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Abstract

Background: Multidrug resistance is a particular limitation to cancer chemotherapy, antibiotic
treatment and HIV medication. The ABC (ATP binding cassette) transporters human P-
glycoprotein (ABCB1) and the human MRP5 (ABCCS5) are involved in multidrug resistance.

Results: In order to elucidate structural and molecular concepts of multidrug resistance, we have
constructed a molecular model of the ATP-bound outward facing conformation of the human
multidrug resistance protein ABCBI using the SavI866 crystal structure as a template, and
compared the ABCBI model with a previous ABCC5 model. The electrostatic potential surface
(EPS) of the ABCBI substrate translocation chamber, which transports cationic amphiphilic and
lipophilic substrates, was neutral with negative and weakly positive areas. In contrast, EPS of the
ABCCS substrate translocation chamber, which transports organic anions, was generally positive.
Positive-negative ratios of amino acids in the TMDs of ABCBI and ABCCS5 were also analyzed, and
the positive-negative ratio of charged amino acids was higher in the ABCC5 TMDs than in the
ABCBI TMDs. In the ABCBI model residues Leu65 (transmembrane helix | (TMHI)), lle306
(TMH5), 1le340 (TMH®6) and Phe343 (TMH6) may form a binding site, and this is in accordance with
previous site directed mutagenesis studies.

Conclusion: The Sav1866 X-ray structure may serve as a suitable template for the ABCBI model,
as it did with ABCCS. The EPS in the substrate translocation chambers and the positive-negative
ratio of charged amino acids were in accordance with the transport of cationic amphiphilic and
lipophilic substrates by ABCBI, and the transport of organic anions by ABCCS.

Background porter, or be substrates themselves. There is an increasing
The transport of small organic molecules and ions across ~ focus on transporters as drug targets, and the information
cell membranes generally requires a transporter protein,  on transporter structure and function is rapidly increasing.
and these transporter proteins have recognition sites that ~ The number of drugs interacting with transporters will
make them specific for particular substrates. Drugs can  probably increase in the future.

interact with these recognition sites and inhibit the trans-
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According to the transporter classification approved by
the transporter nomenclature panel of the International
Union of Biochemistry and Molecular Biology [1,2],
transporters are divided into classes based on both func-
tion and phylogeny. These classes are: 1. Channels and
pores, 2. Electrochemical potential-driven transporters
(secondary transporters), 3. Primary active transporters, 4.
Group translocators, 5. Transport electron carriers, 8.
Accessory factors involved in transport, 9. Incompletely
characterized transport systems.

ABC (ATP binding cassette) transporters belong to class 3
(primary active transporters), subclass A (diphosphate
bond hydrolysis-driven transporters) and family 1 (ABC
superfamily) [1]. Primary active transporters use a pri-
mary source of energy to drive active transport of particles
from regions of low concentration to regions of high con-
centration. The ABC superfamily transporters are structur-
ally related membrane proteins sharing a common
intracellular motif that exhibits ATPase activity that
cleaves ATP's terminal phosphate, using the free energy
from ATP (adenosine triphosphate) stored in the high-
energy phosphate bond as the energy source for activating
the transporter [1-4].

The human genome encodes more than 40 ABC trans-
porters divided into five different subfamilies: ABCA,
ABCB, ABCC, ABCD and ABCG, based on phylogenetic
analysis (Additional file 1). According to the TCDB [1],
these subfamilies belong to subclasses 3.A.1.201-212,
ABC-type efflux permeases (mostly eukaryotic) [2]. The
ABC genes are highly conserved between species, indicat-
ing that most of these genes have been present since the
beginning of eukaryotic evolution [5]. These transporters
feature both transmembrane domains (TMD) and nucleo-
tide binding domains (NBD). In general, the domain
arrangement of these transporters is TMD-NBD-TMD-
NBD, but TMDO-TMD-NBD-TMD-NBD, NBD-TMD-
NBD-TMD, TMD-NBD and NBD-TMD also exist [5,6].
TMDO is a 5 TMH amino-terminal domain present in
ABCC1, ABCC2 and ABCC3. The NBD contains the
Walker A and B motifs [7] and a signature C motif. Two
further subfamilies, ABCE and ABCF, are related to ABC
transporters, but they lack transmembrane domains and
thus are not membrane transporters [4,5]. The substrate
specificity is provided by the TMDs, which contain 6-11
transmembrane helices (TMHs) [5].

