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Abstract
Background: The Differential Adhesion Hypothesis (DAH) is a theory of the organization of cells
within a tissue which has been validated by several biological experiments and tested against several
alternative computational models.

Results: In this study, a statistical approach was developed for the estimation of the strength of
adhesion, incorporating earlier discrete lattice models into a continuous marked point process
framework. This framework allows to describe an ergodic Markov Chain Monte Carlo algorithm
that can simulate the model and reproduce empirical biological patterns. The estimation
procedure, based on a pseudo-likelihood approximation, is validated with simulations, and a brief
application to medulloblastoma stained by beta-catenin markers is given.

Conclusion: Our model includes the strength of cell-cell adhesion as a statistical parameter. The
estimation procedure for this parameter is consistent with experimental data and would be useful
for high-throughput cancer studies.

Background
The development and the maintenance of multi-cellular
organisms are driven by permanent rearrangements of cell
shapes and positions. Such rearrangements are a key step
for the reconstruction of functional organs [1]. In vitro
experiments such as Holtfreter's experiments on the
pronephros [2] and the famous example of an adult living
organism Hydra [3] are illustrations of spectacular spon-
taneous cell sorting. Steinberg [4-7] used the ability of
cells to self-organize in coherent structures to conduct a
series of pioneering experimental studies that character-
ized cell adhesion as a major actor of cell sorting. Follow-
ing his experiments, Steinberg suggested that the
interaction between two cells involves an adhesion sur-
face energy which varies according to the cell type. To

interpret cell sorting, Steinberg formulated the Differen-
tial Adhesion Hypothesis (DAH), which states that cells
can explore various configurations and finally reach the
lowest-energy configuration. During the past decades, the
DAH has been experimentally tested in various situations
such as gastrulation [8], cell shaping [9], control of pat-
tern formation [10] and the engulfment of a tissue by
another one. Some of these experiments have been
recently improved to support the DAH with more evi-
dence [11].

In the 80's and the 90's, the DAH inspired the develop-
ment of many mathematical models. These models,
recently reviewed in [12], rely on computer simulations of
physical processes. In summary, these models act by min-
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imizing an energy functional called the Hamiltonian, and
they can be classified into four main groups according to
the geometry chosen to describe the tissues.

First, cell-lattice models consider that each cell is geometri-
cally described by a common shape, generally a regular
polygon (square, hexagon, etc ...) (see [13] for example).
Although these models may not be realistic due to the
simple representation of each cell, their computation is
straightforward and fast. The second class of models has
been called centric models. In comparison with the cell-lat-
tice models, centric models are based on more realistic
cell geometries by using tessellations to define cell bound-
aries from a point pattern where points characterize cell
centers [14]. While the main benefit of this class of mod-
els is the use of a continuous geometry, tessellation algo-
rithms are known to be computationally slow [12]. The
third class of models are the vertex models. These models
are dual to the centric models [15,16], and they have the
same characteristics in terms of realism and computa-
tional behavior. The fourth class of models, called sub-cel-
lular lattice models, has been developed as a trade-off
between the simulation speed of cell-lattice models and
the geometrical flexibility of the centric models. The first
sub-cellular lattice model was introduced by Graner and
Glazier (GG model) [17].

Tuning the internal parameters of centric or lattice models
is usually achieved by direct comparison of the model
output and the real data that they are supposed to mimic.
An important challenge is to provide automatic estima-
tion procedures for these parameters based on statistically
consistent models and algorithms. For example, it is now
acknowledged that cell-cell interactions play a major role
in tumorigenesis [18]. Better understanding and estimat-
ing the nature of these interactions may play a key role for
an early detection of cancer. In addition, the invasive
nature of some tumors is directly linked to the modifica-
tion of the strength of cell-cell interactions [19]. Estimat-
ing this parameter could therefore be a step toward more
accurate prognosis.

In this study, we present a statistical approach to the esti-
mation of the strength of adhesion between cells under
the DAH, based on a continuous stochastic model for cell
sorting rather than a discrete one. Our model is inspired
by the pioneering works of Sulsky et al. [20], Graner and
Sawada (GS model) [21] and from the GG model [17]. In
the new model, the geometry of cells is actually similar to
the centric models: assuming that cell centers are known,
the cells are approximated by Dirichlet cells. Using the
theory of Gibbsian marked point processes [22], the con-
tinuous model can still be described through a Hamilto-
nian function (Section "A continuous model for DAH").
The Gibbsian marked point processes theory contains

standard procedures to estimate interaction parameters.
In addition, it allows us to provide more rigorous simula-
tion algorithms including better control of mixing proper-
ties, and it also provides a tool for establish consistency of
estimators (Section "Inference procedure and model sim-
ulation"). In Section "Results and Discussion", results
concerning the simulation of classical cell sorting patterns
using this new model are reported, and the performances
of the cell-cell adhesion strength estimator derived from
this model are evaluated.

