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Abstract
Background: Lung cancer with EGFR mutation was shown to be a specific clinical entity. In order to
better understand the biology behind this disease we used a genome wide characterization of loss of
heterozygosity and amplification by Single Nucleotide Polymorphism (SNP) Array analysis to point out
chromosome segments linked to EGFR mutations. To do so, we compared genetic profiles between EGFR
mutated adenocarcinomas (ADC) and KRAS mutated ADC from 24 women with localized lung cancer.

Results: Patterns of alterations were different between EGFR and KRAS mutated tumors and specific
chromosomes alterations were linked to the EGFR mutated group. Indeed chromosome regions 14q21.3
(p = 0.027), 7p21.3-p21.2 (p = 0.032), 7p21.3 (p = 0.042) and 7p21.2-7p15.3 (p = 0.043) were found
significantly amplified in EGFR mutated tumors. Within those regions 3 genes are of special interest ITGB8,
HDAC9 and TWIST1. Moreover, homozygous deletions at CDKN2A and LOH at RB1 were identified in
EGFR mutated tumors. We therefore tested the existence of a link between EGFR mutation, CDKN2A
homozygous deletion and cyclin amplification in a larger series of tumors. Indeed, in a series of non-small-
cell lung carcinoma (n = 98) we showed that homozygous deletions at CDKN2A were linked to EGFR
mutations and absence of smoking whereas cyclin amplifications (CCNE1 and CCND1) were associated to
TP53 mutations and smoking habit.

Conclusion: All together, our results show that genome wide patterns of alteration differ between EGFR
and KRAS mutated lung ADC, describe two models of oncogenic cooperation involving either EGFR
mutation and CDKN2A deletion or cyclin amplification and TP53 inactivating mutations and identified new
chromosome regions at 7p and 14q associated to EGFR mutations in lung cancer.

Published: 12 June 2008

BMC Medical Genomics 2008, 1:25 doi:10.1186/1755-8794-1-25

Received: 18 January 2008
Accepted: 12 June 2008

This article is available from: http://www.biomedcentral.com/1755-8794/1/25

© 2008 Blons et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 13
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18549475
http://www.biomedcentral.com/1755-8794/1/25
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Medical Genomics 2008, 1:25 http://www.biomedcentral.com/1755-8794/1/25
Background
Lung cancer is the leading cause of cancer-related deaths
in the western world [1]. Non-small cell lung cancer
(NSCLC) accounts for approximately 85% of the cases
and represents a heterogeneous group mainly consisting
of adenocarcinoma (ADC), large cell carcinoma (LCC)
and squamous cell carcinoma (SCC). The incidence of
subtypes has changed in the last decades with increasing
incidence of ADC. Moreover, while smoking remains the
major risk factor for lung cancer, a subgroup of patients
develop lung ADC without smoking history. It is not clear
whether lung cancer in non-smokers is increasing in west-
ern countries but it is obvious that it has particular clinical
and biological features. Population based studies showed
that lung cancer in non-smokers occurs preferentially in
women with almost 20% of non-smoker lung cancer diag-
nosed in women versus 2.5% in men [2]. Different studies
have shown that genetic abnormalities can be specifically
identified in cancer from non-smokers. Indeed we and
others showed that KRAS mutations were linked to
tobacco consumption whereas EGF receptor (EGFR)
mutations were found in non smokers [3-5]. The develop-
ment of EGFR targeted therapies demonstrated that
patients with major clinical response were those that had
never smoked, had ADC with bronchioloalveolar compo-
nent, were women and had EGFR mutations [6-8]. The
biology underlying the pathogenesis of the disease may be
different from that of smokers and risk factors have not
been clearly identified although environmental etiologies
are suspected especially in Asians [9]. Transformation of a
normal phenotype into a malignant phenotype requires
accumulation of multiple genetic and-or epigenetic
changes resulting in growth advantage.

The genetic alteration proved to be linked with ADC from
non-smokers is the presence of EGFR activating muta-
tions. In order to improve our knowledge of lung cancer
biology in non-smokers, one of the first questions to
answer is: what are the molecular alterations associated to
EGFR mutations in lung cancer?

Lung cancer develops as a result of multiple genetic alter-
ations. Loss of heterozygosity (LOH) and gains of chro-
mosome segments are common mechanisms of disease
progression. Recently, high-density oligonucleotide-
based single polymorphism have been used to quantify
chromosome copy number and has been proved to be
efficient [10-12]. In an attempt to identify genetic altera-
tions associated with EGFR mutations, we used genome
wide SNP assay covering 50000 SNP loci to screen for
regions of allelic imbalance (amplified or LOH regions) in
a panel of 13 EGFR mutated ADC and 11 non-EGFR
mutated ADC.

Then, in a second part, we focused on cell cycle genes that
were found to be differentially involved between groups
and screened a large series of 98 NSCLC for genetic alter-
ations at CCND1, CCNE1, CDKN2A and RB1. Alterations
were studied according to other known mutations (EGFR,
ERBB2, BRAF, KRAS, TP53 and STK11). This work led to
the characterization of two different models of oncogenic
cooperation one linked to smoking and the other not.
Moreover, we identified four chromosome regions at 14q
and 7p specifically amplified in EGFR mutated ADC.

