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Abstract

topology and their role in disease progression.

diseases such as OBS.

network evaluation.

Background: The prevalence of diabetes is increasing worldwide. It has been long known that increased rates of
inflamnmatory diseases, such as obesity (OBS), hypertension (HT) and cardiovascular diseases (CVD) are highly
associated with type 2 diabetes (T2D). T2D and/or OBS can develop independently, due to genetic, behavioral or
lifestyle-related variables but both lead to oxidative stress generation. The underlying mechanisms by which theses
complications arise and manifest together remain poorly understood. Protein-protein interactions regulate nearly
every living process. Availability of high-throughput genomic data has enabled unprecedented views of gene and
protein co-expression, co-regulations and interactions in cellular systems.

Methods: The present work, applied a systems biology approach to develop gene interaction network models,
comprised of high throughput genomic and PPI data for T2D. The genes differentially regulated through T2D were
‘'mined’ and their ‘wirings’ were studied to get a more complete understanding of the overall gene network

Results: By analyzing the genes related to T2D, HT and OBS, a highly regulated gene-disease integrated network
model has been developed that provides useful functional linkages among groups of genes and thus addressing
how different inflammatory diseases are connected and propagated at genetic level. Based on the investigations
around the ‘hubs’ that provided more meaningful insights about the cross-talk within gene-disease networks in
terms of disease phenotype association with oxidative stress and inflammation, a hypothetical co-regulation
disease mechanism model been proposed. The results from this study revealed that the oxidative stress mediated
regulation cascade is the common mechanistic link among the pathogenesis of T2D, HT and other inflammatory

Conclusion: The findings provide a novel comprehensive approach for understanding the pathogenesis of various
co-associated chronic inflammatory diseases by combining the power of pathway analysis with gene regulatory

Background

Type 2 diabetes (T2D) is a chronic disorder of carbohy-
drate, fat and protein metabolism. The prevalence of
diabetes is increasing worldwide. According to the
recent World Health Organization (WHO) estimates,
more than 180 million people worldwide have diabetes.
This number is likely to be more than double by 2030.
There will be 300 million people with diabetes by the
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year 2025 [1]. It is estimated that the developing coun-
tries will bear the brunt of diabetes epidemics in the
21st century [1,2]. Mounting evidence indicates that
obesity along with increased rates of other chronic
inflammatory diseases, such as hypertension (HT) and
cardiovascular diseases (CVD), are highly associated
with T2D [3]. How all theses complications arise and
manifest together is yet to be solved. Thus, understand-
ing the underlying molecular mechanisms of T2D is
essential for developing more targeted and effective
therapies and preventive approaches against diabetes-
related complications.
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The integration of computational biology and “omics”
science facilitates an understanding of the mechanisms of
diseases in an integrative way, including elucidation of
complex networks of genes and proteins along with their
regulatory networks [4-7]. Protein-protein interactions
(PPI) regulate nearly every living process. Availability of
high-throughput genomic data has enabled unprece-
dented views of gene and protein co-expression, co-
regulations and interactions in cellular systems. The
approach of this present study was to build an integrated
network model system comprised of high-throughput
genomic data along with associated computational analy-
sis that would enable predictions of systems level view of
normal and aberrant genes, their connections and their
functions- to elucidate the underlying molecular mechan-
isms. Herein we mined genes differentially regulated
through T2D and their “wiring” which will provide a
more complete understanding of the overall gene net-
work topology and their roles in disease progression.
By elucidating these networks, exploring how they have
been linked and characterizing how they have evolved-
novel disease markers can be identified. In this present
study, by analyzing the genes related to T2D, HT and
OBS, a highly regulated gene-disease integrated network
model was developed. PPI sub-networks containing the
hub genes involved in T2D-associated signaling pathways
revealed that the oxidative stress mediated regulation
cascade, is the link, associated with the mechanism of
pathogenesis of type 2 diabetes, hypertension and other
inflammatory diseases such as obesity.