A continuous model for DAH
In this section, a new continuous model for differential
adhesion is introduced. Like previous approaches, the
model is based on a Hamiltonian function that describes
cell-cell interactions. The Hamiltonian function incorpo-
rates two terms: an interaction term and a shape con-
straint term. The interaction term refers to the DAH
through a differential expression of Cellular Adhesion
Molecules (CAMs) weighted by the length of the mem-
brane separating cells. This model is inspired by cell-cell
interactions driven by cadherin-catenin complexes [23]
which are known to be implicated in cancerous processes
[24]. The main characteristic of interactions driven by cad-
herin-catenin complexes is that the strength of adhesion is
proportional to the length of the membrane shared by
two contiguous cells. This particularity is due to a zipper-
like crystalline structure of cadherin interactions [25]. The
constraint term relates to the shape of biological cells and
prevent non-realistic cell shapes.

The proposed model uses a Dirichlet tessellation as a rep-
resentation of cell geometry. The Dirichlet tessellation is
entirely specified from the locations of the cell centers.
Formally, we denote by xi (i = 1, ..., n) the n cell centers,

where xi is assumed to belong to a non-empty compact

subset  of �2. The Dirichlet cell of xi is denoted by

Dir(xi), and is defined as the set of points (within )

which are closer to xi than to any other cell centers. Let us

denote a (marked) cell configuration as

ϕ = {(x1, τ1), ..., (xn, τn)}, (1)

where the (xi) are the cell centers, and the (τi) are the cor-
responding cell types (or marks). The marks belong to a
finite discrete space M. In the section "Results and Discus-
sion", we consider the case where cells may be of one of
the three types: M = {τ1, τ2, τE}, in analogy with cell types
used in [26].

The interaction term corresponds to pair potentials and it
controls the adhesion forces between contiguous cells.
This term is defined as follows



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where |Dir(xi ∩ xj)| denotes the length of the contact zone
between cell xi and cell xj. Function J is assumed to be sym-
metric and nonnegative

J : M × M → [0, ∞)

The symbol i ~ϕ j means that the cells xi and xj share a com-
mon edge in the Dirichlet tiling built from the configura-
tion of points in ϕ.

The shape constraint term corresponds to singleton
potentials. It controls the form of each cells and puts a
penalty on abnormally large cells. It is defined as follows

where the function h is assumed to be nonnegative

h :  × M → [0, ∞)

One specific form of the term h(Dir(xi), τi), used as an
example in this paper, will be described in the section
"Results and Discussion". The energy functional of our
model is defined as a combination of the interaction term
and the shape constraint as follows

H(ϕ) = θ Hinter (ϕ) + Hshape (ϕ) (2)

where θ is a positive parameter. This parameter can be
interpreted as an adhesion strength intensity, as it deter-
mines the relative contribution of cell-cell interactions in
the energy. It may reflect the general state of a tissue, and
its inference is relevant to applications of the model to
experimental data.

Since one considers finite configurations ϕ on the com-

pact set  × , the energy functional H(ϕ) is finite

(|H(ϕ)| < ∞). Indeed, one can notice that the area of the

cell |Dir(xi)| is bounded by the area of the compact set .

Coupling with the fact that h is a real-valued function, it
comes that Hshape is bounded. Similarly, the length of a

common edge |Dir(xi ∩ xj)| is bounded by the diameter of

the compact set , and providing that J is a real-valued
function, Hinter is also bounded. Moreover, since J and h

are positive functions and θ > 0, H(ϕ) is even positive.

Before giving an inference procedure for θ, we describe the
connections of our continuous model to earlier models,
for which no such procedure exists. The new continuous
model improves on three previous approaches by Sulsky
et al. [20], Graner and Sawada [21] and Graner and Gla-
zier [17]. Sulsky et al. proposed a model of cell sorting
[20] according to a parallel between cell movements and
fluid dynamics. A Dirichlet tessellation was used for mod-
eling cells, the following Hamiltonian was introduced

where ei, j is the interaction energy between cells xi and xj.
As in our new continuous model, the length of the mem-
brane also contributes to the energy. Graner and Sawada
described another geometrical model for cell rearrange-
ment [21]. Graner and Sawada introduced "free Dirichlet
domains", which are an extension of Dirichlet domains,
to overcome the excess of regular shapes in classical
Dirichlet tilings. In addition to this geometrical represen-
tation, Graner and Sawada proposed an extension to Sul-
sky's Hamiltonian accounting for the interaction between
cells and the external medium

where |Dir(xi ∩ M)| is the length of the membrane
between cell xi and the extracellular medium. This term is
equal to 0 if the extracellular medium is not in the neigh-
bourhood of xi. While the length of the membrane is
explicitly included in the models, no statistical estimate
for the interaction strength was proposed in these two
approaches.