Patients and methods
Patients with primary lung cancers were enrolled in this
study according to French laws and have been previously
described [4]. Briefly, patients had surgery for non-small
cell lung cancer, no neoadjuvant treatment and were man-
aged to the Georges Pompidou European Hospital in
Paris, France from 2003 to 2004. All tumors but numbers
134, 135, 177 and 246 had been characterized for muta-
tions in EGFR, KRAS, BRAF, ERBB2, ERBB3, PIK3CA, TP53
and STK11 [4]. STK11 mutations have not been previ-
ously published. Patient characteristics are summarized in
Table 3. DNAs were extracted after pulverization in liquid
nitrogen and protein kinase digestion using Qiamp tissue
kit (Qiagen, Les Ulis, France). Twenty-four DNAs (13 with
classic EGFR mutations, 11 without) and 6 non-tumor
DNAs were selected for SNP array analysis. All tumors
selected were from women.

Single Nucleotide Polymorphism Array Analysis
Genechip® Mapping 50K-Xba array was used for this anal-
ysis. Preparation of DNA targets, labelling, hybridization,
washing, staining and scanning was done according to the
manufacturer's instructions (Affymetrix, UK) by Partner-
Chip (Evry, France).

Data were analyzed using Copy Number Analyser for
Affymetrix Gene Chip Mapping (CNAG 2.0) software
[13]. We selected randomly 18 independent subjects from
Mapping 100k HapMap Trio Dataset provided by affyme-
trix. Indeed, this software/algorithm uses a set of normal
reference individuals and do not require the use of a
paired normal sample to perform the analysis.

Data from CNAG were export in aCGH sotfware (R pack-
age) that was used for plot performance and statistical
comparison of EGFR mutated and non-mutated tumors.

Quantitative PCR experiments
Validation of homozygous deletions (CDKN2A) and
regions with focal amplification (CCND1 and CCNE1)
was done on the 24 tumors screened by SNP array and
extended to a total of 98 NSCLC (Table 2). Human serum
albumin (HSA) was used as the reference gene. DNA con-
centrations were determined using ND-1000 spectropho-
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tometer Nanodrop technology and were normalized to
12,5ng/ul. Real time quantitative PCR using TaqMan
probes was performed using an ABI Prism 7900 sequence
detection system (Applied Biosystems, Courtaboeuf,
France) with the software program SDS 2.0 (Applied Bio-
systems). Each assay was run on a 384 plate, tumor DNAs,
normal controls (n = 6) and no template controls were
run in triplicates for CCND1, CCNE1, CDKN2A and HSA.
Primers and probes were described elsewhere [14].
Homozygous deletions at DCC, DSG2 and DSC3 as well
as copy number changes of the HDAC9, TWIST1 and
ITGB8 region were validated by real time PCR for the 24
tumors screened by SNP array. Primers and probes where
designed with Primer Express 2.0 software program
(Applied Biosystems) (see Additional file 1). All primers
were purchased from Operon (Cologne, Germany) and
probes from Applied Biosystems.

The PCR mix consisted of ABsolute™ QPCR MIX 1×
(ABgene, Courtaboeuf, France), primers 300 nM, probe
200 nM, H20 and 25 ng of DNA template in a final vol-
ume of 10 ul. Cycling condition were denaturation 95°C
for 15 min and 40 cycles of 95°C, 15 sec followed by
60°C, 15 sec. Quantification was done by normalizing the
results to those of HSA. The normalized amount of gene
in tumor samples was determined by designating the aver-
age of ΔCt of 6 non-tumor tissues as calibrator. 2 × 2-ΔΔCt

represented an estimation of the number of gene copy in
tumor tissues.

The cutoff value was 2 × 2-ΔΔCt ≤ 0.6 for homozygous dele-
tion and 2 × 2-ΔΔCt ≥ 4 for amplifications.

STK11 Mutations screening
Exons 1 to 9 were screened by direct sequencing. Primers
used for the amplification and sequencing of each exon
and intron-exon junctions and PCR conditions are availa-
ble upon request.

Statistical analysis
Fractional allelic loss (FAL) and fractional allelic amplifi-
cation (FAA) were calculated for each tumor as the
number of chromosome arms with either loss of hetero-
zygosity or amplifications divided by the number of chro-
mosome arms tested (41). Mean FAL and FAA were
compared using student T test. Qualitative variables were
compared using chi square test or Fisher exact test when
necessary. All tests were performed using STATA 7.0
(StataCorp LP, College Station, TX) aCGH software was
used to test the existence of meaningful differences
between focal chromosome alterations in EGFR mutated
and non-mutated tumors. False discovery rate test (FDR)
has been used to assess p values. FDR represents the
expected percentage of false positive among the claimed
positive and estimates global error for multiple testing sit-

uations. Therefore p values were adjusted to the number
of tests performed.

Results
Array global analysis
Mapping genome wide chromosomal alterations in EGFR
mutated lung ADC (n = 13) versus non-mutated ones (n
= 11) had two different objectives. First, a global compar-
ison of allelic imbalances and second, a targeted analysis
of specific loci to point out genes implicated in the onco-
genesis of one subtype or the other. It is to note that, in an
effort to homogenize both groups, non-EGFR mutated
ADC are all KRAS mutated. Fractional allelic loss (FAL)
and fractional allelic amplification (FAA) were calculated
as the number of chromosome arm with LOH or ampli-
fied loci divided by 41 chromosome arms.

Mean FALs were equal to 0.16 (± 0.08) and 0.09 (± 0.05),
(p = 0.024) in the EGFR and the KRAS mutated group
respectively. Chromosome arms that were involved in
LOH (copy number ≤ 1) in more than 25% of tumors
were, in the EGFR mutated group 6q, 7q, 8p, 9p, 10q, 12p,
12q, 13q, 15q and 18q, and in the KRAS mutated group
3q, 5q, 8p and 19p. A single copy of chromosome 9, 13,
15, 18 and 22 was found in at least one EGFR tumor, no
monosomy was found in the KRAS group (Figure 1a and
1b).

