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Abstract
Background: Boron neutron capture therapy (BNCT) is a selective radiotherapy, being effective
for the treatment of even advanced malignancies in head and neck regions as well as brain tumors
and skin melanomas. To clarify the role of p53 gene, the effect of BNCT on oral squamous cell
carcinoma (SCC) cells showing either wild- (SAS/neo) or mutant-type (SAS/mp53) p53 was
examined.

Methods: Cells were exposed to neutron beams in the presence of boronophenylalanine (BPA)
at Kyoto University Research Reactor. Treated cells were monitored for modulations in colony
formation, proliferation, cell cycle, and expression of cell cycle-associated proteins.

Results: When SAS/neo and SAS/mp53 cells were subjected to BNCT, more suppressive effects
on colony formation and cell viability were observed in SAS/neo compared with SAS/mp53 cells.
Cell cycle arrest at the G1 checkpoint was observed in SAS/neo, but not in SAS/mp53. Apoptotic
cells increased from 6 h after BNCT in SAS/neo and 48 h in SAS/mp53 cells. The expression of p21
was induced in SAS/neo only, but G2 arrest-associated proteins including Wee1, cdc2, and cyclin
B1 were altered in both cell lines.

Conclusion: These results indicate that oral SCC cells with mutant-type are more resistant to
BNCT than those with wild-type p53, and that the lack of G1 arrest and related apoptosis may
contribute to the resistance. At a physical dose affecting the cell cycle, BNCT inhibits oral SCC cells
in p53-dependent and -independent manners.

Background
Oral squamous cell carcinoma (SCC) patients are gener-
ally treated with surgery in combination with radiation
therapy and/or chemotherapy [1,2].

Ionizing radiation (IR) directly damages DNA by causing
single- and double-stranded breaks. p53 is a central medi-
ator of the response to DNA damage and cell stress, there-
fore, it is expected to play a role in determining the
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sensitivity of tumors to apoptotic stimuli such as radiation
or cytotoxic drugs [3-6].

Boron neutron capture therapy (BNCT) is a binary modal-
ity: Boron-10 (10B)-enriched compounds such as
boronophenylalanine (BPA) and borocaptate sodium are
administered at first, followed by irradiation with thermal
neutrons. 10B to captures thermal neutrons leads to the
nuclear reaction 10B (n, α) 7Li. Both released particles, an
α (4He) particle and lithium (7Li) nucleus have high linear
energy transfer (LET) properties and short path lengths in
water of 5-10 μm. If the boronated compounds selectively
accumulate in the tumor, BNCT can be used to selectively
destroy tumor cells [7,8]. It has been shown that BNCT is
effective for the treatment of advanced malignancies in
head and neck regions as well as brain tumors and skin
melanomas [9-12].

The level of localized DNA damage caused by IR is
believed to increase with elevating LET values of radiation.
Cell inactivation induced by IR with different LET's has
been analyzed, and many studies have shown that high
LET radiation including carbon-ion beams is more effec-
tive than low LET X-rays and gamma rays regarding the
yield of apoptosis and reproductive death [13-16]. Car-
bon-ion beams have been reported to increase apoptosis
in oral SCC and lung cancer cells regardless of the p53 sta-
tus [17,18].

Approximately 50% of oral SCCs show a mutational
change of p53 [19,20]. Before the novel high LET radia-
tion therapy BNCT is used more frequently for oral SCC,
its effect on the cell cycle and the cytotoxic effect on oral
SCC cells irrespective of the p53 status should be clarified.
In the present study, we examined the effects of BNCT on
the proliferation, cell cycle, and cell cycle-related proteins
of oral SCC cells showing wild- or mutant-type p53 with
the same background and indicated the role of p53 in the
suppressive effect of BNCT.