In the GG model [17], a cell is not defined as a simple
unit, but instead consists of several pixels. The cells can
belong to three types: high surface energy cells, low sur-
face energy cells or medium cells, which were coded as 1,
2 and -1 in the original approach. According to the DAH,
Hamiltonian HGG was defined as follows

where (i, j) are the pixel spatial coordinates, σij represents

the cell to which the pixel (i, j) belongs, τ(σij) denotes the

type of the cell σij, and the function J characterizes the

interaction intensity between two cell types (δ denoted
the Kronecker symbol). The neigbourhood relationship
used by Graner and Glazier is of second order which
means that diagonal pixels interact. The term

H x x Ji j i j
i j

inter Dir( ) ( ) ( , )
~

ϕ τ τ
ϕ

= ∩∑

H h xi i
i

shape Dir( ) ( ( ), )ϕ τ= ∑



 





HS Dir= ∩∑ ( ) ,
~

x x ei j i j
i j

(3)

H x x e x M ei j i j
i j

i i M
i

GS Dir Dir= ∩ + ∩∑ ∑( ) ( ),
~

,

H J aij i j
i j i j

ij i jGG = −( ) + −′ ′
′ ′
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 indicates that the interaction between two

pixels within the same cell is zero. Shape constraints are

modeled by the second term where λ corresponds to an

elasticity coefficient, a(σ) is the cell area and Aτ (σ) is a

prior area of a cell of type τ > 0. The function Γ denotes
the Heaviside function and is included in the formula so
that medium cells (coding -1) are not subject to the shape
constraint. This model is simulated using the Boltzmann
dynamics with various parameter settings and is able to
reproduce many biologically relevant patterns [26]. The
model introduced in this paper is a formal extension of
the continuous version of the GG model [17] and also of
the models introduced by Sulsky et al. [20] and Graner
and Sawada [21]. Let us now explain in which sense this

extension works. In the GG model, a cell σ is in the neigh-

bourhood of a cell σ' as soon as a single pixel of σ is adja-

cent to a pixel from σ'. With this in mind, the GG model's
Hamiltonian can be rewritten as

where |σ ∩ σ'| is the number of connected pixels between
σ and σ'. The quantity |σ ∩ σ'| can be identified as the
Euclidean length of the interaction surface between the
two cells σ and σ'. Identifying cells to their centers, |σ ∩
σ'| can be approximated as |Dir(xi ∩ xj)|. In addition, a cell
area in our model matches with the area of a Dirichlet cell,
which means that a(σ) corresponds to |Dir(xi)|. Using
these notations, the GG energy function can be rewritten
in a form similar to our Hamiltonian

The second term in Equation 5 is a particular case of the
shape constraint term (see Equation 2) taking

To conclude this section, the new continuous model,
introduced in this paper, unifies main features inspired
from the three previous approaches. First, it borrows from
Sulsky et al. the Dirichlet geometry for cells. Next it con-
siders interactions between cells and surrounding
medium as Graner and Sawada did. And finally it borrows
from Graner and Glazier an additional constraint on the
shape of cells. In addition, one strength of the new model

is the introduction of a new parameter which quantifies
adhesion within a tissue.

Inference procedure and model simulation
An important benefit of the continuous approach is that it
allows to develop consistent statistical estimation proce-
dures for the adhesion strength parameter θ. To achieve
this, we use the theory of Gibbsian marked point proc-
esses which provides a natural framework for parameter
estimation (see [22,27]). Gibbsian models, according to
the statistical physics terminology, have been introduced
and largely studied in [28] or [29]. The idea of modeling
cell configurations with point processes has been intro-
duced in the literature by [30] and [22].

Given the energy functional defined in equation 2, we
introduce a new marked point processes that have a den-
sity f, with respect to the homogeneous Poisson process of
intensity 1 (as in [31], p360, l.12), of the following form

where Z(θ) is the partition function, and θ is the parame-
ter of interest. The probability measure for the marks is
assumed to be uniform on the space of marks M. As noted
in the previous section, our energy functional H(ϕ) is pos-
itive and bounded. Then H(ϕ) is stable in the sense of [28]
(definition 3.2.1, p33). It follows that the proposed point
process is well-defined as Z(θ) is bounded. A realization
of such a process is called a configuration and is denoted
as ϕ . When ϕ has exactly n points, we can write

ϕ = {(x1, ϕ1), ..., (xn, ϕn)},

as in Equation 1. A cell-mark couple (xi, τi) is then called
a point. We can notice that the model proposed in this
study belongs to the class of the nearest-neighbour markov
point processes introduced by [32] (see Appendix 1).