Concerning amplifications, mean FAAs were equal to 0.50
(± 0.19) and 0.33 (± 0.24), (p = 0.039) in the EGFR versus
the KRAS mutated group. Chromosome that had ampli-
fied regions (copy number ≥ 3) at high rates (> 50% of
tumors) were 1p-q, 2p, 3q, 5q, 7p-q, 8q, 14q, 17q, 21q
and Xp-q in the EGFR mutated group and 1q, 2p-q, 5p, 8q
and Xp-q in the KRAS mutated group (Figure 1a and 1b).

Array targeted analysis
Differential analysis between EGFR mutated and KRAS
mutated tumors using aCGH package [15] showed that
one region at 14q (p = 0.027) and three regions at 7p (p =
0.032, p = 0.042, p = 0.043) were statistically more fre-
quently amplified in the EGFR group (Figure 1c). Detailed
statistic analysis is shown as supplementary data (see
Additional file 2). Genes located in these regions are given
in Table 1. The gene located at 14q is a MAM domain pro-
tein. The MAM domain is present in many cell surface pro-
teins and is thought to be involved in cell-cell adhesion,
protein-protein interactions, and signal transduction,
whether this protein could be linked to carcinogenesis
remain to be studied [16]. Of the ones located at 7p21.1,
it is to note that HDAC9, TWIST1 and ITGB8 are potential
targets. Gene copy numbers at 7p21.1 were validated by
quantitative PCR using probes HDAC9 and ITGB8 in the
24 tumors and 7 cell lines were tested for copy number
changes using same probes (Calu6-H460-A549-H1299-
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H1650-H1975-H358), both cell lines with EGFR muta-
tion were found amplified (H1650-H1975) versus one
out of five without EGFR mutations (H358). EGFR is
located at 7p11.2, among tumors with EGFR mutations,
one has no copy number alteration at 7p, 9 showed con-
comitant 7p11.2 and 7p21.1 amplifications (>3) and 3
had a localized amplification, 2 at 7p21.1 and 1 at
7p11.2. EGFR amplifications were not statistically related
with EGFR mutation but 5/13 in the EGFR group versus 1/
11 in the KRAS group had estimated copy number > 4.

Regardless of statistical difference between the two
groups, focal amplifications and homozygous deletion
are of special interest as they may indicate oncogenes or
tumor suppressors. Recurrent regions of deletions and
focal amplifications were defined as segments of at least 5
SNP loci in more than 2 tumors.

A total of 58 regions with focal amplification were identi-
fied. Among them 22 regions were found exclusively in

EGFR mutated tumors versus 2 in KRAS mutated tumors.
Genes potentially involved in carcinogenesis located in
these regions are listed as supplementary material (see
Additional file 3), AFF3, LAF4, LRRC1, SNW1, FGF7, PPL
and CTAGE1 for EGFR mutated tumors and MYST3,
IKBKB, DKK4 for KRAS mutated tumors. Regions of
amplifications common to both groups delineated by the
SNP array included BCL9, FGF10, IL31RA, PLK2, WISP1,
HTERT, CCND3, EFGR, MYC.

Homozygous deletions were identified at chromosome
regions 2q36.3, 9p21.1, 12q13.13, 18q12.1 and 18q21.2.
The 9p21.1 locus contains CDKN2A and the 18q21.1 con-
tains DCC, both are well known tumor suppressors.
Genes in the 12q13.13 and 2q36.3 regions have not been
linked to cancer up to now and the 18q12.1 region con-
tains a cluster of genes coding desmosomal proteins. All
homozygous deletions were found in the EGFR mutated
group (Table 2). For the 24 tumors, quantitative PCR was
ran to estimated gene copy number at CDKN2A, DSG3,

DNA copy number alterations by SNP array analysis.Figure 1
DNA copy number alterations by SNP array analysis.  Figure 1 represents the fraction of the samples with copy 
number amplification of at least  three copies (green) and copy number reduction (red) across all chromosome SNPs; in the  
EGFR non-mutated/KRAS mutated group (A) and the EGFR mutated/ KRAS non-mutated  group (B). (C) Statistical compari-
son of both groups showing regions of amplification  20  statistically linked to EGFR mutated tumors (black arrows). False dis-
covery rate (FDR) has  been used to estimate global error for multiple testing situations.

Fig 1a
KRAS mutated

Fig 1b 
EGFR mutated

Fig 1c 
Statistical comparison of tumour groups
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DSC2 and DCC and validated the results of the SNP Array
(see Additional file 4).

Cell cycle related genes and lung carcinogenesis
The presence of CDKN2A homozygous deletion was
restricted to the EGFR group and concerned 3 tumors out
of 13 while LOH at this locus was present in 4 EGFR
mutated tumors versus 2 non-mutated ones. Furthermore,
since LOH at RB1 was restricted to EGFR mutated tumors
we made the hypothesis that alterations of the G1-S check
point could be different in EGFR mutated tumors as com-
pared to non-mutated ones. Differences at CDKN2A and
RB1 did not reach statistical significance at the array level

however it deserved to be confirmed in a larger series of
NSCLC and enlarge to other key regulators as cyclins.
LOH at RB1 locus clustered to the EGFR group, therefore
we screened the entire coding sequence and exon-intron
boundaries for alterations in the subgroup of 13 EGFR
mutated tumors. As no mutation was identified in this
subgroup of tumors, RB1 sequencing was not done on the
entire series. Then, CDKN2A homozygous deletions,
CCNE1 and CCND1 amplifications were analyzed by real
time quantitative PCR on a series of 98 NSCLC including
the 24 tumors previously typed by SNP array. All tumors
had been characterized for EGFR, ERBB2, PIK3CA, BRAF,
KRAS and STK11 mutations. Briefly, 13 and 6 NSCLC had

Table 1: Shows regions of focal amplifications analyzed by Xba1 50000 SNPs array (Affymetrix) that  are significantly linked to EGFR 
mutated tumors.

