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Abstract
With the development of high-throughput single-nucleotide polymorphism (SNP) technologies, the
vast number of SNPs in smaller samples poses a challenge to the application of classical statistical
procedures. A possible solution is to use a two-stage approach for case-control data in which, in
the first stage, a screening test selects a small number of SNPs for further analysis. The second stage
then estimates the effects of the selected variables using logistic regression (logReg). Here, we
introduce a novel approach in which the selection of SNPs is based on the permutation importance
estimated by random forests (RFs). For this, we used the simulated data provided for the Genetic
Analysis Workshop 15 without knowledge of the true model.

The data set was randomly split into a first and a second data set. In the first stage, RFs were grown
to pre-select the 37 most important variables, and these were reduced to 32 variables by haplotype
tagging. In the second stage, we estimated parameters using logReg.

The highest effect estimates were obtained for five simulated loci. We detected smoking, gender,
and the parental DR alleles as covariates. After correction for multiple testing, we identified two
out of four genes simulated with a direct effect on rheumatoid arthritis risk and all covariates
without any false positive.

We showed that a two-staged approach with a screening of SNPs by RFs is suitable to detect
candidate SNPs in genome-wide association studies for complex diseases.
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Background
To identify genetic polymorphisms predisposing for a
complex disease, genome-wide association studies have
become more promising with the advances in technolog-
ical possibilities. The use of 10 k, 100 k, 300 k or 500 k
single-nucleotide polymorphisms (SNP) chips increases
the chance of detecting associations between the investi-
gated disease and its causative mutations, while at the
same time posing challenges for statistical analyses. Spe-
cifically, the availability of a vast number of variables with
uncertain dependency structures in comparatively small
samples makes the application of classical statistical pro-
cedures difficult. A possible approach to dealing with
huge numbers of SNPs is to use a two-stage approach.
Here, typically, the first stage selects a small number of
SNPs for further analysis, whereas the second validates the
findings in an independent sample.

The aim of our work is to introduce a novel two-stage
approach for large-scale association analysis. Specifically,
interesting SNPs are identified in the first stage based on
random forests (RFs) [1,2]. The second stage uses an inde-
pendent sample to estimate the effects of the selected var-
iables using logistic regression (logReg). The application
of this approach is demonstrated by analyzing the simu-
lated genome-wide scan for rheumatoid arthritis (RA),
which was provided for the Genetic Analysis Workshop
(GAW) 15, without knowledge of the true model.

Methods
Material
The first replicate of the genome-wide SNP data set and, as
phenotype data, RA affection status, gender, lifetime
smoking, age at ascertainment, as well as DR alleles from
father and mother, were utilized. To mimic a case-control
study, we randomly selected one affected sibling per
affected pair for the cases and one unaffected sibling per
control family for the controls, thus obtaining 1500 cases
and 2000 unrelated controls. For the two-stage approach,
we randomly split the data into two sets with 750 cases
and 1000 controls each.

First stage of analysis
The first stage of our approach was designed to screen for
variables most likely to differentiate between cases and
controls. Using the phenotype and genotype information
for first of the two data sets, RFs with classification trees
(CART) were grown to pre-select the most important var-
iables [3].

The importance of the variables was estimated as the per-
mutation importance in a RF. To this end, the number of
correct classifications of the out-of-bag (OOB) cases is cal-
culated in every single tree grown in the forest. Then, the
values of the specific variable are randomly permuted in

the OOB individuals, and these are then re-classified
using these new values. Finally, the number of correct
classifications with the permuted values was compared
with the number of correct classifications in the original
data. The difference between these fractions, averaged
over all trees in the RF, gives the permutation importance
for the respective variable.

To grow RFs and estimate permutation importance values,
we used the software R [4] with the randomForest package
by Liaw and Wiener. Because of computational limita-
tions, we were not able to grow one RF containing all var-
iables with estimating importance via the permutation
procedure. Instead, 155 RFs were grown based on subsets
of 5000 variables, randomly selected without replace-
ment. For every RF, 500 trees were grown with a random
selection of 20 variables per node. On average, each vari-
able was contained in a RF 84 times (min = 60, max =
106). The average importance scores across all RFs were
used as the global importance of a variable.