Cells exposed to toxic compounds can develop resistance
by a number of mechanisms, including increased excre-
tion. The result is multidrug resistance (MDR), which is a
particular limitation to cancer chemotherapy, antibiotic
treatment and HIV medication. Transporters in sub-
families ABCA, ABCB, ABCC and ABCG are involved in
multidrug resistance [8-11]. Development of inhibitors of
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drug efflux transporters has been sought for use as supple-
ment to therapy to overcome multidrug resistance [12]. In
order to elucidate structural and molecular concepts of
multidrug resistance, we have focused on the TMDs of
ABCB1 and ABCC5 using molecular modeling tech-
niques. ABCB1 and ABCC5 both have a TMD-NBD-TMD-
NBD arrangement, with TMDs consisting of 6 TMHs.
ABCBI1 transports cationic amphiphilic and lipophilic
substrates [13-16], while ABCC5 transports organic ani-
ons [17,18]. Information about the molecular aspects of
ligand interactions with these transporters can be used to
design therapeutic agents that may aid to overcome multi-
drug resistance.

Several electron density maps of ABCB1 have been pub-
lished [19-22], giving insight into ABCB1 architecture.
The latest electron density map had a resolution limit of
~8 A, and although this structure reveals the TMH packing
of ABCB1, it is not possible, at this resolution, to predict
the TMH numbering [22]. In lack of an X-ray crystal struc-
ture, molecular modeling by homology may be an alter-
native for gaining structural insight into protein drug
targets. The bacterial ABC transporter Sav1866 from Sta-
phylococcus aureus has been crystallized in an outward-fac-
ing ATP-bound state [23]. Sav1866 is a bacterial
homologue to ABCB1 [23], indicating that the Sav1866
crystal structure could be used as a template for the
present model building by homology. The 12 TMH
arrangement of the Sav1866 crystal structure is consistent
with the electron density maps of ABCB1 [23]. The NBDs
of both Sav1866 and ABCBI1 are functionally equivalent;
both NBDs are responsible for ATP binding and hydroly-
sis [23,24].

In this study we have constructed an ABCB1 model based
on the Sav1866 crystal structure [23] using molecular
modeling techniques. Among the transporters in the
ABCC subfamily (multidrug resistance proteins, MRPs),
ABCCS5 has a "P-gp-like" ("ABCB1-like") core domain
organization (TMD1-NBD1-TMD2-NDB2) [25]. We have
previously constructed an ABCC5 model in a cGMP dock-
ing study (submitted) using the Sav1866 crystal structure
[23] as a template, and in the present study we have per-
formed a comparative analysis of the ABCB1 and ABCC5
models in order to understand the molecular concepts of
the substrate difference between ABCB1 and ABCC5. The
comparative analysis included the electrostatic potential
surfaces (EPS) of the substrate translocation chambers,
and the positive-negative ratios of charged amino acids of
the TMDs of both models. A phylogenetic analysis of
human ABC transporters has been performed in order to
understand the phylogenetic relationship between ABCB1
and ABCC5. The ABCB1 model has been compared with
cross-linking and site directed mutagenesis data pub-
lished on ABCB1 [26-32].
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Results

Evolutionary tree of the human ABC transporters

The evolutionary tree of the human ABC transporters,
together with Sav1866, is shown in Figure 1. ABCB1 and
Sav1866 are localized on the same branch of the evolu-
tionary tree (the "ABCB-branch"), while ABCCS5 is local-
ized on a different branch (the "ABCC-branch").