In statistics, estimating θ is usually based on a maximum-
likelihood approach. However, this approach cannot be
used because the computation of the partition function is
in general a very hard problem apart for very small n.
Hence, as in [22], we resort to a classical approximation:
the pseudo-likelihood method, first introduced by Besag
in the context of the analysis of dirty pictures [33] (see
also [34]). For any configuration ϕ, the pseudo-likelihood
is defined as the product over all elements of ϕ of the fol-
lowing conditional probabilities

1 −( )′ ′
δσ σij i j,

H J a A AGG = ∩ ′ ′ + −
′

∑ ∑σ σ τ σ τ σ λ σ
σ σ

τ σ τ σ
σ
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2Γ
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i
i

i i
( ) ( ) ( , ) ( ( ) ) ( ).

~

ϕ τ τ λ
ϕ

τ τ= ∩ + −∑ ∑Dir Dir 2Γ

(5)

h x x A A i ni i i i i
( ( ), ) ( ( ) ) ( ) .Dir Dirτ λ τ τ= − =2 1Γ …

(6)

f
H

Z
( , )

exp( ( ))

( )
ϕ θ ϕ

θ
= −

(7)

PL Prob( , ) ({ , }| \ , ){ , }
{ , }

ϕ θ τ ϕ θτ
τ ϕ

=
∈

∏ xi i x
x

i i

i i
Page 4 of 13
(page number not for citation purposes)



Theoretical Biology and Medical Modelling 2007, 4:37 http://www.tbiomed.com/content/4/1/37
In this formula, the conditional probability of observing
{xi, τi} at xi, given the configuration outside xi, can be
described as

where M corresponds to the set of the possible cell types
(or marks), and where Hϕ ({xi, τi}) represents the contri-
bution of the marked cell {xi, τi} in the expression of the
Hamiltonian H(ϕ), i.e.

Taking the logarithm of the pseudo-likelihood leads to

and maximizing LPL(θ) provides an estimate of θ, namely

 (ϕ) = argmaxθ LPL(ϕ, θ)

which can be computed using standard numerical tech-
niques.

In order to evaluate both the statistical cell configurations
according to the distribution of the Gibbsian marked
point process and evaluate the statistical performances of

the estimator , an MCMC algorithm have been imple-
mented. The algorithm differs from the GS and GG algo-
rithms notably since these methods were time-dependent
and account for the path from the initial to final state. We
apply a Metropolis-Hastings algorithm for point processes
as described in [31].

At each iteration, the algorithm randomly chooses
between three operations: inserting a cell within the

region , deleting a cell or displacing a cell within .
One iteration is detailed in the appendix (Appendix 2).
From Equation 7, one can remark that only the variation
in the energy is needed to compute the acceptance proba-
bility. Insertion, deletion and displacement of a cell in the
configuration has been implemented using local changes
as described in [35] and [36].

A second kind of benefit carried out by the use of marked
point processes is to provide theoretical conditions that
warrant the convergence of the simulation algorithm.

Proposition 1 Let be a compact subset of �2 and M be a

finite discrete space. Let ϕ be a point configuration

ϕ = {(x1, τ1), ..., (xn, τn)}

Let us consider a Gibbsian marked point process as defined in
Equation 2, and

where J charaterizes the interaction intensity and h the con-
straint on the shape of cells.

Assuming that J and h are nonnegative real-valued functions,
the Markov chain generated by the simulation algorithm of the
continuous model (see Appendix 2) is ergodic.

The proof of proposition 1 can be derived along the same
lines as [31] (Section 4, p. 364). It can be sketched as fol-
lows. First, it is clear that the transition probabilities of the
proposed algorithm satisfy Equations 3.5–3.9 in [31] (p.
361–362). Next, in order to ensure the irreducibility of the
Markov chain, the density of the process has to be heredi-
tary (Definition 3.1 in [31], p. 360). The nearest-neighbour
markov property of our model ensures its hereditary. Then
by adapting the proof of Corollary 2 in Tierney ([37], Sec-
tion 3.1, p. 1713), it follows that the chain is ergodic.