Díaz-Uriarte et al. [5] proposed a backward elimination
heuristic for RFs to obtain a small set of predictive varia-
bles. They calculated importance values for all variables
once only. To then select variables, they iteratively fitted
RFs; for each iteration, they discarded 20% of the least
important variables of the previous variable set and calcu-
lated OOB error fractions regarding the remaining varia-
bles. They finally selected the set of variables which
yielded the lowest OOB error across all iterations. With a
similar idea, we applied the following forward-elimina-
tion approach:

1. Compute global importance score for every variable as
described above.

2. Sort variables according to their score.

3. Grow a RF with the most important variable as single
predictor.

4. Compute OOB error for this RF.

5. Add next important variable to the set of predictors and
grow a RF.

6. Repeat steps 4 and 5.

On the basis of the resulting OOB prediction error esti-
mates, we chose the smallest set of variables leading to a
small prediction error (see below for more information).

To avoid multicollinearity of the variables in the second
stage, we applied the haplotype tagging approach by
Chapman et al. [6] using the mean estimated coefficient
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of determination across haplotypes R2 ≥ 0.5 as criterion
for SNP selection.

Second stage of analysis
The aim of the second step was to obtain valid parameter
estimates for the selected variables in a logReg. To reduce
the amount of overfitting because of data-dependent var-
iable selection in the first stage, we used an independent
data set. Lacking a specific biological hypothesis, an addi-
tive genetic effect for each SNP was assumed as recom-
mended [7], and the logReg included all variables that
were selected in the first stage. To correct for the multiple
testing of the selected variables, nominal p-values were
adjusted according to the Bonferroni-Holm procedure [8].
Because model parameters were estimated in this stage,
stringent external validation of the model is still required.
In our study, results are compared with the simulated
models.

Results and discussion
Figure 1 shows the global importance scores from the RFs
in our first-stage analysis across the genome. It can be seen
that highest importance is assigned to SNPs on chromo-
somes 6 and 11. In addition, high global importance was
estimated for phenotypic covariates (not shown). It
should be noted that the importance of the covariates
might even be underestimated, because the estimated
importance in a RF depends on the number of categories
of the variable [9]. Specifically, higher importance may be
assigned to variables with more categories, and in this
case, the covariates were binary in contrast to the SNPs
with three categories.

For further analyses, the OOB prediction errors were esti-
mated in RFs with different numbers of variables (Figure
2). It can be seen that with more variables, a strong
increase in the estimate is followed by a similarly steep
decrease. After this, the error estimate only varies between
about 0.13 and 0.14. From this latter region, the point was
chosen where the error estimate reaches its first mini-
mum, which is for 37 variables. By haplotype tagging on
nine closely neighboring SNPs, this was further reduced to
32 variables for the second stage of analysis.

In the second stage, consideration of all variables in the
logReg model (Table 1) shows the largest genetic effects
for SNPs on chromosomes 6, 11, and 18. Of these, the
regions on chromosomes 6 and 18 correspond to the loci
C/DR, D, and E, which were the only ones simulated to
have a direct effect on RA risk. One of them, which coin-
cides with loci C/DR, remains significant after adjustment
for multiple testing. In addition, the region on chromo-
some 11 identifies locus F, which has an indirect effect on
RA risk via IgM level. Finally, we identified the paternal
and maternal DR alleles to increase the chance for affec-

Prediction error in random forests based on different num-bers of variablesFigure 2
Prediction error in random forests based on different 
numbers of variables. Prediction error of random forests 
based on different numbers of variables, estimated in the out-
of-bag (OOB) samples. Only error estimates of the first 100 
sets are displayed. The first local minimum in prediction 
error is for the set including 37 variables, which was selected 
for further analyses.

Importance of SNPsFigure 1
Importance of SNPs. Global importance scores for the 
single SNPs in the genome-wide scan in chromosomal order. 
Vertical dotted lines show chromosomal boundaries.
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tion, and the analyses provide evidence for female gender
and lifetime smoking contributing to a higher chance of
disease. There were no false-positive findings.