Amino acid sequence identities of TMDs and positive-
negative ratios of charged amino acids

Table 1 shows the amino acid sequence identities between
the Sav1866-TMD, ABCB1-TMD1, ABCB1-TMD2,
ABCC5-TMD1, and ABCC5-TMD2. The TMD with the
highest sequence identity with the Sav1866 TMD is the
ABCC5-TMD1 (21 %), while the TMD with the lowest
sequence identity with the Sav1866 TMD is the ABCC5-
TMD2 (16 %). Both ABCB1 TMDs share a 17 % sequence
identity with Sav1866. The percentages (%) of the charged
amino acids aspartate (D), glutamate (E), histidine (H),
lysine (K), and arginine (R), and positive-negative ratios
of amino acids in the ABCB1 and ABCC5 TMDs are shown
in Table 2. While the positive-negative ratio of amino
acids is 1.1 (1.4 when histidine is included) in the ABCB1
TMDs, the corresponding ratio in the ABCC5 TMDs is 1.5
(1.8 when histidine is included). Thus the positive-nega-
tive ratio of amino acids is higher in the ABCC5 TMDs
than in the ABCB1 TMDs. The charged amino acids were
mainly localized in the substrate translocation chamber.

ABCBI model

The refined ABCB1 and ABCC5 (submitted) models are
shown in Figure 2, panels A and B. The loop connecting
NBD1 and TMD2 of ABCB1 was mainly a-helical from
residues 623-703, except from a parallel B-sheet formed
between residues 614-618 and residues 646-650, and an
extended stretch from residues 651-657. The first part of
this loop was folded and covering NBD1 of ABCBI1
towards the cytoplasm. A central cavity perpendicular to
the cell membrane was formed by TMD1 and TMD2, and
TMHs 1, 2, 3, 5,6,7,8,9, 11 and 12 contributed to the
cavity lining. TMH5 and TMH2 of TMD1 were packed
against TMH8 and TMH11 of TMD?2, respectively, with
mainly hydrophobic interactions. The substrate transloca-
tion chamber was closed towards the intracellular side,
and the TMDs were twisted relative to the NBDs. The
TMHs diverged into two symmetrical parts towards the
extracellular side, one part consisting of TMHs 1 and 2 of
TMD1 and TMHs 9-12 of TMD?2, and one part consisting
of TMHs 7 and 8 of TMD2 and TMHs 3-6 of TMD1 (Fig-
ure 2). Interactions between the NBDs were relatively
hydrophilic, and the secondary structure of the areas of
each NBD forming the contact area between the two
NBDs was generally in extended conformation. The
NBDs, having the same fold as the NBDs of the Sav1866
crystal structure, were tightly packed at the intracellular

http://www.tbiomed.com/content/4/1/33

side of the membrane, containing the nucleotide binding
sites formed by the motifs Walker A, Walker B, Q-loop
and switch regions.

EPS of the substrate translocation chamber

Figure 3 shows the EPS of the substrate translocation
chambers of ABCB1 (Panel A) and ABCC5 (Panel B).
While the EPS of the substrate translocation chamber of
ABCB1 was neutral with negative and weakly positive
areas, the EPS of the ABCC5 substrate translocation cham-
ber was generally positive.

Quality validation

The overall quality factor of ABCB1, as shown by the Errat
option of the Savs Metaserver, was 96.2, and a value above
90 indicates a good model. According to the Ramachan-
dran plot provided by the Procheck option, 87.1 % of the
ABCBI residues were in the most favored regions, 11.7 %
were in additional allowed regions, 0.8 % were in gener-
ously allowed regions, and 0.4 % were in disallowed
regions. The summary of the Whatcheck option reported
that the model was satisfactory.

Discussion

Several ABCB1 models have previously been published
[33-36] based on MsbA X-ray crystal structures that later
were retracted [37]. The 12 TMHs of the present ABCB1
model are arranged as the TMHs of the Sav1866 crystal
structure [23], and both are consistent with the electron
density maps of ABCB1 [22].

As shown in Additional file 1, the human ABC efflux
transporters comprise a large group of transporters featur-
ing a wide range of functions and selectivities. ABC efflux
transporters play important roles in physiological proc-
esses by transporting ligands such as bile salts/acids, con-
jugated steroids, cyclic nucleotides, ions, heme, lipids,
antigens, retinoids, peptides, leukotrienes, organic ani-
ons, cations, and cholesterol, and many of them are
involved in drug efflux.