Results and Discussion
Simulation of biological patterns

In this section, we report simulation results obtained with

three marks M = {τ1, τ2, τE}. We provide evidence that our

model has the ability to reproduce at least three kinds of
biologically observed patterns: checkerboard, cell sorting
and engulfment. The constraint shape function h is bor-
rowed from the GG model, and is is defined as in Equa-

tion 6. The parameter λ controls the intensity of the shape
constraint. It also acts on the density of points within the

studied region . In the following of this paper we con-

sider  to be the unit disc and λ has been fixed to 10,000.

Biological tissue configurations are often interpreted in
terms of surface tension parameters. For instance, checker-
board patterns are usually associated with negative surface
tensions, whereas cell sorting patterns are associated with
positive surface tensions [17]. When two distinct cell types
are considered, the surface tension between cells with the
distinct types can be defined as

Prob({ , }| \ , )
exp( ({ , }, ))

exp(
{ , }

\{ ,

x
H x

H
i i x

i i
i i
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The two marks τ1 and τ2 characterize "active cell types", as

defined in [17], with distinct phenotypes responsible for
the adhesion process. For example, phenotypes may rep-
resent different levels of expression of cadherins. In addi-
tion, active cells are surrounded by an extracellular

medium modeled by cells of type τE. One hundred cells of

type τE were uniformly placed on the frontier of the unit

disc .

These three types are similar to the �, d and M types of Gla-
zier and Graner [26]. Simulations were generated from the
Metropolis algorithm presented in the previous section. A
unique configuration was used to initialize all the simula-
tions. This configuration is displayed in Figure 1. It con-
sisted of about 1,000 uniformly located active cells, and
the marks were also uniformly distributed in the mark
space M. The target areas for active cells were equal to Aτ1
= Aτ2 = 5 × 10-3. At equilibrium, configurations were
expected to consist of about π/5.10-3 ≈ 628 cells in the unit
disc. No area constraint affected the τE cells and we set Aϕ

E = -1. The interaction term affecting two contiguous extra-

cellular cells was set to the value J(τE, τE) = 0. The adhesion
strength parameter θ was fixed to θ = 10.

Checkerboard patterns can be interpreted as arising from
negative surface tensions. In the GG model, checkerboard
patterns were generated using parameter settings that cor-
responded to a surface tension equal to γ12 = -3. Figure 2
displays the configuration obtained after 100,000 cycles
of the Metropolis-Hastings algorithm, where the interac-
tion intensities were fixed at J(τ1, τ2) = 0, J(τ1, τ1) = J(τ2,
τ2) = 1 and J(τE, τ1) = J(τE, τ2) = 0. These interaction inten-
sities correspond to a surface tension equal to γ12 = -1
which was of the same order as the one used in the GG
model. Moreover we have γ1E = -1/2 and γ2E = -1/2.

In contrast, cell sorting patterns arise from positive surface
tensions between active cells. In the GG model, cell sort-
ing patterns were generated using parameter settings that
corresponded to surface tensions around γ12 = +3. In our
model, simulations were conducted using the following
interaction intensities:

J(τ1, τ2) = 1, J(τ1, τ1) = J(τ2, τ2) = 0 and J(τE, τ1) = J(τE, τ2)
= 0. These values correspond to γ12 = +1. Surface tension
with extracellular medium is equal to γ1E = 0 and γ2E = 0.
The configuration obtained after 100,000 steps cycles of
Metropolis-Hastings is displayed in Figure 3.

Simulations of engulfment were conducted using the fol-
lowing parameters: J(τ1, τ2) = 1, J(τ1, τ1) = J(τ2, τ2) = 0,
J(τE, τ1) = 0, J(τE, τ2) = 1. These interaction intensities pro-
vide positive surface tensions between active cells, which
contribute to the formation of clusters. The fact that J(τE,
τ2) is greater than J(τE, τ1) ensure that τ1 cells are more
likely to be close to the extracellular medium and to sur-
round the τ2 cells. It is reflected by the extracellular surface
tensions: γ1E = 0 and γ2E = 1. The results are displayed in
Figure 4.

At the bottom of Figures 2, 3, 4, the evolution of the
energy as well as the rate of acceptance is plotted as a func-
tion of the number cycles of Metropolis-Hastings algo-
rithm. These curves exhibite a flat profile, which suggests
that stationarity was indeed reached.

Statistical estimation of the adhesion strength parameter

In this section, we study the sensitivity of simulation

results to the adhesion strength parameter θ, and we
report the performances of the maximum pseudo-likeli-

hood estimator .