Methods

The present work has developed gene interaction net-
work models, comprised of high-throughput genomic
and proteomic data for type 2 diabetes (T2D). The over-
all strategy of the integrated network model generation
has been illustrated in Figure 1. The network model has
been built in three successive stages. The first stage con-
sisted of the “parts list” generation using biomedical lit-
erature mining. The second stage was the topological
model generation by combining all the pooled genes
and their interactions from all available interaction data-
bases. The co-regulated and co-expression data fetched
helped to identify the involved genes, proteins and their
interactions. In third and final stage the fetched interac-
tion data were filtered against experimentally validated
interaction (e.g., yeast 2 hybrid, Chip- chip interaction,
immuno-coprecipitation, arrays co-expression) data sets
and the functional annotations were analyzed using
computational approaches. By identifying the genes, the
pathways they are involved in and the interactions they
are part of, using a systems approach; the integrated
networks of T2D have been generated considering all
experimentally verified PPI data of the regulating genes.
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Finally from the integrated network systems the ‘hubs’
or key genes that play central roles in these diseases
have been identified. Interestingly along the way of
building up the network for T2D, gene networks of
other related diseases like obesity and hypertension were
also generated. The aim of this study was to identify the
key switches of regulation and from that interpreting
how these chronic diseases correlate and co-occur.

Stage 1: Initial disease related gene pool generation
through extensive text mining

The most important collection of scientific publications
is PubMed http://www.ncbi.nlm.nih.gov/pubmed, which
currently contains more than 19 million citations of bio-
medical articles from MEDLINE and Life Science jour-
nals. Citations include links to full-text articles from
PubMed Central (PMC) http://www.ncbi.nlm.nih.gov/
pmc/ or publisher web sites. Currently the number of
publications is growing by more than 500K documents
per year. PMC is the U.S. National Institutes of Health’s
(NIH) free digital archive of biomedical and Life
Sciences journal literature serving the critical role of
providing access to published literature toward the first
step in the synthesis and translation of genomic research
in an easy and comprehensive way.

PubMed basically supports keyword based searching
and information Retrieval (IR). There have been a signif-
icant number of web-based text mining tools available
to biologists to discover hidden relationships among bio-
logical entities. Some of them are quite effective in gen-
erating annotated relationships among graphs in the
form of networks. AliBaba http://alibaba.informatik.hu-
berlin.de is a tool that is capable of automatically and
interactively extracting the most valuable information
and graphically summarizing search results from
PubMed [8]. It uses a dictionary-based approach for
recognizing biomedical objects. Dictionaries consist of
regular expressions depicting terms and spelling varia-
tions. The dictionaries are collected from different
sources. To find associations among entities, AliBaba
uses two different techniques in parallel: pattern match-
ing and co-occurrence filtering. It mines relationships
among cells, diseases, drugs, proteins, species and tissues
based on a user query involving text key terms. Thus,
AliBaba can be used to turn unstructured text into
structured data records [8]. Specifically, for increasing
the accuracy and efficiency for discovering relationships
between important biological entities, e.g., protein-to-
disease associations- the present study combines manu-
ally locating and querying information about disease
genes entity from the biomedical literature together with
automated computational tools to identify the genes and
gene products by computationally capturing the related
knowledge embedded in textual data.
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Figure 1 Concept and overall strategy for generating the integrated network of T2D.
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Stage 2: Using the pooled disease genes protein-protein
interaction (PPIl) maps construction

PPI maps have considerable impact on the discovery
and synthesis of molecular networks. Thus, generating
human protein interaction maps has become an impor-
tant tool in biomedical research for the elucidation of
molecular mechanisms and the identification of new
modulators of disease processes.

There have been a number of web-based tools avail-
able to biologists. The Unified Human Interactome
database (UniHI, http://www.unihi.org) provides a com-
prehensive platform to query and access human protein-
protein interaction (PPI) data [9]. The latest update of
UniHI includes over 250,000 interactions between
~22,300 unique proteins collected from 14 major PPI
sources [9]. However, this amount of data has its chal-
lenges. Even searches with a small number of query pro-
teins can lead to large, highly connected and often
unstructured networks (frequently referred to as ‘hair-
balls’). UniHi has integrated separate PPI resources to
provide a comprehensive platform for querying the
human interactome (Figure 2). UniHI is not intended to
replace single databases, but to offer a convenient single
portal access to human protein interaction data for the
biomedical research community. Additionally, it allows
the identification of network topologies which would
not be detectable if PPI resources were examined
separately.

Pathway information can provide highly useful clues
about the functions and dynamics of interactions. Espe-
cially for the elucidation of local network structures,
knowledge of interrelated pathways can be of crucial
importance. UniHI provides the possibility to examine
the intersection of canonical pathways from Kyoto Ency-
clopaedia of Genes and Genomes (KEGG) with the
extracted networks [10]. UniHI Scanner does not only
show the proteins included in the pathway but also the
KEGG annotation of the interactions (e.g. phosphoryla-
tion, activation or inhibition) between nodes [11]. In
this way, it enables researchers to detect possible modi-
fiers of pathways as well as proteins involved in the
cross-talk between pathways and users can switch
between the graphical display of the complete network
and the intersection with selected pathways [11].