Methods
Cells
The oral SCC cell line SAS showed the phenotype of wild-
type p53 on IR-induced signal transduction. SAS cells
were transfected with the plasmid pC53-248 containing
an mp53 gene (codon 248, from Arg to Trp) to produce a
dominant negative mp53 protein, or with the control
plasmid pCMV-Neo-Bam, which contains a neo-resist-
ance marker. The stable transfectants SAS/mp53 and SAS/
neo were used [21]. These oral SCC cell lines were cul-
tured in Dulbecco's modified Eagle's medium supple-
mented with 10% fetal bovine serum, 2 mM L-glutamine,
100 μg/ml penicillin, and 100 mg/ml streptomycin at
37°C in a humidified atmosphere with 5% CO2.

Boron compound and BNCT for cultured cells
10B-enriched (>98%) BPA was obtained from Boron Bio-
logicals, Inc., (Raleigh, NC) and converted to a fructose
complex following the method by Coderre et al. [22]. The
concentration of the aqueous suspension of BPA was 250
mg/ml (21.28 mg 10B/ml).

For BNCT, cells were grown in flasks with a culture area of
25 cm2 and treated with BPA at a 10B concentration of 50
ppm for 2 h. They were exposed to neutron beams in the
presence of BPA at Kyoto University Research Reactor.
Neutron fluence was measured by the radioactivation of
gold foils on the front and back of the dishes, as described
in previous studies [23,24]. The average fluence of ther-
mal neutrons was 2.1 × 1012 n/cm2, and the average flux
was 2.3 × 109 n/cm2/s at 5 MW. Thermoluminescent
dosimeters were used for gamma-ray dosimetry, and the
total gamma ray dose was 0.00665 Gy. Thermal neutron
fluence was converted to a dose, as described previously
[24].

Colony formation assay
Colony formation was performed as described previously
[24]. Briefly, cells were dissociated with 0.05% trypsin
and 0.02% EDTA, suspended in medium, and plated onto
60-mm dishes at a cell density yielding approximately 500
colonies per dish. The cells were cultured for 7 days, fixed
in methanol, and stained with 1% crystal violet. Colonies
composed of more than 30 cells were counted. The surviv-
ing cell fraction was determined by dividing the colony
number of the treated culture by that of the non-irradiated
control culture.

3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT) assay
MTT assay was performed following the method by Mos-
mann [25]. Cells were seeded in 96-well plates at a density
of 1 × 103 cells/well. At various intervals after BNCT, 10 μl
of 5 mg/ml MTT solution was added to each well with 100
μl of medium, and cells were incubated at 37°C for 4 h.
After the addition of 100 μl of 0.04 N HCl in isopropanol,
the plates were mixed thoroughly to dissolve the dark blue
crystals. The plates were read on a Benchmark Plus micro-
plate spectrophotometer (Bio-Rad Laboratories, Hercules,
CA) with a reference wavelength of 630 nm and a test
wavelength of 570 nm. Background absorbance at 630
nm was subtracted from the 570 nm reading. The values
for BNCT-treated cells were calculated as a ratio in relation
to the untreated control cells. Data are presented as the
means ± SD of six determinations.

Flow cytometric analysis
Cells were dissociated and centrifuged, and the pellets
were fixed in ice-cold 70% ethanol at -20°C overnight.
Thereafter, the cells were washed twice with ice-cold PBS
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and treated with 1 mg/ml RNase at 37°C for 30 min. After
staining of cellular DNA with 50 μg/ml propidium iodide
in PBS, cells were analyzed with a fluorescence-activated
cell sorter (FACSort; Becton Dickinson, Mountain View,
CA). The percentage of cells at different phases of the cell
cycle was determined by employing Mod Fit LT software
(Verity Software House, Topsham, ME). Based on an anal-
ysis of DNA histograms, the percentages of cells in sub-
G1, G0/G1, S, and G2/M phases were evaluated.