Base position 
start

Base position 
end

Chromosome 
Band

Genes within 
the region

NAME Known functions

46489396 47088012 14q21.3 MAMDC1 MAM DOMAIN 
CONTAINING1

MAM domain containing protein

11727815 13456320 7p21.3-7p21.2 TMEM106B Hypothetical transmembrane 
protein

unknown

AK027618 Weakly similar to 
neurogenic locus notch3 

protein

unknown

AK075525 Weakly similar to 
UROMODULIN 

PRECURSOR

unknown

BC075797 cDNA clone MGC:87550 unknown
CR592342 cDNA clone MGC:87550

SCIN SCINDERIN Organization of microfilament network
ARL4 ADP-ribosylation factor-like 

4A
ADP-ribosylation factor family of GTP-

binding protein
11120441 11377580 7p21.3 PHF14 HD finger protein 14 

isoform 1
unknown

BC040327 Homo sapiens cDNA clone 
IMAGE:4830466

unknown

18006698 20386036 7p21.1-7p15.3 PRPS1L1 PRPS1L1 Phosphoribosyl pyrophosphate 
synthetase 1-like

HDAC9 Histone deacetylase 9 
isoform 4

Histone acetylation/deacetylation alters 
chromosome structure and affects 
transcription factor access to DNA

TWIST1 TWIST1 The protein encoded by this gene is a 
bHLH transcription factor. Basic helix-
loop-helix (bHLH) transcription factors 

have been implicated in cell lineage 
determination and differentiation.

FERD3L Nephew of atonal 3 N-TWIST basic 
(helix-loop-helix protein)

TWISTNB TWIST neighbor DNA-directed RNA polymerase I 
subunit RPA43-transcription

MGC42090 Hypothetical protein 
LOC256130

unknown

7A5 Putative binding protein 7a5 unknown
ITGB8 integrin, beta 8 precursor This gene is a member of the integrin 

beta chain family. Integrin complexes 
mediate cell-cell and cell-extracellular 
matrix interactions and this complex 
plays a role in human airway epithelial 

proliferation.
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CCND1 or CCNE1 amplification respectively and 8
tumors had homozygous deletion at CDKN2A locus
including the 3 previously found in array analysis (Table
3).

Relation between cyclin amplification and 
clinicopathological parameters
A significant association was found between CCND1
amplification and tobacco exposure (p = 0.023) and TP53
mutations were linked to CCNE1 (p = 0.006), or CCND1
(p = 0.048) amplifications (Table 4). One tumor showed
simultaneous amplification of both cyclins.

Relation between CDKN2A homozygous deletion and 
clinicopathological parameters
CDKN2A homozygous deletions were significantly associ-
ated with EGFR mutations (p = 0.002) and absence of
tobacco exposure (p = 0.012). One tumor had CDKN2A
homozygous deletion and CCNE1 amplification (Table
4). Three tumors from smokers had CDKN2A
homozygous deletion, one had a STK11 and the other a
PIK3CA mutation. It suggested that an activation of the
EGFR/PI3K/AKT/mTOR pathway could be linked to
CDKN2A homozygous deletion in lung cancer regardless
of smoking status. All together, 8 tumors out of 9 with
CDKN2A homozygous have EGFR/PI3K/AKT/mTOR
pathway alterations.

Discussion
In lung cancer, EGFR inhibitors have been shown to be
efficient in tumors with activating mutations of the recep-
tor. This molecular alteration defines a subgroup of
patients with specific clinicopathological features. The
most striking one is the fact that patients are mostly non-
smokers. Understanding the carcinogenesis pathway that
drives lung carcinogenesis in non-smokers is therefore of
major interest. The present work represents the first com-
parative study of genome wide allelic imbalance between
EGFR mutated lung ADC and KRAS mutated ADC. In our

work, EGFR mutated tumors are from non-smoking
women with ADC, the control group was selected among
smoking women with ADC and without EGFR mutations.
As most of them have KRAS mutations, we chose to con-
sider for the SNP array only tumors with KRAS mutations
in order to have a homogenous control group. Moreover,
it was already suggested that KRAS and EGFR mutations
were hallmarks of tobacco and non-tobacco induced lung
carcinogenesis [17]. Different reports showed that SNP
array technology provided the opportunity to assess DNA
copy number and LOH through the entire genome
[12,18-20]. The overall pattern of alterations seen in this
study is reliable with previous lung ADC studies. As
already noted, frequent chromosome gains are found at
1q, 5p, 7p/q, 8q and 14q and losses at 6q, 8p, 9p, 13q,
18q and 19p [11,20-22]. But new regions of homozygous
deletion have been found in EGFR mutated tumors espe-
cially at 18q involving the DCC gene and a cluster of
desmosomal proteins. New regions of focal amplification
at 7p and 14q have also been delineated that encodes
potential oncogenes [22].

Using this technology, we showed that genome wide
allelic imbalance patterns are different in tumors from
non-smokers when compared to that of smokers. Indeed,
more LOH and amplified regions were found in the EGFR
mutated group when considering either all regions > 5
SNPs or entire chromosome arm losses or amplifications.
This fact has already been suggested in a previous work
using microsatellite markers and showing that tumors in
non-smokers had more alterations than that of smokers
[23]. The mechanisms leading to this increased chromo-
somal instability is not yet understood. In this series TP53
mutations were equally distributed in both groups there-
fore the impact of TP53 on genome stability cannot be
discussed. Other mechanism such as repair defects could
be involved in increased chromosomal instability in non-
smokers.