Stage 3: Filtering and validation of the PPI data

Advances in recent genome-wide interactome projects
have generated a wealth of PPI data. In order to under-
stand the complexity, it is essential to extract meaning-
ful information in the context of physiological systems.
This necessitates identification of not only the function
of individual proteins, but also to validate the physical
interactions and biological processes in which they par-
ticipate. The emergence of large scale protein-protein

Page 4 of 18

interaction maps has opened up new possibilities in sys-
tematically surveying and studying the underlying biolo-
gical system. UniHI (the Unified Human Interactome
database, http://www.unihi.org) integrates protein inter-
action data with pathway data from the Human Gene
Expression Atlas [11]. In UniHI, PPI maps have been
assembled using eight publicly available large-scale
interaction maps: three literature-based, three orthology-
based and two Y2H-based. Interactions in different
maps are compared. For normalization of the intersec-
tions however, only the number of interactions between
common proteins is used. Thus, the interaction overlap
is defined as the average percentage of shared interac-
tions between common proteins [12]. In UniHI, maps
are subsequently clustered based on the interaction
overlap. For all comparisons, it is notably larger than
zero, which is the expected value for comparison of ran-
dom maps. The observed concurrence of interaction
maps does not occur merely by chance as it is validated
by two permutation tests for pair-wise comparisons of
graphs, where the observed overlap of interactions gen-
erated is highly significant for all comparisons (P < 0.01)
[12]. To measure the conservation of connectivity
between pairs of networks, UniHI correlates the number
of interactions of proteins in the two networks using
Spearman correlation for the set of common proteins
[12]. A high correlation between two maps signifies that
the interaction-rich (interaction-poor) proteins in one
map are also interaction-rich (interaction-poor) in the
other map. Finally, for the functional coherency of
maps, UniHI employs the gene annotations available in
GO [12]. Using UniHI, users can filter interacting pro-
teins by requiring a minimum expression threshold, and
the PPI network retrieved from UniHI can be reduced
to include only highly expressed proteins or extended to
include lowly expressed proteins. Additionally, the PPI
resource to be queried can be specified. In this work,
the fetched interactions data have been filtered against
experimentally validated interaction (yeast 2 hybrid,
Chip-chip interaction, immuno-precipitation, arrays co-
expression) datasets.

Integrated network visualization and identifying the
‘hubs’

Flexible visualization is a crucial prerequisite for the dis-
play and evaluation of network structures. UniHI [9]
provides users to switch between the graphical display
of the complete network and the intersection with
selected pathways. Cytoscape http://www.cytoscape.org/
is another open source bioinformatics software platform
for visualizing molecular interaction networks and biolo-
gical pathways and integrating these networks with
annotations, gene expression profiles and other state
data [13]. Although Cytoscape was originally designed
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C. Network visualization using UniHI

Figure 2 Steps of network model generation.
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for biological research, now it is a general platform for
complex network analysis and visualization. Cytoscape
core distribution provides a basic set of features for data
integration and visualization. A variety of layout algo-
rithms are available, including cyclic, tree, force-direc-
ted, edge-weight, and yFiles organic layouts. Additional
features are available as plugins which are available for
network and molecular profiling analyses, new layouts,
additional file format support, scripting, and connection

with databases [13]. Cytoscape supports a lot of stan-
dard network and annotation file formats including: SIF,
GML, XGMML, BioPAX, PSI-MI, SBML, OBO, and
Gene Association. In this work along with UniHI [11],
the interactions among the differentially expressed genes
were visualized by using Cytoscape 2.5.1 software [13].
Candidate genes, which were common within various
diseases, were identified. Network-neighbours around
the fetched genes of T2D, HT, OBS and ROS been
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studied extensively to identify the ‘hubs’. Genes with
thirty or more gene degree in the PPI network were
considered as hubs.