To summarize, our results show that RFs can be applied as
a pre-screening tool in genome-wide association studies.
Our two-staged approach with a selection of SNPs by RFs
is suitable to detect promising candidate SNPs in large-
scale association studies for complex diseases.
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Table 1: Effect estimates of the selected variables

logRega

Variable Coef SE nominal p adjusted p Simulated effects

DR allele from mother 1.476 0.114 <10-15 <10-13

DR allele from father 1.480 0.115 <10-15 <10-13

Chr 11 bp110, 204, 257 0.822 0.123 2.40 × 10-11 7.20 × 10-10 Locus F
Lifetime smoking 0.976 0.168 7.06 × 10-9 2.05 × 10-7 Smoking
Gender 0.804 0.169 2.14 × 10-6 5.99 × 10-5 Gender
Chr 6 bp 32, 521, 277 -0.861 0.201 1.87 × 10-5 0.0005 DR/Locus C
Chr 18 bp 66, 048, 927 0.333 0.133 0.0121 0.3146 Locus E
Chr 6 bp 36, 582, 440 0.634 0.255 0.0131 0.3275 Locus D
Chr 6 bp 28, 758, 332 0.248 0.125 0.0477 1.0000
Chr 1 bp 26, 043, 914 0.185 0.143 0.1942 1.0000
Chr 2 bp 34, 451, 973 0.154 0.126 0.2228 1.0000
Chr 6 bp 30, 266, 243 -0.184 0.165 0.2647 1.0000
Chr 7 bp 97, 632, 608 0.116 0.125 0.3522 1.0000
Chr 6 bp 26, 075, 047 -0.126 0.138 0.3613 1.0000
Chr 18 bp 10, 152, 707 0.098 0.115 0.3907 1.0000
Chr 8 bp 127, 252, 736 -0.101 0.121 0.4050 1.0000
Chr 13 bp 45, 600, 085 -0.212 0.258 0.4094 1.0000
Chr 13 bp 31, 890, 164 0.090 0.116 0.4356 1.0000
Chr 11 bp 22, 794, 066 0.118 0.155 0.4475 1.0000
Chr 5 bp 57, 110, 585 -0.251 0.337 0.4559 1.0000
Chr 6 bp 32, 772, 203 0.094 0.133 0.4769 1.0000
Chr 4 bp 15, 714, 556 0.066 0.112 0.5547 1.0000
Chr 6 bp 133, 756, 692 0.072 0.133 0.5885 1.0000
Chr 14 bp 37, 328, 424 0.073 0.142 0.6051 1.0000
Chr 1 bp 48, 687, 156 -0.192 0.378 0.6115 1.0000
Chr 15 bp 77, 852, 281 0.097 0.195 0.6170 1.0000
Chr 10 bp 10, 764, 908 0.050 0.133 0.7034 1.0000
Chr 15 bp 66, 671, 014 0.049 0.222 0.8235 1.0000
Chr 2 bp 17, 889, 207 0.059 0.269 0.8261 1.0000
Chr 6 bp 155, 580, 230 -0.020 0.131 0.8757 1.0000
Chr 7 bp 8, 524, 374 -0.009 0.116 0.9332 1.0000
Chr 2 bp 157, 502, 490 0.018 0.570 0.9744 1.0000
Intercept -11.464 1.594

alogReg, logistic regression; Coef, estimated regression coefficient; SE, standard error, nominal p, two-sided nominal p-value; adjusted p, two-sided 
p-value adjusted according to the Bonferroni-Holm procedure; chr, chromosome; bp, base pair.
Page 4 of 5
(page number not for citation purposes)

http://www.biomedcentral.com/1753-6561/1?issue=S1
http://www.biomedcentral.com/1753-6561/1?issue=S1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15588316
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15588316
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15588316
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16630340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16630340
http://www.r-project.org/
http://www.r-project.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16398926
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16398926
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14614235
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14614235
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14614235


BMC Proceedings 2007, 1(Suppl 1):S59 http://www.biomedcentral.com/1753-6561/1/S1/S59
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

8. Westfall PH, Young SS: Resampling-Based Multiple Testing New York:
John Wiley & Sons; 1993. 

9. Strobl K, Boulesteix A-L, Zeileis A, Hothorn T: Bias in random for-
est variable importance measures: illustrations, sources and
a solution.  BMC Bioinformatics 2007, 8:25.
Page 5 of 5
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17254353
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17254353
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17254353
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Material
	Material
	First stage of analysis
	Second stage of analysis

	Results and discussion
	Competing interests
	Acknowledgements
	References

