may complete mitosis without major errors. Previous
studies have shown that silencing of NuMA does indeed
lead to apoptosis [24]. Consistently, apoptotic cells were
occasionally seen in our cultures after several days of
NuMA silencing (data not shown). Because these cells had

the tendency to round up and detach from the substra-
tum, we were unable to quantify their percentage by
immunofluorescence. So far, we cannot distinguish
between the possibility of cell death during mitosis, or cell
death after completion of mitosis, eventually as an indi-
rect consequence of improper chromosome segregation.

In conclusion, our depletion experiments suggest that
NuMA is necessary for proper spindle formation in pro-
metaphase, and that NuMA-dependent defects manifest
in less efficient formation of kinetochore fibres. Improp-
erly formed kinetochore fibres may in turn be responsible
for defects in chromosome alignment and tension at kine-
tochores. Because we observed that even cells that were
only partly depleted of NuMA (45% remaining at the
mitotic poles) showed defects in chromosome alignment,
we favour a model in which reduced levels of NuMA lead
to prolongation of prometaphase due to an active spindle
assembly checkpoint, until bipolar attachment and ten-

NuMA depletion induces reduced tension at kinetochores and lagging chromosomesFigure 5
NuMA depletion induces reduced tension at kineto-
chores and lagging chromosomes. (A) Confocal series 
(frames 1–3) of a NuMA-depleted mitotic cell, showing 
immunofluorescence staining of kinetochores (using a human 
CREST autoimmune serum, red), and microtubules (green). 
On the left, a projection of all sections of the confocal series 
through the cell is shown. Interkinetochore distances of lag-
ging (#) and aligned (←) chromosomes were quantified and 
plotted in (B). Error bars represent the SEM (standard error 
of the mean). Mean values for the aligned chromosomes 
were significantly different between depleted and control 
cells (two-tailed τ test, * p < 0.001) (C) NuMA-depleted cell 
in late anaphase, stained for tubulin (green), NuMA (red), and 
DNA (blue). Chromosomes are separated to the respective 
poles, but single lagging chromosomes can be seen, as indi-
cated by the arrow. Bars in A and C, 5 μm.

Spindle microtubule re-growth is delayed in NuMA-depleted cellsFigure 4
Spindle microtubule re-growth is delayed in NuMA-
depleted cells. (A) Microtubules were depolymerised on 
ice for 1.5 hours, and re-polymerised at 37°C. At the indi-
cated time points, cells were fixed and subjected to immun-
ofluorescence of NuMA (red), tubulin (green), and staining of 
DNA (blue). Spindles in NuMA-depleted cells have a lower 
microtubule density and are less 'compact'. Bar, 5 μm. (B) 
Graph, indicating the percentage of regular, compact spindles 
at the indicated time points of microtubule re-growth (data 
from four independent experiments; between 50 and 100 
cells were counted for each point).
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sion at kinetochores is finally achieved. We believe that
the fraction of NuMA that localizes to the cell cortex in
regular cells, as described by [3,4], plays only a minor role
in mitotic progress in experiments, since we see significant
NuMA accumulation at the cortex only in late phases of
mitosis, from metaphase/anaphase onwards, i.e. after
chromosome alignment has occurred (unpublished
observation).

In our RNA silencing experiments we detected smaller
amounts of severely malformed spindles as compared to
spindle formation assays after NuMA depletion in Xeno-
pus egg extracts [19]. Drastic spindle defects seen in these
extracts included loss of focused poles and prolonged
length of the mitotic apparatus [19]. The different results
may be explained by a higher sensitivity to experimental
manipulation of spindles in vitro compared to spindles in
intact cells, or by defects from co-depletion of NuMA-
associated proteins, as discussed above, or by the presence
of low levels of NuMA remaining at the poles after RNA
silencing.
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