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Abstract

It is well known that conventional association tests can lead to excessive false positives when there
is population stratification. We propose a new test for detecting genetic association with a case-
control study design. Unlike some other methods for handling population stratification, we treat
the cases as a population and the controls as another one even though each of them may be a
mixture of several sub-populations. A likelihood-ratio test is used to test whether the allele
frequency of a testing single-nucleotide polymorphism in the case population is the same as that in
the control population. This new test is applied to the Genetic Analysis Workshop 16 Problem 1
data on rheumatoid arthritis. Compared with the Pearson chi-square genotype test, the association
strength of many single-nucleotide polymorphisms is decreased while the signal at the HLA region
on 6p21 is maintained.

Background
One well known drawback of case-control study design
in genetic association studies is that it may be affected by
population stratification. Population stratification is an
ethnic confounder. If a sample population is from a
recent mixture of different ethnic subpopulations, it may
make the cases and controls have different genetic
background and spurious association may occur. In
order to control the effect of population stratification,
genome control [1], structured association [2], and

principal components [3] are usually used. These
methods try to gather information on population
structure from markers not associated with the pheno-
type (null markers). In this paper, we introduce a
likelihood-ratio test for genetic association in the
presence of population stratification. This method does
not make assumptions on the number of sub-popula-
tions in cases or in controls, nor does it make use of null
markers. This method is then applied to the Genetic
Analysis Workshop 16 (GAW16) Problem 1 data set.
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Methods
Let FST denote the correlation of alleles drawn from a
common subpopulation [4]. FST is the proportion of the
total heterozygosity in the population due to the
differences in allele frequencies among each subpopula-

tion. It can be expressed as FST = V p
p p

( )
( )1− , where p is the

average allele frequency over all subpopulations and
V(p) is the variance of allele frequency p among
subpopulations. The genotype frequencies in a popula-
tion are jointly determined by FST and the frequency of a
reference allele, say A. We treat cases as samples from
one population and controls as samples from another.
Let F1 be the value of FST in cases and F2 be the value of
FST in controls. The A allele frequency in cases and in
controls are denoted by p1 and p2, respectively. Let a
denotes the other allele, the frequencies of genotypes
AA, Aa, and aa in cases and controls are presented in
Table 1.

We proposed a likelihood ratio test to test the
hypotheses H0: p1 = p2 = p, F1, F2 versus HA: p1 ≠ p2,
F1, F2. F1 and F2 are treated as nuisance parameters. The
log-likelihood function is
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in which i = 1 or 2 for cases or controls; for each marker
genotype, j = 0, 1, or 2 for zero A allele, one A allele, or
two A alleles, respectively. nij are observed genotype
counts and pij are genotype frequencies as listed in
Table 1.

The maximization of the likelihood function L(p1, p2, F1,
F2) under the alternative hypothesis is straightforward.
The maximized estimate of each genotype frequency
happens to be the observed genotype frequency in cases
and controls. However, there is no explicit solution to
the maximization problem under the null hypothesis. To
maximize the log-likelihood function under H0, we take
the first-order partial derivatives of the log-likelihood
function under the null with respect to F1 and F2 and set
them to zero. Each of the two equations gives an
expression of F1 or F2 in terms of p. Then a grid search
(step size 0.001) over p ranging from 0.001 to 0.999 is
used to find the best value of p maximizing the null log-
likelihood function.

The likelihood ratio test statistic is

X L p p F F L p p p p
F F p p
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According to standard statistical theory, it asymptotically
follows a chi-square distribution with 1 degree of
freedom.

Results
The GAW16 Problem 1 data set consists of 545,080 SNP
markers throughout the genome for 2062 unrelated
individuals consisting of 868 patients with rheumatoid
arthritis and 1194 controls. After quality control, 65,372
(11.99%) markers were removed. A marker was removed
if it met any one of the following criteria: its call rate was
less than 90%; the minor allele frequency was less than
0.01, or it did not follow Hardy-Weinberg equilibrium in
controls (at significance level 0.05). In addition, we only
considered markers on autosomal chromosomes.
Finally, 466,317 markers were included for further
study. Transformed p-values (-log10(p)) were plotted
genome-wide in Figure 1 (top panel) by using the
Haploview program. In addition, for comparison, results
from traditional Pearson chi-square test were also
plotted (Figure 1, bottom panel). Figure 2 plots the
transformed p-values for the proposed test versus that for
the Pearson chi-square test. The left-most panel includes
all markers. The middle panel includes only those
markers for which the absolute value of the difference
in the estimated F1 and F2 is larger than or equal to 0.05.
The right-most panel includes markers with difference
between F1 and F2 less than 0.001. If the difference is
within 0.001, we treat F1 and F2 are approximately equal.
When the difference between F1 and F2 becomes larger,
the proposed test statistic tends to be less significant.

Discussion
We proposed a test for genetic association study in the
presence of population stratification. Population strati-
fication is a confounder to the difference of genotype
frequencies between cases and controls. Unlike some
other methods such as the structured association, the
proposed test does not try to classify each individual.
Instead, it allows for the difference in the composition of
cases and controls by using two of FST coefficients, one
for cases and one for controls. Population genetics
suggests that the FST for a natural population may be
small (for instance, 0.001 or 0.01). This may be true for

Table 1: Genotype frequencies in cases and controls

AA Aa aa

Cases p12 = F1p1+(1-F1)p1
2 p11 = 2(1-F1)p1(1-p1) p10 = F1(1-p1)+(1-F1)(1-p1)

2

Controls P22 = F2p2+(1-F2)p2
2 p21 = 2(1-F2)p2(1-p2) p20 = F2(1-p2)+(1-F2)(1-p2)

2
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Figure 1
Plots of transformed p-values for the new test and Pearson chi-square test.

Figure 2
Comparison of transformed p-values between new test and chi-square test.
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controls, but no longer true for a selected sample such as
cases. It is easy to construct a case sample for which the
FST is 0.8 or higher. Our test provides a simple way to
reduce the confounding impact of population stratifica-
tion compared with the Pearson chi-square statistic.

The proposed method attributes any deficiency in
heterozygosity in cases or controls to population
stratification. Its power to detect association can be
compromised when there is no population stratification,
especially when the trait is recessive [5]. Because
population stratification affects not only FST but also
allele frequencies in cases and controls, the proposed
method cannot completely eliminate the confounding
effect of population stratification. Due to the page
limitation, no simulation results comparing the pro-
posed method and the Pearson’s chi-square statistic are
reported. One reviewer pointed out that this may make it
difficult to interpret the difference between these two
methods observed in current study. In our unreported
simulation studies, the proposed method is still more
robust to population stratification than Pearson’s chi-
square statistic.

Conclusion
A method for detecting association in the presence of
population stratification is proposed. Analysis of the
GAW16 Problem 1 data on rheumatoid arthritis suggests
it is more robust to population stratification than the
Pearson’s chi-square statistic. The proposed test is
implemented in two computer languages, C++ and R.
Both versions are available from the authors upon
request.
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