Hoechst staining
Cells were dissociated and fixed in PBS containing 1% glu-
taraldehyde for 2 h. After washing in PBS, cells were
stained with 200 μM Hoechst 33342, mounted on slides,
and visualized using a Nikon Microphot-FXA fluorescence
microscope. The number of positive cells was counted in
3 samples, and the mean ± SD was determined.

Immunoblot analysis
Cells were lysed in a buffer containing 20 mM Tris-HCl
(pH 7.4), 0.1% sodium dodecyl sulfate, 1% TritonX-100,
1% sodium deoxycholate, and protease inhibitor cocktail.
After sonication, cells were centrifuged at 15,000 × g for
10 min at 4°C, and the supernatant was harvested. Pro-
tein (20 μg) was separated through polyacrylamide gel
electrophoresis and transferred to a polyvinylidene fluo-
ride membrane by electroblotting. The membrane was
probed with antibodies, and antibody-binding was
detected using an enhanced chemiluminescence kit
(Amersham Life Science, Arlington Heights, IL) according
to the manufacturer's instructions. The antibodies used
were as follows: mouse monoclonal antibodies against
p53, p53 phosphorylated at serine-15, p21, cyclin B1, and
β-actin, and rabbit polyclonal antibodies against Wee 1
and cdc2 phosphorylated at tyrosine -15. Antibodies
against p53 and β-actin were obtained from Oncogene
(San Diego, CA) and Sigma (St.Louis, MO), respectively.
Those for Wee1 and cyclin B1 were from Upstate (Lake
Placid, MA). Other antibodies were from Cell Signaling
Technology (Beverly, MA). The β-actin expression was
assessed to ensure protein loading.

Statistical analysis
The mean number of apoptotic cells was analyzed using
the unpaired Student's t-test. A P- value < 0.05 was consid-
ered to be significant.

Results
Suppression of the colony formation of oral SCC cells by 
BNCT
SAS/neo and SAS/mp53 cells were treated with BNCT, and
the survival ratios were calculated based on colony forma-
tion. In both cell lines, the survival ratios decreased in a
dose-dependent manner, but SAS/neo were suppressed
more strongly than SAS/mp53 cells. At a dose of 6 Gy, the

survival fractions of SAS/neo and SAS/mp53 cells were 8
and 36%, respectively (Figure 1).

Suppression of the proliferation of oral SCC cells by BNCT
To determine the effect of BNCT on the proliferation of
cells, SAS/neo and SAS/mp53 cells were treated with
BNCT at a dose of 6 Gy. After incubation for 6, 12, 24, and
48 h, cell viability was measured by employing the MTT
assay. When the BNCT-treated cultures were compared
with those of untreated controls, the percentage of viable
cells was decreased in both cell lines. The rates of viable
SAS/neo and SAS/mp53 at 48 h after BNCT were 72 and
86% of untreated controls, respectively (Figure 2), show-
ing a significant difference (P < 0.01).

Induction of cell cycle arrest by BNCT
SAS/neo cells were treated with BNCT at a dose of 6 Gy
and then subjected to flow cytometric analysis. Initially,
the rate of SAS/neo cells in the G0/G1 phase was 30%,
and it increased to 39% at 6 h after BNCT. At 12 h, it
decreased to 6%, and cells in the G2/M phase were
increased to 34%. Sub-G1 peaks, indicating apoptotic
cells, appeared from 6 h after BNCT (Figure 3). In SAS/
mp53 cells, however, there was no increase of G0/G1
phase cells at 6 h after BNCT; rather, they decreased
slightly (Figure 3). At 12 h after BNCT, the proportion of
cells in the G2/M phase was increased to 40%, indicating
arrest at the G2/M checkpoint. A small sub-G1 population
appeared at 48 h after BNCT.