Table 2: Regions of homozygous deletions identified by SNP array in this series. 

CHR CYTOBAND Deletion 
START

Deletion 
END

No OF T 
WITHOUT 
EGFR MUT

No OF T WITH 
EGFR MUT

KNOWN 
GENES 

WITHIN 
REGIONS

GENES

2 2q36.3 227428860 228480608 0 2
(1LOH+1HOMO)

3 RHBDD1 COL4A4 COL4A3

9 9p21.1 21701815 22685593 2 (LOH) 7
(4LOH+3HOMO)

3 CDKN2A/2B MTAP DMRTA1

12 12q13.13 49778776 50467951 1(LOH) 1HOMO 3 TFCP2 POU6F1 DAZAP2
18 18q12.1 25534701 27580619 2(LOH) 3

(2LOH+1HOMO)
3 CDH2 DSC3 DSG2

18 18q21.2 46939466 49883403 2(LOH) 4
(3LOH+1HOMO)

2 RKHD2 DCC

Homozygous  deletion were validated by real time quantitative PCR for CDKN2A, DCC, DSC3 and DSG2.
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s265X
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5 Table 3: Describes the population studied in terms of clinico-pathological features, gene mutations  (EGFR, ERBB2, PIK3CA, KRAS, BRAF an
(CCND1,  CCNE1 and CDKN2A) analyzed by real time PCR. 

N° Sex Age at 
diagnosis

Smoker TNM Tumor Type EGFR TP53 KRAS ERBB2 PIK3CA ST

2 F 49 Yes T2N0 BAC 0 0 0 0 0 c65
pF

3 F 61 Yes T3N2 ADC 0 0 0 0 0
4 F 42 Yes T1N0 ADC 0 C743G>T, pR248L c34G>T pG12C 0 0
5 F 80 No T4N2 ADC 0 0 0 0 0
6 F 41 Yes T2N2 LCC 0 c358A>T, pK120X 0 0 0
7 F 39 Yes T2Nx LCC 0 c796G>T, pL266X 0 0 0 c15

pF
8 F 69 No T2N0 ADC/BAC 0 0 0 0 0
9 F 65 No T2N1 ADC 0 c452454del, FsP153G 0 0 0
10 F 79 No T4N0 ADC/BAC L858R 0 0 0 0
12 F 52 Yes T2N0 ADC/BAC 0 0 c35G>A pG12D 0 0 C50

pQ
13 F 77 No T2N0 ADC 0 0 0 0 0
15 F 73 Yes T2N0 BAC 0 0 c35G>T pG12V 0 0
16 F 46 Yes T2N0 ADC 0 c614A>G, pY205C 0 0 0
17 F 84 No T2N0 ADC/BAC L858R 0 0 0 0
18 F 65 No T2N0 ADC/BAC c2241_2258del p747-

753del insQ747
c880delG, FsE294S 0 0 0

21 F 50 Yes T2N0 ADC/BAC 0 0 c34G>T pG12C 0 0
22 F 78 Yes T2N1 LCC 0 0 0 0 0 c59

pE
23 F 49 Yes T2N0 LCC 0 0 0 0 0 c107

pF
24 F 65 Yes T2N0 BAC 0 c574C>T, PQ192X c34G>T pG12C 0 0
25 F 55 No T2N0 ADC/BAC 0 0 0 0 0
26 F 73 No T2N2 ADC 0 c783-2A>G, 

SLPICEMUT
0 c2322_2323ins12, 

pM774_A775ins AYVM
0

29 F 61 No T2N1 ADC L858R 0 0 0 0
30 F 59 No T4N2 ADC L858R c258-280del, FsA86A 0 0 0
31 F 75 No T2N2 ADC c2240_2257del, p747-

753del insS747
0 0 0 0

32 F 68 Yes T2N0 ADC 0 c848G>C, pR283P 0 0 0
34 F 59 Yes T2N2 SCC 0 0 0 0 0
36 F 70 No T2N0 ADC 0 0 0 0 0
37 F 72 Yes T1NO SCC 0 0 0 0 0
38 F 60 Yes T2N2 ADC 0 c747G>T, pR249S c34G>T pG12C 0 0
39 F 75 No T2N0 ADC/BAC L858R c189G>T, pE62X 0 0 0
41 F 56 No T1NO ADC/BAC L858R 0 0 0 0
42 F 43 Yes T2N0 ADC 0 0 c35G>T pG12V 0 0 c58

pD
43 F 72 No T2N0 ADC c2310insAGCGTGG

AC p770insSVD
0 0 0 0

44 F 63 Yes T2N0 LCC 0 c743G>T, pR248L 0 0 0
45 F 60 Yes T2N0 ADC/BAC 0 c166G>T, pE56X 0 0 0
46 F 57 Yes T2N0 ADC 0 0 0 0 0
48 F 49 Yes T3N0 ADC 0 0 0 0 0
49 F 75 No T2N0 BAC c2237_2255delinsT, 

p746-752del insV746
0 0 0 0

50 F 42 Yes T3N0 LCC 0 c814G>T, pV272L 0 0 0
51 F 51 Yes n.d. SCC 0 0 0 0 0
52 F 78 No T2N2 ADC 0 0 0 0 0
53 F 55 Yes T4NO ADC/BAC 0 0 c34G>T pG12C 0 0
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1.31 2.12 1.90