Since ABCB1 transports cationic amphiphilic and
lipophilic substrates [13-16] and ABCCS5 transports
organic anions [17,18], the substrate translocation cham-
ber localized in the TMDs of these transporters were of
particular interest from a pharmacological point of view.
The EPS of the substrate translocation chamber of ABCB1
was neutral with negative and weakly positive spots (Fig-
ure 3A). In contrast, the substrate translocation chamber
of ABCC5 was generally positive (Figure 3B). An amino
acid charge difference could also be seen between the
TMDs of the two transporters (Table 2), with a lower pos-
itive-negative amino acid ratio of ABCB1 than of ABCC5.
Thus, ABCB1, which transports cationic amphiphilic and
lipophilic substrates, has a more neutral substrate translo-
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Figure |
Evolutionary tree. Evolutionary tree of the human ABC efflux permeases, together with Sav1866. The topmost branch (the
"ABCB-branch") includes ABCBI and Sav 1866, while the next branch (the "ABCC-branch") includes ABCCS5.
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Table I: Amino acid sequence identities. The amino acid sequence identities (%) between Sav1866-TMD, ABCBI-TMDI|, ABCBI-

TMD2, ABCC5-TMDI, and ABCC5-TMD2.

TMDs Sav1866-TMD ABCBI-TMDI ABCBI-TMD2 ABCC5-TMDI ABCC5-TMD2
Savl866 -TMD 100 17 17 21 16
ABCBI-TMDI 100 30 16 21
ABCBI-TMD2 100 21 19
ABCC5-TMDI 100 15
ABCC5-TMD2 100

cation chamber than ABCCS5, which has a positive cham-
ber that transports organic anions. Substrates for these
transporters bind to a binding site accessible to the intra-
cellular side of the transporters. During the translocation
process the binding site changes conformation, and the
substrates are released to the extracellular side. The
Sav1866 structure is captured in an outward facing con-
formation with the pore representing an extrusion pocket,
rather than a binding pocket, and the modeled ABCB1
pore also represents an extrusion pocket. Even though the
conformation changes, from a high affinity binding site
(substrate recognition) to a low affinity binding site (sub-
strate extrusion), the amino acids in the translocation area
will be expected to contribute to similar ESP in both con-
formations.

Several cross-linking and site directed mutagenesis data
have been published on ABCB1 [26-32]. These studies
have indicated that TMH6 and TMH12 may take part in
ligand binding [26,27,30,31]. Cross-linking has also
shown that TMH5 and TMHS8 are near each other [28],
and that TMH2 and TMH11 are near each other [29]. As
shown in Figure 3A, the present ABCB1 model is consist-
ent with these experimental data; TMH6/TMH12, TMHS5/
TMH8 and TMH2/TMH11 are indeed adjacent. Compar-
ing the reported residues from the experimental studies
with the orientations of these residues in the present
ABCB1 model verifies that the pore-lining residues of the
TMHs are correctly localized, confirming that the align-

Table 2: Positive-negative ratios of charged amino acids.

ment used for the ICM modeling procedure is realistic.
Cross-linking studies have shown that residue pairs
Asn266-Gly774, 11e299-Phe770, 11e299-Gly774, and
Gly300-Phe770 (TMH5 and TMHS, respectively), are
adjacent [28]. In the present ABCB1 model, these residue
pairs are in direct contact with each other. According to
cross-linking studies, Val133 and Cys137 (TMH2) are
close to Ala935 and Gly939 (TMH11) [29], and this is
also in accordance with the ABCB1 model. Furthermore,
experimental studies have suggested that Leu65 (TMH1)
[31], 1le306 (TMHS5) [32], 1le340 (TMHG) [26,31],
Phe343 (TMH6) [27], Phe728 (TMH?7) [32], and Val982
(TMH12) [30] may participate in ligand binding. All these
residues line the aqueous pore of the ABCB1 model and
may indeed have ligand contact.