Results

Gene pool generation through extensive text mining
Candidate genes, responsible for the diseases (T2D, HT,
OBS, ROS) were extracted and sorted out both manually
(through literature review) and by using text-mining soft
wares (Figure 3). At the beginning, the present work
only focused on to understand the correlation between
type 2 diabetes and hypertension (HT). But later on,
ROS (Reactive Oxygen Species) and obesity (OBS) were
also considered as they were found to be highly related
to first two diseases. So, at the end candidate genes,
responsible for all the diseases were pooled through
text-mining. A number of genes for T2D, HT, OBS and
ROS were identified. Among them the candidate genes
were selected based on the following criteria’s: i) Genes
experimentally proved to be associated with any one of
the above mentioned diseases, ii) Genes experimentally
proved to be associated with two or more concerned
diseases, iii) Genes predicted computationally to be
associated with any individual disease, iv) Genes pre-
dicted computationally to be associated with two or
more concerned diseases and v) Genes found in KEGG
pathways database to be associated with any individual
disease. So basically, a gene-disease network is generated
by defining two genes as ‘connected’ if they have been
studied for association with the same disease(s). The
identified genes were further verified through literature
review to get insight about their functions and also with
KEGG for annotation in different biological pathways.
These genes were also confirmed with Phenopedia
(HuGEpedia: an integrated, searchable knowledge base
of genetic associations and human genome epidemiol-
ogy) [14] which provides the total number of reported
genes that have genetic association with T2D, HT and
other related diseases (Additional file 1, 2). After this
first stage of text mining using literature databases, the
number of genes identified and pooled for: Type 2 Dia-
betes (T2D) ~ 257, Hypertension ~100, Obesity ~239
and ROS ~55.

Finding Protein-Protein Interaction partners (PIPs)

Genes do not act as individual units; they collaborate in
overlapping pathways, the co-regulation of which is a
hallmark for the disease pathogenesis. A simple enrich-
ment analysis has been applied in order to characterize
the T2D set on the network level including pathways
and protein-protein interactions. The computational
approach used in this study was based on functional
links derived from co-expression and co-regulation pro-
files. The co-expressed and co-regulated genes generally
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have a higher likelihood of having a direct physical
interaction. The gene interaction data used to build the
network was based on direct physical interactions that
are either experimentally derived (e.g., Y2H or co-
affinity purification) or computationally predicted. In
order to integrate pathway information and to derive
cellular network information on the selected genes,
functional annotation from pathway databases such as
KEGG, Reactome, BioCyc [15-17], protein-protein inter-
action databases such as BIND, DIP, REACTOME,
COCIT, HPRD BIN, CCSB, MDC and IntAct was added
[18]. To facilitate the findings, UniHi (United Human
Interactome) [9], a web based PIP finding tool was used.
The present work tried to find significantly intercon-
nected sub-networks to interrogate whether the specific
pattern formed by a pre-specified list of genes is signifi-
cant (Figure 4). At this stage the number of significant
candidate genes of inflammation related diseases were
T2D ~1231, HT ~1000, OBS ~1845 and ROS ~417.

Compiling of data and network visualization

Network subgraphs can be network modules, motif clus-
ters, or other network neighborhoods. A network mod-
ule can be defined as a subgraph consisting of highly
interconnected nodes that may fulfill a particular biolo-
gical function [19-21]. At this stage of network building,
the pooled important common genes for various dis-
eases were integrated into network models and visua-
lized using UniHI [18], Cytoscape [13]. The models
have been generated through several stages of screening
where in subsequent steps the pooled data have been fil-
tered, verified for authentication and most importantly,
validated with experimentally derived data to make the
output graph generated for different diseases meaningful
and interpretable. This work constructed four disease
networks (Additional file 2), each containing a set of
proteins that are associated with the diseases. The hub
nodes form the backbone of a network, they are consid-
ered to be an important measurement for the similarity
between protein interaction networks. Moreover, back-
bone network has also been shown to be highly con-
served in maintaining biological function of the cell
[22]. Within the networks the “hubs” are defined as the
protein nodes with degrees > 15 in a disease network
[22]. The generated model of T2D has predicted the
highest number of hub proteins among the four diseases
we studied so far, probably due to the fact that it has
the highest number of genes that were used to construct
the disease network (Additional file 3).

Molecular linkage among T2D, HT, OBS and Inflammation
To investigate the molecular cross-talk within these
interrelated disease mechanisms, the individual disease
networks were looked thoroughly at their ‘hubs’ to
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understand the underlying connections between genes
and the disease mechanism. This was done in three
phases. First, we developed the gene-disease network
using the text miner Ali-Baba [8] (Figure 5). Thorough
analyses of the gene patterns and their relatedness

within different diseases, the way they were connected,
the cross talk - a gene list was generated containing the
connections in all four diseases. In the second phase,
the PPI patterns around the selected hub genes were
studied extensively using UniHI [9], validated the
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connections using Gene Ontology (GO) [23] and Geno-
pedia and Phenopedia [14] databases for annotation
(Figure 6 and Additional file 4). And finally in the third
phase, the selected genes were cross-validated and clus-
tered using the pathway database KEGG [10] (Figure 7).
During the whole process a list of 42 co-regulated genes
were analysed and these candidate genes were signifi-
cantly clustered in 19 pathways. The candidate genes
were looked for common interaction partners and the
highly integrated gene regulatory network was generated
(Figure 8).