Suppression of the colony formation of oral SCC cells by BNCTFigure 1
Suppression of the colony formation of oral SCC cells 
by BNCT. SAS/neo and SAS/mp53 cells were treated with 
BNCT, and survival fractions were assessed based on colony 
formation.
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Measurement of apoptotic cells by nuclear staining
Cell cycle analysis revealed the presence of a sub-G1 pop-
ulation, indicating apoptosis by BNCT. After treatment
with BNCT, nuclear DNA was stained with Hoechst
33342, and cells showing nuclear fragmentation were
determined (Figure 4A). In SAS/neo cells treated with
BNCT, the proportion of apoptotic cells was elevated from
6 h as compared with untreated control cells, and reached
4.5% after incubation for 48 h (Figure 4B). The difference
between SAS/neo and BNCT-treated SAS/neo was signifi-
cant (p < 0.01). In the case of SAS/mp53, no apparent
increase of apoptotic cells was observed early after BNCT,
but the proportion increased to 3.5% at 48 h (Figure 4B).
The difference between SAS/mp53 and BNCT-treated SAS/
mp53 was significant (p < 0.01).

The expression and/or phosphorylation of G1 checkpoint-
related proteins by BNCT
In BNCT-treated SAS/neo cells, the expression of p53
increased and reached its maximum 6 h after BNCT. The
elevation of phosphorylated p53 was observed at 6, 24,
and 48 h after BNCT. An increased expression of p21 was
observed from 6 h after BNCT (Figure 5). In SAS/mp53,
the protein level of p53 was not specifically altered, but
the phosphorylation decreased gradually after BNCT. The
expression of p21 was also suppressed after BNCT in SAS/
mp53 cells.

The expression and/or phosphorylation of G2 checkpoint-
related proteins by BNCT
In SAS/neo cells, the expression of Wee1 was elevated
from 12 to 24 h after BNCT, and rapidly decreased at 48 h
(Figure 6). The protein level of cdc2 increased from 12 h
after BNCT, and this was maintained until 48 h. An
increase in the phosphorylation of cdc2 occurred at 12 h,
indicating cell cycle arrest at the G2 checkpoint, and
declined to the initial level at 48 h. Cyclin B1 that forms
the cdc2/cyclin B1 complex was induced at 12 h after
BNCT. In SAS/mp53 cells, the expression of Wee1
increased at 12 and 24 h after BNCT (Figure 6). Although
the protein level of cdc2 was not specifically altered, cdc2
phosphorylation increased at 12 h after BNCT. The pro-
tein level of cyclin B1 increased from 12 h after BNCT, and
this was maintained until 48 h.

Discussion
It is considered that the presence of p53 mutation might
reduce the effectiveness of radiotherapy, but studies com-
paring the presence or absence of p53 mutations in rela-
tion to the outcome following radiotherapy showed no
consistent relationship [26-29]. Tumors with the wild-
type p53 protein may lack a functional p53 response as a
result of mutations affecting other genes that function in
the same pathways as p53 [30]. It is difficult to clarify the
role of p53 in each oral SCC cell line, and so we used
known mutated oral SCC cell lines, SAS/neo and SAS/
mp53, with the same background.

Studies on the correlation between the cytotoxic effect of
BNCT and the p53 status are limited [31,32], but more
studies are employing high LET carbon-ion beams.
Indeed, Iwadate et al.[13] reported that high LET carbon-
ion beams were more cytotoxic than low LET X-rays for
glioma cells, and the effects of the carbon-ion beams were
not dependent on the p53 gene status. Tsuboi et al. [15]
reported that a glioblastoma cell line with p53 mutation
was sensitive to carbon-ion beams as a wild-type p53 cell
line at a high LET. In the present study, we performed col-
ony formation assays, and confirmed that the effect of
BNCT was more potent in SAS/neo than SAS/mp53 cells.
We also examined the effect of BNCT using the MTT assay,

Suppression of the proliferation of oral SCC cells by BNCTFigure 2
Suppression of the proliferation of oral SCC cells by 
BNCT. SAS/neo and SAS/mp53 cells were treated with 
BNCT, and cell viability was measured by the MTT assay. 
The cell viability of untreated cells was also measured and 
used as a control. *p < 0.01, SAS/neo vs. SAS/mp53.