Site directed mutagenesis studies on ABCB1 have pro-
posed a verapamil binding site including residues Leu65
(TMH1) [31], 1le306 (TMH5) [31], Ile340 (TMHG6)
[26,31] and Phe343 (TMHG6) [27]. In the ABCB1 model
these residues may form a binding site (Figure 4A). Ligand
interactions between the TMHG6 residues Ile340 and
Phe343 and rhodamine have also been proposed in an
ABCB1 modeling and docking study [33]. The corre-
sponding residues in ABCC5 are GIn190 (TMH1), Val410
(TMHS5), Asn441 (TMHG6) and Thr444 (TMHG6), respec-
tively (Figure 4B). GIn190 (TMH1), Asn441 (TMHG6) and
Thr444 (TMHG) of ABCC5 have previously been pro-
posed to take part in ligand binding in a previous MRP5

Start-end D% E% H% K% R% D+E% K+R% H+k+R% (K+R) (H+K+R)
(D+E) (D+E)
ABCC5-TMDI 179-454 |11 43 07 54 43 54 9.7 10.4 17 18
ABCC5-TMD2 8481147 37 23 23 27 53 6 8 103 13 17
ABCCS, both TMDs 15 18
ABCBI-TMDI 52-346 37 51 14 47 34 88 8.l 9.5 0.9 X
ABCBI-TMD2 711-994 28 35 11 49 42 63 9.1 102 14 16
ABCBI, both TMDs I 14

Positive-negative ratios of charged amino acids. The percentages % of aspartate (D), glutamate (E), histidine (H), lysine (K), and arginine (R), and
positive-negative ratios of charged amino acids in ABCBI-TMDI, ABCBI-TMD2, ABCC5-TMDI, and ABCC5-TMD2. The positive-negative ratio of
amino acids is higher in the ABCC5 TMDs (1.5, 1.8 including histidine) than in the ABCBI TMDs (1.1, 1.4 including histidine).
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Figure 2

ABCBI and ABCC5 models. C traces of the ABCBI (Panel A) and ABCCS5 (Panel B) models viewed in the membrane
plane, with the extracellular side facing upwards. Color code of the models is blue via white to red from N-terminal to C-ter-
minal.

Page 6 of 13

(page number not for citation purposes)



Theoretical Biology and Medical Modelling 2007, 4:33

Figure 3
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Electrostatic potentials surface (EPS). The electrostatic potentials surface (EPS) of the substrate translocation chambers
of ABCBI (Panel A) and ABCC5 (Panel B) viewed from the intracellular side with blue areas indicating positive areas and red
areas indicating negative areas. TMHs are displayed as green ribbons. TMH numbering is indicated in white boxes.

modeling and cGMP docking study (submitted). Interest-
ingly, the above mentioned ABCB1 residues are more
lipophilic than the corresponding ABCCS5 residues. This is
in accordance with the lipophilic efflux featured by
ABCBI1, and with the more neutral EPS of the ABCB1 sub-
strate translocation chambers.

Even though the EPS differences between the substrate
translocation chambers of ABCB1 and ABCC5 are in
accordance with their substrate specificity differences, one
can not be certain that the Sav1866 crystal structure is a
suitable template. According to the evolutionary tree (Fig-
ure 1), there are five main clusters of ABC efflux transport-
ers: ABCA, ABCB, ABCC, ABCD and ABCG. Two main
branches are seen, with ABCB, ABCC and ABCD in one
branch, and ABCA and ABCG in the other branch. ABCB
and ABCC subfamilies are closer related to each other
than to the ABCD subfamily. Sav1866 is situated on the
"ABCB-branch". The evolutionary tree thus indicates that
an Sav1866 crystal structure may be a suitable template
for at least ABCB1. The phylogeny of ABC transporters is
based on homology of their NBDs [2], which is why the
number of TMHs may differ within one subfamily, such as