Discussion

In this study, a text mining approach was used to iden-
tify the disease-related genes of T2D and HT. Along the
way of querying, genes associated with oxidative stress
(reactive oxygen species, ROS) and OBS was also
included based on- the two diseases are ‘connected’ if
they have been studied for association with the same
gene(s) hypothesis. These data were further analysed
using various novel bioinformatics tools and resources
to identify the key candidate hub genes associated with
various diseases.
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Figure 8 Gene regulatory network around the highly inter-connected key hubs.

Literature-based annotation analyses showed that all
these diseases T2D, HT, OBS are somehow correlated
with oxidative stress and inflammation (Figure 5).
Further PPI studies, generated the disease-gene network
within T2D, HT, OBS, ROS and Inflammation. In this
work, the genes for inflammation were never pooled
separately but from the cross-talk between the networks
of T2D, HT and OBS, the strong co-regulated inflam-
mation genes were identified. Although at this point it
was not completely understandable how ROS or inflam-
mation plays role in disease mechanism. Further path-
way-based investigation, using both Genopedia [14] and
KEGG [15] provided more insights about the roles of
these genes in association with different disease pheno-
types. This work predicted the involvement of about 20
enriched pathways, some of which are very commonly
involved in diabetes and/or obesity like the insulin sig-
naling, PPAR signaling, Adipocytokine signaling, MAPK
signaling, Jak-STAT signaling pathways. But along them,
the involvement of Wnt signaling, p53 signaling, ErbB
signalling, TGF-beta signalling, Focal adhesion, toll-like

receptor signaling pathways were predicted, whose asso-
ciations are more widely linked with cancer metastasis
(Figure 8 and Additional file 4).

From pathway analysis (Figure 7), the involvement of
p53 or Wnt signaling pathway shed new light to focus
at the PPI networks. After further filtering of the data
(through network and/or PubMed interaction partners,
IPs) along with cross validation through literature anno-
tation, the most interesting 46 candidate ‘hub’ genes
were identified. Careful investigation around these ‘hubs’
provide more meaningful insights about the cross- talk
within gene-disease networks in terms of disease pheno-
type association with ROS and inflammation (Figure 6).
From network analysis, common IPs revealed that all
the diseases T2D, HT, OBS are linked via two common
gene regulatory cascades: (i) EP300/TP53/MYC/
CDKN1A/STAT3/CXCR4 and (ii) PPARG/PPARA/
IGF1R/AKT1/LEP/LEPR. Basically, these regulatory
routes connect insulin signaling pathway through oxida-
tive stress and inflammation. From investigating the
‘hub’ gene network connections and broadly studying
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the interconnection, one hypothesis could be, the com-
ponents of the second routes can only be regulated
through the first or vise-versa (Figure 8).

To further investigate the hypothesis, and to address
how the connections regulated within the network that
could be associated with genesis of inter-connections
between various diseases, the ‘gene-links” associating two
or more hubs were identified. In course of the analysis,
regulations around EP300, PPARG, PPARA, STATS3,
IGF1IR, CXCR4, MYC, TP53, CDNK1A, CDKN2A,
PCAF, HIF1A, CREBBP, CEBPB, RELA, HSP90AA1,
MAPK3, MAPKS, JAK2, JAK3, PTPN11, TFAP2A, LEP,
TCF7L2, CTNNBI1, FOXO1A, FOXO3A and GSK3B
seem to play crucial roles in the regulation of T2D and
other related disorders (Figure 8). Interestingly, the
genes like GSK3B, PCAF, HIF1A, CREBBP, CEBPB,
RELA, TCF7L2, CTNNBI1, MYC, TP53, CDNKI1A are
known as important role players in Wnt and p53 signal-
ing pathways, which would provide a putative link
between T2D and certain types of cancer.