To assess the influence of θ on simulations, three values
were tested: θ = 1, θ = 5 and θ = 10. The results are pre-
sented for simulations of checkerboard, cell sorting and



θ̂

The initial configuration for simulating Checkerboard, Cell Sorting and Engulfment patternsFigure 1
The initial configuration for simulating Checkerboard, Cell 
Sorting and Engulfment patterns. It consists of about 1,000 
active cells surrounded by an extracellular medium. The 
active cells are randomly located in the unit sphere, and their 
types are randomly sampled from M. Cells of type τ1 are 
colored in black while cells of type τ2 are colored in grey. 
One hundred cells of type τE were uniformely placed on the 
frontier of the unit disc.
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engulfment patterns. In each case, the interaction intensi-
ties were set as in the previous paragraph.

We ran the Metropolis algorithm for 100,000 cycles. This
number is sufficient to provide a flat profile of energy and
rate of acceptance. The final configurations, in checker-
board, cell sorting and engulfment, are displayed in Figure
5. Either for checkerboard or for cell sorting simulations,
we observe a gradual evolution when θ increases. For θ =
1, the marks seem to be randomly distributed, for θ = 5 a
small inhibition is visible in the checkerboard simulation,
small clusters appear in the cell sorting pattern and black
cells start to surround white cells in the engulfment simu-
lation. Finally, for θ = 10 the stronger inhibition between
cells with the same types provides a more pronounced
checkerboard pattern, larger clusters are obtained in cell
sorting and black cells completely engulf white cells.

For each value of θ, 100 replicates of cell sorting, checker-
board and engulfment were generated from which the

mean and the variance of  were estimated. Each repli-
cate consisted in 100,000 cycles started from independent
initial configurations and sampled from uniform distribu-
tions. The number of active cells was sampled from the
interval [500,1500]. Cells were uniformly located within
the unit disk and types were uniformly assigned to each

cell. Table 1 summarizes the results obtained for θ in the
range [1, 20]. For cell sorting, the bias is weak for all val-

ues of θ, while for checkerboard the bias seems to be
slightly higher. The results are similar regarding the vari-
ance. It is higher for checkerboard than for cell sorting.

Under the engulfment model, the estimator  seemed to

systematically slightly overestimate θ. Variance under the
engulfment model is of the same order as the variance in

θ̂

θ̂

Checkerboard simulationFigure 2
Checkerboard simulation. The interaction intensities were chosen as follows: J(τ1, τ1) = 1, J(τ2, τ2) = 1, J(τ1, τ2) = 0, J(τ1, τE) = 0, 
J(τ2, τE) = 0 and J(τE, τE) = 0. (a) The configuration obtained after 100,000 iterations with θ = 10. (b) The decrease of the energy 
as a function of the iteration steps. (c) The evolution of the accpetance rate as a function of the iteration steps.
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cell sorting. Finally, in the three model, the variance

increased as θ increased. The estimates can be considered

as accurate for moderate values of θ (≈ 10), as the pseudo-
likelihood may provide significant bias in cases of strong
interaction [38].

Experimental data
Estimation of the adhesion strength was also performed
on a real data example. We used data from Pizem et al.
([39]), who measured survivin and beta-catenin markers
in Human medulloblastoma. These markers are known to
be involved in complexes that regulate adhesion between
contiguous cells. An image analysis, analogous to the
analysis performed in [40], was achieved to extract the
locations of cell nuclei and the levels of expression of
markers in cells. The expression levels were used to define
cell types as displayed in Figure 6. The resulting image is
relevant to a cell sorting pattern, and we used the set of J
parameters that corresponded to this pattern.

The estimate of θ was computed as  ≈ 5.27. This value
provides evidence that the model is able to detect large
clusters (black cell clusters here) and that white cells may

be surrounded by black cells. The estimated value  was
then tested as input to the simulation algorithm, and the
resulting spatial pattern is displayed in Figure 7. Compar-
ing the real tissue and the cell sorting pattern simulated
with the estimated interaction strength makes clear that

the model provides a good fit to the data and that θ esti-
mation is consistent.

Conclusion
In this study, we presented an approach to cell sorting
based on marked point processes theory. It proposes a
continuous geometry for tissues using a Dirichlet tessella-
tion and an energy functional expressed as the sum of two
terms: an interaction term between two contiguous cells
weighted by the length of the membrane and a cell shape

θ̂

θ̂

Cell Sorting simulationFigure 3
Cell Sorting simulation. The interaction intensities were chosen as follows: J(τ1, τ1) = 0, J(τ2, τ2) = 0, J(τ1, τ2) = 1, J(τ1, τE) = 0, 
J(τ2, τE) = 0 and J(τE, τE) = 0. (a) The configuration obtained after 100,000 iterations with θ = 10. (b) The decrease of the energy 
as a function of the iteration steps. (c) The evolution of the accpetance rate as a function of the iteration steps.
Page 8 of 13
(page number not for citation purposes)



Theoretical Biology and Medical Modelling 2007, 4:37 http://www.tbiomed.com/content/4/1/37
constraint term. Such models, where interactions are
weighted by the length of the membrane, have already
been considered in the literature, first by Sulsky et al. [20]
and next by Graner and Sawada [21]. Based on Honda's
studies that showed that the geometry of Dirichlet cells
was in agreement with biological tissues [41,42], these
earlier models also used a continuous geometry of cells.
These authors were interested in formulating a dynamical
model which determines not only the equilibrium state
but the path from the initial state to final state. These two
approaches introduced systems of differential equations
to simulate cell patterns.