in subfamily ABCC5, where ABCC1 has 17 TMHs and
ABCCS5 has 12 TMHs. Even though ABCB1 and ABCC5 are
localized on different branches in the evolutionary tree,
they both have a common core domain organisation
(TMD1-NBD1-TMD2-NDB2) [25]. The identity between
Sav1866 and ABCB1 is 31%. Accurate predictions can be
made with an amino acid sequence similarity greater than
50 % between the target and the template protein, but
even with very low homologies there may be considerable
structural similarities, such as for the G-protein coupled
receptors and bacteriorhodopsin, where the sequence
similarities within the transmembrane regions are 6-11%
[38]. The conservation of the secondary structure ele-
ments is also relevant, since active sites and functional
domains can have very similar geometries, even for dis-
tantly related proteins. The sequence identity between
Sav1866 and ABCCS5 is 23%, and phylogenetic analyses of
ABC transporters have indicated that eukaryotic ABCB
transporters (including ABCB1), ABCC transporters
(including ABCCS5), and bacterial ABC transporters have a
common ancestor, and that they have similar domain
organizations [39]. Among the ABCC transporters,
ABCCS5 is most similar to ABCB1 [40], indicating that the
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Ile306

TMH5
-

TMH1

Figure 4

Ligand interaction areas. Close-up of putative ligand interaction areas of ABCBI (Panel A) and ABCCS5 (Panel B). The view
is a cross-section of the transporters perpendicular to the membrane. The oval shaped object with the text "Verapamil" (Panel
A) indicates where Verapamil binding may take place. TMHs are shown as blue C, traces. Color coding of displayed residues:
Carbon: White; Hydrogen: Grey; Oxygen: Red; Nitrogen: Blue. Panel A: Residues Leu65 (TMH1) [30], lle306 (TMH5) [30],

lle340 (TMHé) [25, 30] and Phe343 (TMH®6) [26] have been shown to interact with ligands in site directed mutagenesis studies.

Panel B: Corresponding residues in ABCC5 are GIn190 (TMHI), Val410 (TMHS5), Asn441 (TMH6) and Thr444 (TMHé) respec-
tively.
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Sav1866 X-ray crystal structure could also be used as a
template for constructing an ABCC5 model by homology.
The identity between the Sav1866-TMD and the ABCC5-
TMDI1 is actually higher (21%) than the identity between
the Sav1866-TMD and the ABCB1-TMD1 (17%). In com-
parison, the sequence identity between the human serot-
onin transporter (SERT) and the crystal structure of the
bacterial homologue from Aquifex aeolicus (LeuT,,) is
~20%, and several SERT models have been made been
made using the LeuT,, as a template [41,42]. The TMD
sequence identities between the Sav1866-TMD and the
ABCB1- and ABCC5-TMDs thus indicate that they have an
overall similar organization and that the Sav1866-TMD
may have been a suitable template for modeling the TMD
segments of ABCB1 and ABCCS5.

Membrane proteins may be highly flexible, metastable
molecules, making them generally difficult to crystallize,
and it has been suggested for the major facilitator trans-
porter Escherichia coli lactose permease symporter (Lac
Permease) that substrate binding in transporters may
result in widespread conformational changes, and scissors
like movements and sliding or tilting motions may occur
during turnover [43]. The crystal structure of Sav1866
indicates that domain swapping and subunit twisting
takes place in the transport cycle [23]. Thus, the substrate
may be "pumped" from the inside of the membrane,
binding with high affinity to the binding site, to the out-
side of the membrane, binding with low affinity, and thus
being expelled to the extracellular space [44]. It is there-
fore possible that the Sav1866 crystal structure represents
a substrate expelling state where the binding site has
changed drastically into a low affinity conformation
through twisting and squeezing movements.