Induction of cell cycle arrest by BNCTFigure 3
Induction of cell cycle arrest by BNCT. A. SAS/neo and 
SAS/mp53 cells were treated with BNCT and then subjected 
to flow cytometric analysis. B. Based on an analysis of DNA 
histograms, the percentages of cells in sub-G1, G0/G1, S, and 
G2/M phases were evaluated.
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and identified a difference between SAS/neo and SAS/
mp53 cells regarding their proliferative potential after
BNCT. The expression of functional p53 must be involved
in BNCT-induced growth suppression and/or cell death.

p53 is a key factor that regulates the cell cycle checkpoint
[4,6]. In this study, it was suggested that p53 plays an
important role in G1 arrest in SAS/neo cells. Flow cyto-
metric analysis revealed a transient accumulation in the
G0/G population at 6 h after BNCT in SAS/neo cells.
Thereafter, BNCT induced G2 arrest in both SAS/neo and
SAS/mp53 cells. This indicates that BNCT induces cell

cycle arrest at the G1 checkpoint only in SAS/neo cells.
Tsuboi et al. [15] did not identify a marked increase of
cells in the G1 phase in glioblastoma U87 MG cells with
wild-type p53 as well as TK1 with mutant-type p53 after
carbon-ion beam irradiation. BNCT may differ from car-
bon-ion beams in terms of its ability to induce cell cycle
arrest at the G1 checkpoint.

When DNA damage by IR is irreparable, the activation of
p53 leads to apoptosis via both transcription-dependent

Induction of apoptotic cells with the fragmentation of nuclear DNA by BNCTFigure 4
Induction of apoptotic cells with the fragmentation of nuclear DNA by BNCT. SAS/neo and SAS/mp53 cells were 
treated with BNCT, incubated for 48 h at 37°C, and stained by Hoechst 33342. The proportion of apoptotic cells was deter-
mined at various time points. *p < 0.01, SAS/neo vs. BNCT-treated SAS/neo; SAS/mp53 vs. BNCT-treated SAS/mp53.

Altered expression and/or phosphorylation of G1 check-point-related proteins by BNCTFigure 5
Altered expression and/or phosphorylation of G1 
checkpoint-related proteins by BNCT. SAS/neo and 
SAS/mp53 cells were treated with BNCT, and the expression 
of p53 and p21 and phosphorylation of p53 were examined 
by immunoblot analysis.

Altered expression and/or phosphorylation of G2 check-point-related proteins by BNCTFigure 6
Altered expression and/or phosphorylation of G2 
checkpoint-related proteins by BNCT. SAS/neo and 
SAS/mp53 cells were treated with BNCT, and the expression 
of Wee1, cdc2, and cyclin B1 and phosphorylation of cdc2 
were examined by immunoblot analysis.
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and -independent mechanisms. Aromando et al. [32]
reported that BNCT-induced control of hamster cheek
pouch tumors would be an inhibitory effect on DNA syn-
thesis and apoptosis does not have a significant role in
tumor control. Masunaga et al. [31] examined the effect of
BNCT on SAS xenografts in nude mice. After BNCT, the
tumor cells were dissociated and the cell suspension was
cultured for colony formation, the detection of apoptotic
cells, and a micronucleus assay. The peak of apoptosis was
observed at 6 h after BNCT at low levels, irrespective of the
p53 status, suggesting that apoptosis occurred early on.
We also observed an increase in the sub-G1 population
and nuclear fragmentation early after BNCT in SAS/neo
cells, and the level was maintained thereafter. In SAS/
mp53 cells, however, the increase in apoptosis occurred
subsequent to G2 arrest. Thus, p53 seems to be responsi-
ble for G1 arrest-associated apoptosis. In the present
study, p53 led to a significant but limited increase of
apoptosis. Differently, in colony formation and MTT
assays, p53 has a much stronger impact on the survival
fraction and proliferation of treated cells. This indicates
that apoptosis is a form of cell death induced by BNCT. So
far, different types of cell death have been documented.
They include apoptosis, autophagy, mitotic catastrophe,
necrosis and senescence [33]. Especially, participation of
mitotic catastrophe, necrosis and senescence in BNCT-
treated cancer cells should be clarified.