The molecular events leading to -cell failure in the
diabetic environment, in particular high levels of glucose
and free fatty acids, exert toxic effects on the B-cell [24].
A number of signaling pathways have been implicated
in B-cell failure, including insulin signaling [25] and oxi-
dative stress [26]. Ectopic overexpression of the Wnt
target gene c-myc in mice has been shown to cause
B-cell apoptosis and diabetes [27]. Also extensive recent
investigations have revealed the existence of molecular
crosstalk between insulin and Wnt signaling pathway
[28-32]. A number of genetic studies have confirmed
that TCF7L2, a direct downstream target of 3-catenin of
the Wnt pathway, to be involved in B-cell dysfunction
and the etiology of T2D [24,33]. There is clear evidence
that TCF7L2 regulates insulin secretion rather than
insulin action.

A central feature of the Wnt/B-catenin pathway is the
regulation of cytosolic B-catenin protein levels via a
destruction complex containing glycogen synthase
kinase-3b (GSK-3b). GSK-3B has long been known as
an important mediator for impaired insulin action on
peripheral tissue and in the development of insulin
resistance [34]. However, only recently, studies have
shed light on the growth regulatory properties of GSK-
3B in B-cells. Two elegant studies from the same group
reported recently that GSK-3B overexpression in mice
induces B-cell mass restriction and the development of
diabetes [35] and that the genetic disruption of GSK-3B
in B-cells results in increased (-cell mass in those trans-
genic mice [36].

Importantly, B-catenin is able to interact with the
FoxO family of transcription factors, which defend
against oxidative stress by stimulating the transcription
of oxidant scavenging enzymes such as superoxide
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dismutase and catalase [37]. Since FOXO and TCF pro-
teins compete for a limited pool of B-cat, enhanced
FOXO activity during ageing and oxidative stress may
attenuate Wnt-mediated activities. The decrease of
B-catenin not only attenuates Wnt signaling but also
unleashes the expression of PPARy, which is normally
suppressed by B-catenin [38-40]. Oxidative stress acti-
vates the FoxO family of transcription factors, which in
turn attenuate p-catenin/TCF-mediated transcription,
leading to derepression of PPARy transcription. The
increase in PPARy levels serves as an additional
[-catenin sink by sequestering it and activating its pro-
teasomal degradation [41].

Adipogenesis is also affected by oxygenation, low oxy-
gen tensions activate HIF (hypoxia inducible factor)-1a,
inhibiting differentiation by repressing PPARy (peroxi-
some proliferator-activated receptor y) [42] whereas
higher oxygenation tends to induce differentiation
[43-45]. HIF-1a has been shown to compete with
TCF4/TCF7L for direct binding to B-catenin [46].
A recent work showed that Wnt signaling (which is up-
regulated in high oxygen) has been associated with
increased B-cell proliferation [47]. Thus, the increase in
Wnt activity associated with higher oxygen availability
might have the twofold effect of increasing (a) endocrine
cell mass by self replication and (b) exocrine cell mass
by progenitor cell expansion [48].

Another study showed the involvement of p53 expres-
sion in adipose tissue is crucial in the development of
insulin resistance. The work showed in animal model
with T2D-like disease, excessive calorie intake led to the
accumulation of oxidative stress in the adipose tissue
and promoted increased activity of senescence-asso-
ciated B-galactosidase, increased expression of p53 and
increased production of pro-inflammatory cytokines.
Conversely, up-regulation of p53 in adipose tissue
caused an inflammatory response that led to insulin
resistance [49]. It has also been reported that production
of reactive oxygen species (ROS) is selectively increased
in the adipose tissue of obese mice and that increased
oxidative stress in fat is a key mechanism underlying the
occurrence of insulin resistance related to obesity [50].
The ROS-induced p53 activation causes NF-xB-
dependent induction of inflammatory cytokines and
thus accelerates the development of diabetes.

Once oxidative stress is initiated it affects multiple
systems. By reaction of ROS with NO, oxidative stress is
increased while NO is diminished, thus promoting
inflammation and endothelial dysfunction [51]. Specifi-
cally, ROS were implicated in mitogen-activated protein
kinase (MAPK) pathways, which induce activation of
various nuclear transcription factors, such as nuclear
factor (NF)-xB, activator protein (AP)-1, hypoxia-induci-
ble factor (HIF)-1a, sterol regulatory element binding
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proteins (SREBPs) and GATA-4 [52-54]. NF-xB partici-
pates in obesity and the metabolic syndrome; it induces
inflammatory and atherosclerotic consequences. Obesity
increases the formation of reactive oxygen species in fat
cells, and ultimately results in activation of the p53
tumor suppressor, inflammation and the promotion of
insulin resistance [55]. Also, insulin resistance is affected
by oxidative stress and, when combined with up regu-
lated NE-xB activity, may promote type 2 diabetes. Con-
versely, hyperglycaemia was also shown to trigger
increased formation of ROS via glucose auto-oxidation.
Accordingly, consumption of a high free-glucose diet
promoted the development of oxidative stress [56-58].
HIF-14, is also associated co morbidities such as hyper-
tension [59,60] and hyperlipidaemia [61]. High glucose
concentration up-regulates SREBP-1c and insulin resis-
tance [62]. However, none of these mechanisms are yet
fully elucidated [63].