The calculations did not include water molecules or mem-
brane phospholipids, and this omission may have influ-
enced the model structure. The N- and C-terminals and
two loops of ABCB1, the loop connecting TMH1 and
TMH2, and the loop connecting NBD1 and TMD?2, are rel-
atively long and are not accounted for in the Sav1866 crys-
tal structure. These segments are outside the limits for
reliable loop generation via PDB searches and could not
be predicted or modeled with confidence. Thus, The N-
and C-terminals were not included in the model, but the
two loops were included in order to get a more correct dis-
tribution of masses and electrostatics in the calculations
than in a model with gaps were these loops are. Anyhow,
it should be kept in mind that loops of such lengths mod-
eled with computational techniques for loop modeling
are relatively inaccurate, and, consequently, these were
the most uncertain parts of the model. The fragment-
based ab initio ROSETTA approach to the prediction of
protein structure [45] may have been used, but the confor-
mations of the modeled loops would still be too uncertain
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because of their lengths. Thus, the most certain regions of
the ABCB1 model are the NBDs, because of their high
level of sequence identity to the NBDs of Sav1866, and
the TMD parts, which are in accordance with cross-linking
and site directed mutagenesis data published on ABCB1
[26-32], confirming that porelining residues of the TMHs
are correctly localized. The most uncertain parts are the
loop connecting TMH1 and TMH?2, and the loop connect-
ing NBD1 and TMD2, which implies that these regions
should only be considered as relatively crude approxima-
tions. Since the loop connecting NBD1 and TMD?2 started
17 amino acids further towards the N-terminal, the NBD1
region had amino acids in its C-terminal end that was
modeled as a loop instead of with homology to the NDB1
of Sav1866. Thus, the conformation of this 17 amino acid
segment is uncertain, but this short segment does not
include the Walker A and B motifs and is not a major part
of NBD1. The loops are probably highly flexible, so any
conformation generated by molecular modeling will only
be a model of a temporary loop conformation. Anyhow,
since the substrate binding area is of particular interest
from a pharmacological point of view, focus was kept on
the TMH area, and not the loops, in this molecular mod-
eling study.

Conclusion

Making crystals of membrane proteins is in general tech-
nically difficult, and when no X-ray crystal structure is
available, molecular modeling is a step forward towards
structural knowledge of drug targets such as ABCB1 and
ABCCS. In this study, the molecular concepts of the sub-
strate specificity differences between ABCB1 and ABCC5
have been visualized using molecular modeling tech-
niques. Even though there are uncertainties concerning
the overall models, it seems that both site directed muta-
genesis data [26,27,31] and the EPS in the substrate trans-
location chambers are in accordance with the transport of
cationic amphiphilic and lipophilic substrates by ABCB1
[13-16], and the transport of organic anions by ABCC5
[17,18]. This, and the consistency with the latest electron
density map of ABCB1 [22], indicates that the Sav1866 X-
ray structure [23] may serve as a suitable template for the
ABCB1 and ABCC5 models. The ABCB1 model presented
here is considered as a working tool to aid experimental
studies. Eventually, membrane transport modulating
agents may be developed, which may be used in the
search for overcoming multidrug resistance.

Co-ordinates of the ABCB1 and ABCC5 models are avail-
able from the authors upon request.

Methods

Phylogenetic analysis of human ABC transporters

The Swiss-Prot Protein knowledgebase [46] and the TCDB
[2] were used to retrieve fasta files of human ABC trans-
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porters, together with their Swiss-Prot accession codes,
their synonyms and TCDB classification numbers. The
ICM software version 3.4-4 [47] was used to create a mul-
tiple sequence alignment and an evolutionary tree of the
human ABC transporters, together with Sav1866. The
ICM software creates evolutionary trees by the neighbor-
joining method [48].

The amino acid sequence identities between the TMDs of
Sav1866, ABCB1 and ABCC5 were retrieved using the ICM
software. The start and endpoints of the TMDs were 14-
298 (Sav1866), 177-451 (ABCC5, TMD1), 852-1147
(ABCC5, TMD2), 52-350 (ABCB1, TMD1), and 709-992
(ABCB1, TMD2). Positive-negative ratios of amino acids
in the TMDs of ABCB1 and ABCC5 were also analyzed
using the ICM software.