1.65 1.81 1.72
1.87 1.94 1.89
2.79 1.96 1.77
2.10 1.39 1.92
1.85 1.78 1.88

2.80 2.26 1.73

2.86 2.12 0.69
2.33 2.24 2.02
1.88 1.98 1.82
3.25 2.84 1.93
3.26 1.86 1.44
3.17 1.55 2.19
2.13 1.74 1.90
2.68 1.59 1.97
2.67 2.23 1.61
3.28 3.94 2.11
4.66 2.74 1.44
2.32 2.92 1.90
2.42 1.81 1.75
4.27 5.76 1.69
6.36 1.66 1.47
2.24 1.88 1.84

A>G, 
74R

1.87 2.38 1.98

2.49 2.19 1.98
2.53 2.56 2.09
2.19 2.04 1.84

49del, 
tation

2.38 2.61 1.98

2.88 3.89 0.28

2.37 1.77 1.73

1.31 0.66 1.86
3.81 1.44 1.72
1.40 1.53 1.31
2.40 2.28 1.92
4.16 2.87 1.71
7.44 2.68 1.64
2.41 2.16 2.13
2.85 6.96 1.14
2.69 2.42 1.73

2.44 1.95 1.9

6.13 1.94 1.89

2.42 1.34 1.87

1.38 1.35 2.18

5.13 2.04 1.75

 TP53) as well as gene copy number 
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54 F 78 No T2N0 ADC/BAC c2239_2251delinsC, 
p747-751delinsP747

0 0 0 0 0

55 F 72 No T2N2 ADC/BAC L858R COMPLEX INSDEL 0 0 0 0
57 M 85 Yes T2N0 ADC 0 0 0 0 0 0
58 M 51 Yes T2N0 ADC 0 c467G>C, pR156P 0 0 0 0
59 M 51 Yes T2N0 ADC 0 0 c34G>T pG12C 0 0 0
60 M 71 Yes T1NO SCC 0 c-15-96del, Fs 

mutation
0 0 0 0

62 M 48 Yes T4NO ADC 0 C783-2A>G, 
SLPICEMUT

0 0 0 0

64 M 71 Yes T3N1 ADC 0 c466-483del, FsI162H 0 0 0 0
65 M 49 Yes T4NO ADC/BAC 0 C817C>T, pR273C 0 0 0 0
66 M 56 Yes T2N1 ADC 0 0 0 0 0 0
67 M 56 Yes n.d. ADC 0 0 c34G>T pG12C 0 0 0
68 M 58 Yes T2N0 ADC 0 c818G>T, pR273L c34G>T pG12C 0 0 0
69 M 72 Yes T3N0 ADC 0 c610G>T, pE204X 0 0 0 0
70 M 71 Yes T3N0 0 0 0 0 0 0
71 M 69 Yes T3N1 ADC 0 C528C>G, pC176W 0 0 0 0
72 M 77 Yes T3N2 SCC 0 c408DELA, FsQ136H 0 0 0 0
74 M 76 Yes T2N0 SCC 0 c318G>C, pG105R 0 0 0 0
75 M 59 Yes T3N2 SCC 0 c797delG, FsG266D 0 0 0 0
76 M 48 Yes T3N0 ADC 0 0 c35G>T pG12V 0 0 0
78 M 67 Yes T2N0 SCC 0 0 0 0 0 0
79 M 57 Yes T2N0 ADC 0 c818G>T, pR273L c34G>T pG12C 0 0 0
80 M 58 Yes T1N2 ADC 0 0 c35G>A pG12D 0 0 0
82 M 62 Yes T2N1 SCC 0 0 0 0 0 0
83 M 51 Yes T3N0 ADC 0 C139-140DEL, 

pFsP47G c844C>T, 
pR282W

c34G>C pG12R 0 0 C521
pM1

84 M 67 Yes T4N2 SCC 0 0 0 0 0 0
85 M 56 Yes T2N0 ADC 0 C577C>G, pH193D 0 0 0 0
86 M 74 Yes T1NO SCC 0 0 0 0 0 0
87 M 52 Yes T2N1 ADC 0 c595G>T, pG199X 0 0 0 c126-1

pFsmu
88 M 75 Yes T4N1 SCC 0 C586C>T, pR196X 0 0 c1633G>

A, pE545K
0

89 M 83 Yes T4N1 SCC 0 c560-lG>T, 
SPLICEMUT

0 0 0 0

92 M 83 Yes T2N0 SCC 0 0 0 0 0 0
93 M 50 No T2N0 ADC 0 n.d. 0 0 0 0
94 M 73 Yes T3N2 SCC 0 c785G>T, pG262V 0 0 0 0
95 M 64 Yes T2N1 SCC 0 0 0 0 0 0
96 M 67 Yes T2N2 SCC 0 c438G>A, pW146X 0 0 0 0
97 M 81 Yes T4N2 ADC 0 0 0 0 0 0
98 M 57 Yes T2N0 ADC 0 0 0 0 0 0
99 M 69 Yes T2N1 SCC 0 C586C>T, pR196X 0 0 0 0
10
0

M 74 Yes T3N2 SCC 0 0 0 0 0 0

10
1

M 51 No T4N2 ADC 0 0 0 0 0 0

10
2

M 61 Yes T2N0 SCC 0 c578A>G, pH193R 0 0 0 0

10
3

M 52 Yes T2N0 ADC 0 0 0 0 0 0

10
4

M 75 Yes T2N0 ADC 0 0 0 0 0 0

10 M 71 Yes T2N0 ADC 0 C832DELC, pFsP278L 0 0 0 0

Table 3: Describes the population studied in terms of clinico-pathological features, gene mutations  (EGFR, ERBB2, PIK3CA, KRAS, BRAF and
(CCND1,  CCNE1 and CDKN2A) analyzed by real time PCR.  (Continued)
5
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S303A 0 0 0 0 2.66 2.87 1.71