Although the previous approaches contained the main
ingredients to model simulation, they were not well-
adapted to perform statistical estimation of interaction
parameters. Furthermore, Graner and Sawada reported
two limitations of their approach. First, because the GS

model is not stochastic, it does not explore the set of pos-
sible configurations ([21], p.497, l.10). Next Graner and
Sawada stressed that their simulation algorithm suffers
from instability because of its lack of theoretical control
([21], p.497, l.15). Graner and Glazier proposed Boltz-
mann dynamics and were interested in the time needed to
achieve desired configurations. However, there is no war-
ranty that their Markov chain has correct mixing proper-
ties, and the sensitivity of their method to the
discretization scale remains to be studied. Because of dis-
cretization, detailed balance condition and cell connexity
did not seem to hold in the GG model. GG's approach
cannot be easily adapted to define inference procedures.

Our study is not the first attempt to propose statistical
procedures for estimating interaction strength parameters
in tissues. In [13], two statistics have been introduced to
measure the degree of spatial cell sorting in a tissue where

Engulfment simulationFigure 4
Engulfment simulation. The interaction intensities were chosen as follows: J(τ1, τ1) = 0, J(τ2, τ2) = 0, J(τ1, τ2) = 1, J(τ1, τE) = 0, 
J(τ2, τE) = 1 and J(τE, τE) = 1. (a) The configuration obtained after 100,000 iterations with θ = 10. (b) The decrease of the energy 
as a function of the iteration steps. (c) The evolution of the accpetance rate as a function of the iteration steps.
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cells are of types black and white. Cell sorting can be
quantified by the fraction of black cells in the nearest
neighborhood of single black cell and the number of iso-
lated black cells. Although these two statistics have been
recently used to study the role of cadherins in tissue segre-
gation [43], their practical application requires cells to be
pixels within a lattice ([13] and [43]). Their capacity to
quantify cell sorting has been studied using a cell-lattice
model where all cells have the same geometry, hypothesis
which does not fit with the zipper-like structure of cadher-
ins [25].

In contrast to these approaches, the mathematical back-
ground of marked point processes allows the establish-
ment of a statistical framework. In this study, we have
shown that our model was able to reproduce biologically
relevant cell patterns such as checkerboard, cell sorting

and engulfment. Checkerboard pattern formation was
investigated in a simulation study of the sexual matura-
tion of the avian oviduct epithelium [44]. Cell sorting is a
standard pattern of mixed heterotypic aggregates. Experi-
mental observations of this phenomena were reported by
Takeuchi et al. [45] and Armstrong [1]. Engulfment of a
tissue by another one was studied by Armstrong [1] and
Foty et al. [46]. This phenomenon is a direct consequence
of adhesion processes between the two cell types and the
extracellular medium. These cell patterns were also simu-
lated by pioneering studies ([17,20,21]).

Furthermore, the present model has been built so that it
includes the strength of cell-cell adhesion as a statistical
parameter. We proposed and validated an inference pro-
cedure based on the pseudo-likelihood. The statistical
errors remain small in cell sorting simulations. In check-

Influence of θ in simulationsFigure 5
Influence of θ in simulations. Final configurations using three different values for θ. Simulations gradually corresponds to either 
a checkerboard, large clusters or engulfment.
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erboard simulations, bias and variance are slightly higher
than for cell sorting but still reasonable. The bias is also
weak in engulfment simulations. Further improvements
of this approach would require a longer study of the prop-
erties of the point process model. In particular, the other
interaction parameters can also be estimated in the same
way that θ is. Although we did not assess the perform-
ances of these estimators, we believe that they would be

useful for analyzing tissues arrays, as generated by high-
throughput cancer studies [47].
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Appendix
Appendix 1
In this section we prove that the point process introduced
in this paper is a nearest-neighbour markov point process
which has been defined in [32] (p.107 Definition 4.9).