Proposed hypothetical model of mechanism

Based on an elaborate study of the key ‘hubs’ regula-
tions, their association, along with detailed literature
reviewing - in this work we put the puzzle pieces
together and proposed a hypothetical mechanism for
co-regulation of various inflammatory diseases like T2D,
HT and OBS (Figure 9). From the generated regulatory
networks around key ‘hub’ genes it is very much visible
that via EP300 the main pathways like insulin signaling,
PPAR signaling, calcium signaling, adipocytokine signal-
ing, Jak-STAT signaling pathway, MAPK signaling path-
ways that are well recognised in association with disease
like T2D, OBS and HT. Interestingly, the analyses of the
regulatory cascades showed that the genes involved in
main disease pathways are all connected and regulated
via the genes involved in Wnt-signaling and p53 signal-
ing pathways.

In detailed study of the gene-disease network and the
regulation around the ‘hubs’, this work suggests EP300/
TP53/CDKN1A/STAT3/TCF7L2/MYC/CXCR4 is the
main regulatory cascade that generates the highly con-
nected, co-regulated network of insulin signaling which
in turn, could be responsible for the genesis of molecu-
lar cross-talk within various diseases. It has been sug-
gested that insulin signaling crosstalk with Wnt
signaling, due to the existence of common downstream
target genes and the shared negative mediator GSK-3
[33]. However, mechanisms underlying this potential
crosstalk still remain unclear [33]. B-catenin, an intracel-
lular signaling molecule is essential for Wnt activation.
Without Wnt signal, B-catenin, is constantly phosphory-
lated and thereby inactivated by GSK3B, is eventually
degraded to prevent its accumulation. Inactivation of
GSK3B, in turn can no longer phosphorylate B-catenin.
This leads to nuclear translocation of f-catenin and
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subsequently, which coactivates TCF/LEF transcription
factors [64]. Our regulatory gene- network could fit all
those observations and explain a bit more these underly-
ing molecular mechanisms.

Wnts induce glucose-stimulated insulin secretion and
B-cell proliferation [65]. This signaling system might
senses insulin sensitivity via the regulator gene GDK3B
inactivation/activation (phosphorylation/dephosphoryla-
tion) by increasing insulin effects through AKT1/IGF1R/
STAT3/MYC/CDKN1A/TP53/EP300 cascade via acti-
vating Akt/PKB and inhibiting the MAPK pathways
(Figures 7, 8 and 9). In the absence of insulin, FOXOs
upregulate the expression of a set of target genes via
AKT1/IGF1R/CXCR4/STAT3/EP300/PPARG cascade,
thereby promoting cell cycle arrest, stress resistance and
apoptosis [65]. In the presence of insulin, FOXOs are
phosphorylated by AKT/PKB protein kinase and stay in
the cell cytosol [66]. In contrast to the effect on insulin
signaling, oxidative stress (ROS) induces the activation
of FOXO signaling [67]. This might be due to the acti-
vation via the Jak/STAT signaling pathway [68]. T2D,
age, obesity- all increases ROS that in turn increases
lipid oxidation, via ROS/FOXO/PPARG/PPARA/B-cate-
nin regulation leads to PPARG activation and repression
of Wnt-signaling. So, when PPARG activates it attenu-
ates Wnt-signaling, which induces lipid oxidation that in
turn increases ROS. Increased oxidative stress dimin-
ished Wnt signaling that may leads to 3-cell destruction
via FOXO apoptosis [69]. Regulatory gene network
(Figure 8) suggests that one possibility could be via
CREBBP regulation on MYC/TP53/EP300/TCF7L2 cas-
cade, the system might sense signal to FOXO. Since
FOXO and TCF compete for limited pool of B-cat,
enhanced FOXO activity during oxidative stress may
attenuate WNT- mediated activation [70]. Thus, oxida-
tive stress lead to FOXO mediated gene transcription
and reduced TCF mediated gene transcription.