154I c34G>T pG12C 0 0 0 2.50 0.81 0.55

, 0 0 0 0 6.91 1.55 1.09

c34G>T pG12C 0 0 0 1.48 1.79 1.65

0 0 0 0 3.11 1.71 1.97

0 0 0 0 1.41 1.58 2.00

c34G>T pG12C 
c35G>T pG12V

0 0 0 2.65 2.73 1.49

68L 0 0 0 0 2.00 13.47 2.13

0 0 0 0 1.31 1.16 0.46

c34G>T pG12C 0 0 0 1.99 2.10 1.83

c35G>A pG12D 0 0 0 2.00 1.94 1.71

c34G>T pG12C 0 0 0 2.25 2.59 1.78

number ≤ 0.6 defines  homozygous deletion. Tumors analyzed by Xba1 50000 SNPs array (Affymetrix) are  underlined.

 gene mutations  (EGFR, ERBB2, PIK3CA, KRAS, BRAF and TP53) as well as gene copy number 
10
6

M 56 Yes n.d. SCC 0 C906DELG, pFs

10
7

M 54 Yes T1NO ADC 0 c460G>A, pG

10
8

M 57 Yes T3N1 SCC P753L C902DELC
pFsP301Q

10
9

M 52 Yes T2N0 ADC 0 0

11
0

M 75 Yes T1N1 SCC 0 0

11
1

M 65 Yes T2N2 ADC 0 0

11
2

M 51 Yes T1NO ADC 0 0

13
4

F 62 No T2N0 ADC L858R c503A>T, pH1

13
5

F 72 No T1NO BAC c2237_2255delinsT, 
p746-752del insV746

0

14
3

F 55 Yes T2N0 ADC/BAC 0 0

17
7

F 67 Yes T2N0 ADC/BAC 0 0

24
6

F 44 Yes T2N2 ADC 0 0

For quantitative PCR, an inferred copy  number ≥ 4 defines an amplification of target and an inferred copy 

Table 3: Describes the population studied in terms of clinico-pathological features,
(CCND1,  CCNE1 and CDKN2A) analyzed by real time PCR.  (Continued)
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Table 4: Statistical analysis: CCND1, CCNE1, CDKN2A associations with clinico-pathological  features and other gene alterations. 

CDKN2A CDKN2A presence of homozygous deletion n (%) CDKN2A absence of homozygous deletion n (%) p

Age 62 62,6 NS
Gender Women 6 (12) 44 (88) 0,157

Men 2 (4) 46 (96)
Histology ADC 7 (10) 61 (90) 0,483

LCC 0 (0) 6 (100)
SCC 1 (4) 23 (96)

Tobacco Never-smoker 5 (20) 20 (80) 0,012
Smoker 3 (4) 70 (96)
Mutated 5 (33) 10 (67)

EGFR Non-mutated 3 (4) 80 (96) 0,002
Mutated 1 (5) 19 (95)

KRAS Non-mutated 7 (9) 71 (91) 0,563
Mutated 1 (14) 6 (86)

STK11 Non-mutated 7 (8) 84 (92) 0,46
Mutated 3 (7) 40 (93)

TP53 Non-mutated 5 (9) 50 (91) 0,704
AKT-mTOR activation* Yes 7 (29) 17 (71) <0,001

No 1 (1) 73 (99)

CCND1 Amplification n (%) No amplification n (%) P

Age 61,8 63 NS
Gender Women 5 (10) 45 (90) 0,331

Men 8 (17) 40 (83)
Histology ADC 6 (9) 62 (91) 0,079

LCC 2 (33) 4 (67)
SCC 5 (21) 19 (71)

Tobacco Never-smoker 0 25 (100) 0,023
Smoker 13 (18) 60 (82)

EGFR Mutated 1 (7) 14 (93) 0,331
Non-mutated 12 (14) 71 (86)

KRAS Mutated 2 (10) 18 (90) 0,629
Non-mutated 11 (14) 67 (86)

STK11 Mutated 1 (1) 6 (99) 0,934
Non-mutated 12 (13) 79 (87)

TP53 Mutated 9 (21) 34 (79) 0,048
Non-mutated 4 (7) 51 (83)

AKT-mTOR activation* Yes 2 (8) 22 (92) 0,412
No 11 (15) 63 (85)

CCNE1 Amplification n (%) No-amplification n (%) P

Age 67 62,5 NS
Gender Women 2 (4) 47 (96) 0,371

Men 4 (8) 45 (92)
Histology ADC 2 (3) 66 (97) 0,099

LCC 1 (1) 5 (99)
SCC 3 (13) 21 (87)

Tobacco Never-smoker 1 (1) 24 (99) 0,518
Smoker 5 (17) 68 (83)

EGFR Mutated 1 (1) 14 (99) 0,924
Non-mutated 5 (7) 78 (93)

KRAS Mutated 1 (1) 19 (99) 0,814
Non-mutated 5 (6) 73 (94)

STK11 Mutated 0 7 (100) 0,483
Non-mutated 6 (7) 85 (93)

TP53 Mutated 6 (15) 37 (85) 0,006
Non-mutated 0 55 (100)

AKT-mTOR activation* Yes 2 (8) 22 (82) 0,603
No 4 (5) 70 (85)