We use Theorem 4.13 (p.108) in [32] (analogue of the
Hammersley-Clifford-Ripley-Kelly theorem [48] for near-
est-neighbour markov point processes) which is as fol-
lows

Simulated dataFigure 7
Simulated data. Using the interactions parameters for cell 
sorting patterns: J(τ1, τ1) = 1, J(τ2, τ2) = 1, J(τ1, τ2) = 0, J(τ1, 

τE) = 0, J(τ2, τE) = 0 and J(τE, τE) = 0. The parameter θ used 
for the simulation is the estimated value from experimental 
data θ = 5.27 (see Figure 6). The estimated interaction 

parameter  ≈ 5.51.θ̂

Table 1: Mean and Variance of , maximum of Pseudo-

likelihood, for checkerboard, cell sorting and engulf-
mentsimulations. The evaluation was achieved using 100 
simulations of each case.

Checkerboard Cell Sorting Engulfment

Mean Variance Mean Variance Mean Variance

θ = 1 0.99 0.39 1.12 0.34 1.27 0.32
θ = 3 3.34 0.48 3.03 0.43 3.08 0.41
θ = 5 5.15 0.92 5.37 0.45 5.23 0.48
θ = 8 8.42 1.03 8.11 0.92 8.21 0.67
θ = 10 10.58 1.36 10.26 0.67 10.22 1.02
θ = 12 12.12 1.55 12.14 0.92 12.18 0.94
θ = 15 15.51 1.72 14.94 1.64 15.48 1.12
θ = 20 19.52 2.15 20.08 1.51 20.28 1.82

θ̂

Experimental dataFigure 6
Experimental data. The statistical procedure was conducted 
using the interactions parameters for cell sorting patterns: 
J(τ1, τ1) = 1, J(τ2, τ2) = 1, J(τ1, τ2) = 0, J(τ1, τE) = 0, J(τ2, τE) = 0 

and J(τE, τE) = 0. λ was set to 10,000. We obtained  ≈ 5,27.θ̂
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Theorem 1 Let H be an hereditary subset of the set of finite

configurations in × M. Let ~ϕ be a neighbour relation with

consistency conditions (C1)–(C2) (4.7 p.106 in [32]) hold, ϕ
∈ H. Then a function g : H → [0, ∞) is a Markov function if
and only if

for all ϕ ∈ H, where Ψ is an interaction function.

As proved in [32] (Appendix A1, p116), the set of Dirich-
let configurations is hereditary and satisfies properties
(C1) and (C2) (see paragraphs 2.5 p94 and 4.7 p106 in
[32]).

Let ϕ be a finite configuration in  and ~ϕ its Dirichlet

neighbourhood. Let Ψ be a function defined over all

cliques φ ∈ ϕ as follows

Ψ (clique) = 1 for all cliques with three or more points

As mentioned in the section "A new model for DAH", one

can remark that for each marked cell (xi, τi) in a configu-

ration ϕ ∈  × 

, and for each couple {(xi, τi), (xj, τj)}, such as xi ~ϕ xj

This shows that Ψ is an interaction function in the sense of
[32] (definition 4.11 p108). One can easily note that
∏c∈cliques(ϕ) Ψ(c) = f (ϕ, θ). Then Theorem 1 holds for the
interaction function proposed in this paper which leads to
f is a Markov function.

Since the neighbourhood depends on the configuration,
our point process is a nearest-neighbour markov point process
as defined in [32] (Definition 4.9 p107).

Appendix 2
Here is the description of one iteration in the MCMC algo-
rithm proposed in this paper. Let us denote ϕ the config-

uration just before the current iteration and ψ the
proposed new configuration.

• With probability p(ϕ) – Displacement

- One point {xi, τi} is chosen with probability d(ϕ, {xi, τi})

- The proposal distribution for the moving point is b(ϕ,
{x, τ})

- ψ = ϕ ⊂ {xi, τi} ∪ {x, τ}

• Else with probability (1 - p(ϕ))q(ϕ) – Insertion

- The proposal distribution for the new point is b(ϕ, {x,
τ})

- ψ = ϕ ∪ {x, τ}

• Else with probability (1 - p(ϕ))(1 - q(ϕ)) – Deletion

- The deleted point {xi, τi} is chosen with probability d(ϕ,
{xi, τi})

- ψ = ϕ ⊂ {xi, τi}

• The proposal configuration ψ is accepted with the
acceptance probability A [31], as follows

A(ψ |ϕ) = min(1, f(ψ)/f(ϕ))

In the algorithm proposed in this paper, we used

p(ϕ) = 1/2 and q(ϕ) = 1/2 for all ϕ  × M

d(ϕ, {xi, τi}) = 1/n for all {xi, τi} ∈ ϕ and where n is the

number of points in ϕ  where ρ ×

· is the intensity of the underlying marked Poisson proc-
ess
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