Conversely, activation of Wnt pathway through inacti-
vation of GSK3B, stabilise -catenin, that regulates -
cell proliferation via TCF7L2, a down stream effector of
this cascade [69]. This in turn coactivates PPARG
mediated transcription on the glucokinase gene promo-
ter. Glucokinase is the key regulator of glucose-sensing
in pancreatic beta-cells, thereby offering a model for the
adipocyte-induced hyper secretion of insulin [71].
Although TCF7L2 expression was positively correlated
with the expression of INS, which encodes insulin, it
was inversely correlated with glucose-stimulated insulin
release [72]. There is clear evidence that TCF7L2 regu-
lates insulin secretion rather than insulin action [65].
Thus, B-catenin interaction with TCF7L2 with nuclear
co-activators, such as EP300, results in the stimulation
of Wnt or B-cat/TCF downstream target gene transcrip-
tion [73-75]. From the gene regulation network, it can
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be seen that insulin may also stimulates the transcrip-
tion via MYC, a known downstream target of Wnt
signaling, via a PI3K-dependent but Akt/GSK3B-
independent mechanism, via IGFIR/MYC/TP53/EP300
regulatory cascade. Indeed, several other studies have
also reported the stimulatory effect of insulin or IGF1
on B-cat nuclear localization and cat/TCF mediated
gene transcription [29,33,76,77]. Thus, fitting all these
evidences in the proposed hypothetical model (Figure
9), it can be suggested that insulin signaling may cross-
talk with Wnt signaling, due to the existence of com-
mon downstream target genes, the shared negative
mediator GSK3B, and insulin resistance are capable of
explaining the association of T2D co-occurrences with
other inflammatory disease like HT, and OBS.

T2D and/or OBS can develop independently, due to
genetic, behavioral or lifestyle-related variables but both
T2D and OBS lead to oxidative stress generation [78].
The pathogenic mechanisms by which diabetes and oxi-
dative stress induce inflammation are not certain at the
present time [79]. But the predicted model, at least pro-
vided much more logical explanation to fit what so far
been known about the inflammation mediated conse-
quences. Excessive calorie intake led to the accumulation
of oxidative stress with T2D that can promote increased
activity of senescence-associated P-galactosidase,
increased expression of p53 and increased production of
proinflammatory cytokines. Conversely, upregulation of
p53 in adipose tissue can cause an inflammatory response
that led to insulin resistance [79]. Also oxidative stress
through TCF7L2/NF-kB/MAPK/HIF1A/SREBP regula-
tory cascade via insulin, MAPK and Calcium signaling
pathways, may activate inflammatory responses than in
turn causes insulin resistance. Hyperglycemia could lead
to increase lipid oxidation and endothelial dysfunction
regulated through PPARG/STAT3/CXCR4/ICAM/
VCAM cascade via Chemokine, Adipocytokine and Jak-
STAT signaling pathways that could cause increase
expression ICAM1, VCAMI1 levels which in turn
increases inflammation and obviously, increases oxidative
stress [80,81]. Once oxidative stress is initiated it affects
multiple systems-via AKT1/NOS3 regulation. Increased
oxidative stress can diminish NO production, thus pro-
moting inflammation and endothelial dysfunction [51].
Inflammatory pathway activation will lead increased
expression of adhesion molecules, cytokines and asso-
ciated with increased risk of HT. Obesity, insulin resis-
tance and hypertension commonly cluster with other risk
factors for CDV or chronic kidney disease to form the
metabolic syndrome [65].

Conclusion
It can be hypothesised from the generated model (Figure 9)
that oxidative stress is a direct cause for the Wnt pathway
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activation via the high glucose-induced -catenin activation
through a highly inter-connected gene regulatory cascade,
where EP300 plays a role as a key regulator in T2D. Even
though these predictions need further experimental valida-
tion, the hypothetical model presented in this study could
be a starting point to visualize in a systems approach
understanding the molecular cross- talk between diseases.
The findings provide a novel integrated approach for
understanding the pathogenesis of various co-associated
diseases by combining the power of pathway analysis with
gene regulatory network evaluation. The integrated net-
work model developed by this work provides useful func-
tional linkages among groups of genes and thus addressing
how different inflammatory diseases such as obesity, dia-
betes, and hypertension are connected and propagated at
genetic level. It is anticipated that derived models will be of
great benefit to a wide research audience, including those
involved in disease biomarker identification and drug
development.

Additional material

Additional file 1: Statistics of the reported genes associated with
T2D, HT, OBS and ROS.

Additional file 2: Complete ‘text-mined’ data set.
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Phenopedia.
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