In this work we called PI3K-AKT-mTOR activated tumors, tumors with either EGFR,  PIK3CA, ERBB2 or STK11 mutation*.
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In parallel to DNA assays, RNA expression profiles also
demonstrated differences between ADC from smokers
when compared with non-smokers [24,25]. In a recent
paper dealing with expression profiling of epidermal
growth factor receptor/KRAS pathway activation in lung
cancer two groups of ADC were individualized, one being
a bronchial-type, the other an alveolar-type [26]. Unsu-
pervised classification failed to detect any specific group
of tumors that had EGFR mutations but they showed 26
genes preferentially expressed in EGFR mutated group.
Among them, three genes EGFR, PTK7 and HMOX2 were
found in our series located in focal regions of amplifica-
tions. Finally, a genetic classification of lung ADC by CGH
array showed that EGFR mutated tumors could be indi-
vidualized as a specific cluster [27]. All together, these
results tend to prove that lung ADC in non-smokers forms
a distinct disease at least at a molecular point of view. SNP
arrays allow the identification of many loci with either
LOH or amplification. Some of which may represent
background alterations with no specific involvement in
the carcinogenesis process. The identification of regions
that are critical for tumor cell proliferation is of major
importance. In order to go further in the identification of
alterations linked to EGFR mutations we focused on genes
implicated in cell cycle regulation and validated SNP array
information on a large series of NSCLC. Previous genome
analysis using SNP Arrays also showed CDKN2A
homozygous deletions and CCNE1 amplifications in lung
cancers [12]. We found a link between CDKN2A
homozygous deletion and the non-smoking status as
already suggested by Kraunz et al. [28]. Moreover, in our
series CDKN2A deletion was associated with EGFR muta-
tion and maybe with an activation of the EGFR/PI3K/
AKT/mTOR transduction pathway. Indeed, 7 out of 8
tumors with CDKN2A homozygous deletion have EGFR,
STK11 or PIK3CA mutations. Activation of this signal
transduction pathway can lead to enhance transcription
of cell cycle genes as CCND1 and it is not surprising that
no cyclin amplification was observed in this group. For
this group of tumors, it seems that proliferation is under
the dependence of an activation of cell cycle through
EGFR/PI3K/AKT/mTOR signaling and an inactivation of
the cell cycle inhibitor CDKN2A preventing cells to down-
regulate proliferation. The CDKN2A locus at 9p21
encodes two genes, one inhibits CDK4 mediated RB phos-
phorylation (CDKN2A/p16) and the other binds MDM2
leading to TP53 stabilization (p14/ARF). qPCR experi-
ments reported here, analyzed homozygous deletions at
9p21 and therefore co-deletion of both genes. A recent
paper showed that the p14/ARF protein was frequently
down regulated in lung cancers with EGFR mutation or in
tumors with ERBB2 mutations. As in our work, down reg-
ulation of the CDKN2A/p14/ARF locus could be linked to
PI3K/AKT/mTOR activation as both EGFR and ERBB2
activate this pathway [29]. Although, regarding our

results, it is very surprising that in their experiments,
CDKN2A expression measured by immunohistochemis-
try remained positive when p14/ARF expression was
extinguished. It suggested that p14/ARF could be down
regulated independently of CDKN2A by mutation or pro-
moter hypermethylation in EGFR mutated tumors. Pro-
moter hypermethylation has indeed been shown to turn
off CDKN2A locus in cancer but CDKN2A hypermethyla-
tion was linked to heavy smoking and squamous cell can-
cer which represents a different subgroup of tumors [30].
Here we suggest that CDKN2A/p14/ARF locus
homozygous deletion could be an alternative mechanism
to down regulate cell cycle inhibitors in ADC from non-
smoking patients. In our series, Illumina GoldenGate
Assay for methylation was used to quantify CDKN2A
methylation, in the 24 tumors analyzed by SNP array. No
difference in methylation status was found between
EGFR, KRAS mutated tumors and non-tumor tissues (data
not shown). Two other papers reported a negative correla-
tion between EGFR mutation and CDKN2A methylation
status in NSCLC [31,32]. Cyclin amplifications were in
opposite related to tobacco and associated to TP53 muta-
tions. In this case, cell cycle is activated through direct
amplification of cyclins and TP53 inactivating mutations
unable cells to repress proliferation. An association
between CCND1 and TP53 was already suggested by pro-
tein expression analysis [33].

Although these models are not to generalize since other
mechanisms such as mutations epigenetic alteration and
protein overexpression can activate oncogene or inacti-
vate tumor suppressor, our work enlightened two differ-
ent carcinogenesis pathways in NSCLC. One is tobacco
independent and driven by CDKN2A inactivation and
EGFR mutations, the other is smoking dependent and
driven by cyclin amplification and TP53 mutation (Figure
2).

Represents two possible models of oncogenic cooperation in smokersFigure 2
Represents two possible models of oncogenic coop-
eration in smokers (A) (Cyclin  amplification associated 
with TP53 mutations) and in non-smokers (B) (EGFR muta-
tion  associated with CDKN2A homozygous deletion)
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Conclusion
Although this work concerned a limited series of tumors,
we focused on a comparative analysis and showed that
patterns of genome wide genetic alterations are different
between ADC with and without EGFR mutation. More
alterations and a higher frequency of large alterations
(entire chromosome arms deletion or amplification) were
found in the EGFR mutated group suggesting that carcino-
genesis pathways are different. Indeed, for a subset of
tumors specific involvement of cell cycle genes were iden-
tified and an oncogenic cooperation between EGFR muta-
tions and CDKN2A homozygous deletion was identified.
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