p21 binds to and inhibits the cyclin-dependent protein
kinases that drive the cell cycle, and is responsible for G1
arrest [34-36]. In SAS/neo cells, we found that the expres-
sion and phosphorylation of p53 was markedly enhanced
from 6 h after BNCT, and this level was maintained for 48
h. We also detected a transient increase in the expression
of p21 which inhibited the transition from the G1 to S
phase. In SAS/mp53 cells, however, p21 was not induced,
and neither G1 arrest nor the induction of apoptosis was
observed. This indicates that p21 is associated with cell
cycle arrest at G1 down-stream of the p53 pathway.

After BNCT, cells that escaped G1 arrest accumulated at
G2 to prevent mitotic entry after potentially lethal DNA
damage. Cdc2 protein kinase activity is required for the
G2-to-mitosis transition in all eukaryotic cells. Cdc25 acti-
vates the cdc2/cyclin B1 complex by dephosphorylating
inhibitory threonine-14 and thyrosine-15 residues of cdc2
[37-39]. This step is indispensable to mitosis after IR.
Wee1 protein kinase allows cdc2 inactivation by phos-
phorylation of cdc2 on tyrosine -15 [40,41]. Matsumura
et al. [42] reported that carbon-ion irradiation was associ-
ated with the overexpression of Wee1 and phosphoryla-
tion of cdc2, followed by the prolongation of G2 arrest
and subsequent induction of apoptosis. Consistent with
their results, we found that BNCT induced the expression
of Wee1 and cyclin B1 and increased the phosphorylation

of cdc2 in both SAS/neo and SAS/mp53 cells around 12 h
after BNCT. Therefore, it can be stated that Wee1, cdc2,
and cyclin B1 are associated with G2 arrest in a p53-inde-
pendent manner.

Carbon-ion beams reportedly induce apoptosis in oral
SCC and lung cancer cells regardless of the p53 status at a
high LET [17,18]. Why high LET BNCT leads to the p53-
dependent suppression of cell survival and induction of
cell cycle arrest at the G1 checkpoint is unclear. Probably,
each tumor cell would be equally exposed to carbon-ion
beams. In the case of BNCT, however, the path lengths of
high LET α and Li particles are very short, so that the LET
would decrease markedly, even within a cell, being
dependent on the distance from the cytoplasmic boron to
the nuclear DNA [7,8]. This may generate a variety of
intracellular LET values, and yield appropriate energy to
induce cell cycle arrest at G1, if the cells have functional
p53. It may also be ascribed to the characteristics of the
cell lines used. Indeed, the survival curve of SAS/mp53
cells is not exponential, but a shoulder curve. The form of
the curve suggests that the LET was not very high. If the
mutation may influence the intracellular accumulation of
BPA, it may heavily influence the LET of the radiation and
relative biological effect.

In conclusion, oral SCC cells with mutant-type p53 were
more resistant to the cell-killing effect of BNCT than those
with wild-type p53 under the present experimental condi-
tions. A functional p53 is required for the induction of
apoptosis related to G1 arrest. BNCT inhibits oral SCC
cells via p53-dependent and -independent mechanisms.
Recent clinical studies have shown that the delivery of
wild-type p53 to cancer cells with p53 mutations signifi-
cantly increases their radiation sensitivity [43,44]. Adeno-
viral-mediated gene therapy is a reliable method to
introduce the wild-type p53 gene [45,46]. Such an
approach may be applicable to oral SCCs with mutated
p53 to promote the efficiency of BNCT.
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