Homology modeling of ABCBI

The crystal structure of Sav1866 [23] (pdb code 2HYD),
which has a 3 A resolution, was used as template to con-
struct a homology model of ABCB1 (Swiss-Prot accession
code ), using the ICM software versions 3.4-9b [47]. T-
COFFEE, Version 4.71 available at the Le Centre national
de la recherche scientifiquewebsite [49], and ICM version
3.4-4 [47], were used to create multiple sequence align-
ments of human ABCB1, human ABCC5, human ABCC11
(SWISS-PROT accession number ), human ABCC4
(SWISS-PROT accession number ), Sav1866 (SWISS-
PROT accession number ), Vibrio cholerae MsbA (SWISS-
PROT accession number ) and Escherichia coli MsbA
(SWISS-PROT accession number ). The alignments were
used as a basis, and adjusted in ICM for gaps for the input
alignment in the ICM homology modeling module. To
strengthen the sequence alignment, secondary structure
predictions were performed to define the boundaries of
the TMHs using the PredictProtein server for sequence
analysis and structure prediction [50], and SWISS-PROT
[46]. The alignment of Sav1866, ABCB1 and ABCCS5 is
shown in Figure 5. The ICM homology modeling module
constructs the model from a few core sections defined by
the average of C,atom positions in the conserved regions.
Loops are constructed by searching within thousands of
high quality structures in the PDB databank [51] by
matching them in regard to sequence similarity and steri-
cal interactions with the surroundings of the model. The
best fitting loops are selected based on their relative ener-
gies. N- and C-terminals were not included in the models.
Because of the length of the loop connecting NBD1 and
TMD?2, the loop was particularly difficult to model. In the
generated models of the loop, the residues had a tendency
to overlap with surrounding amino acids (sterical
clashes), and more than 20 models was constructed
before a model without sterical clashes was generated. In
order to accomplish this, the start of the loop was moved
one amino acid further towards the N-terminal direction,

http://www.tbiomed.com/content/4/1/33

or the end of the loop was moved one amino acid further
towards the C-terminal direction, in the ICM input align-
ment per modeling round, making the input loop longer
until a model with no sterical clashes was generated. The
alignment shown in figure 5 is the exact input alignment
used for the final model. The construction of the ABCC5
model is described in a previous cGMP docking study
(submitted).

Model refinement

Globally optimizing of the side-chain positions and
annealing of the backbones were performed with the
RefineModel macro of ICM. This macro first performs a
side-chain conformational sampling using "Montecarlo
fast" [52], a program module that samples conforma-
tional space of a molecule with the ICM global optimiza-
tion procedure. Iterations of the procedure consist of a
random move followed by a local energy minimization,
followed by a complete energy calculation. Based on the
energy and the temperature, the iteration is accepted or
rejected. After the "Montecarlo fast" module, an iterative
annealing of the backbone with tethers provided is per-
formed. These tethers are harmonic restraints pulling an
atom in the model to a static point in space represented by
a corresponding atom in the template. Finally a second
Monte Carlo side-chain sampling is performed. ECEPP3
charges [53] were used for the amino acids, and a surface
based implicit solvation model [47] was included in the
calculations.

The ABCB1 model was subjected to two subsequent
energy minimizations by the AMBER 8.0 program pack-
age, using the leaprc.ff03 force field [54]. The first energy
minimization was performed with restrained backbone
by 500 cycles of steepest descent minimization followed
by 500 steps of conjugate gradient minimization, and the
second energy minimization was performed with no
restraints by 1000 cycles of steepest descent minimization
followed by 1500 steps of conjugate gradient minimiza-
tion. A 10 A cut-off radius for nonbonded interactions
and a dielectric multiplicative constant of 1.0 for the elec-
trostatic interactions were used in these minimizations.
Membrane molecules were not included in the model
refinements. The electrostatic potential surface (EPS) of
the ABCB1 model was calculated with the ICM program,
with a potential scale from -10 to +10.

Quality validation of the ABCBI model

The stereochemical quality of the ABCB1 model was
checked using the Savs Metaserver for analyzing and vali-
dating protein structures [55]. Programs run were Pro-
check [56], What_check [57], and Errat [58].
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Figure 5

Alignment. Alignment of VC-Sav1866, ABCBI and ABCCS5 used as input alignment for the ICM homology modeling module.
TMHs are indicated in red boxes, Walker A motifs are indicated in yellow boxes, and Walker B motifs are indicated in green
boxes.
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