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B. anthracis associated cardiovascular dysfunction
and shock: the potential contribution of both
non-toxin and toxin components
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Abstract

The development of cardiovascular dysfunction and shock in patients with invasive Bacillus anthracis infection has a
particularly poor prognosis. Growing evidence indicates that several bacterial components likely play important
pathogenic roles in this injury. As with other pathogenic Gram-positive bacteria, the B. anthracis cell wall and its
peptidoglycan constituent produce a robust inflammatory response with its attendant tissue injury, disseminated
intravascular coagulation and shock. However, B. anthracis also produces lethal and edema toxins that both
contribute to shock. Growing evidence suggests that lethal toxin, a metalloprotease, can interfere with endothelial
barrier function as well as produce myocardial dysfunction. Edema toxin has potent adenyl cyclase activity and may
alter endothelial function, as well as produce direct arterial and venous relaxation. Furthermore, both toxins can
weaken host defense and promote infection. Finally, B. anthracis produces non-toxin metalloproteases which new
studies show can contribute to tissue injury, coagulopathy and shock. In the future, an understanding of the
individual pathogenic effects of these different components and their interactions will be important for improving
the management of B. anthracis infection and shock.
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Introduction
Recent outbreaks of Bacillus anthracis infection in the
United States (US) and Europe have underscored the
importance of this bacterium in the developed world
[1-4]. Despite aggressive support, mortality rates in
these outbreaks have been high; 40% in the 2001 US
outbreak of inhalational infection, and 33% in the 2009
outbreak of injectional disease in Scotland [2,4,5]. During
these outbreaks, the development of shock in patients has
appeared resistant to standard hemodynamic therapy and
has been associated with a particularly poor prognosis
[1-3]. Therefore, an increased understanding of the
mechanisms producing shock during B. anthracis infection
will be important for its management.
Evolving research has shown that B. anthracis produces

several components potentially important in the patho-
genesis of shock, including its two exotoxins (lethal and
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reproduction in any medium, provided the or
edema toxins (LT and ET, respectively)), a cell wall and
its constituents, and several non-toxin metalloproteases.
Notably, although LT and ET have long been a focus in
this area of research, newer data have begun to emphasize
the role of these non-toxin components. This review
highlights recent research directed at the contribution of
these different non-toxin and toxin components.
B. anthracis cell wall and its peptidoglycan constituent
Sepsis is thought to typically start as a nidus of infection,
followed by bacterial invasion of the blood stream. Bacter-
ial cell wall and other components interact with pathogen
recognition receptors (PRRs) on host cells; host defense
systems are activated; and inflammatory mediators (for
example, cytokines, nitric oxide and oxygen free radicals)
are released [6]. While this inflammatory response is an
essential part of innate immunity and is necessary for
microbial clearance, an excessive response can produce
organ injury and shock [7-9]. Growing evidence suggests
td. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:peichacker@mail.cc.nih.gov
http://creativecommons.org/licenses/by/2.0


Remy et al. BMC Medicine 2013, 11:217 Page 2 of 6
http://www.biomedcentral.com/1741-7015/11/217
that B. anthracis infection can elicit this type of maladaptive
injurious host inflammatory response (Figure 1A) [10,11].
While lethal and edema toxins are now recognized not

to stimulate excessive inflammation (and may actually
suppress it), the vegetative form of B. anthracis has a
cell wall comprised largely of peptidoglycan that can
promote such inflammation [12-14]. Whole cell wall
and/or purified peptidoglycan can interact with toll-like
receptors two and six (TLR2/6) and nucleotide-binding
oligomerization domains 1 and 2 (NOD1 and 2) proteins
[15,16]. They can also stimulate host release of TNFα,
IL-1β IL-6 and other inflammatory mediators [17]. In
Figure 1 Overview of basic pathways potentially leading to shock, or
Gram-positive bacteria, B. anthracis and its products (for example, cell wall
release which are necessary for microbial clearance. However, if this respon
and death. B. B. anthracis also produces two exotoxins, lethal and edema t
and death via diverse mechanisms. C. Lethal and edema toxin also appear
to the pathogenesis of shock, organ injury and death by limiting microbial
activation of metalloproteases other than lethal factor, may contribute to s
rats, in contrast to LT or ET, purified B. anthracis cell
wall or its peptidoglycan component alone can stimulate
a robust inflammatory response with resultant tissue
injury, shock, disseminated intravascular coagulation and
lethality [18,19]. Relevant to these findings, B. anthracis
peptidoglycan can activate platelets through complement
activation [20]. The potential pathogenic role of cell wall
takes on added importance based on the observation that
patients and animals dying from B. anthracis frequently
have very high bacterial loads [2,13,19]. Therefore, while
much attention has been devoted to the unique roles LT
and ET have in the pathogenesis of B. anthracis, this
gan injury and death during B. anthracis infection. A. As
and peptidoglycan) activate host defenses and inflammatory mediator
se is excessive it may result in the development of shock, organ failure
oxins, which are capable of contributing directly to shock, organ injury
capable of subverting critical host defense systems and contributing
clearance. Other mechanisms not depicted in this figure, such as the
hock and organ injury with B. anthracis as well (see text).
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Gram-positive bacteria can also produce shock and organ
injury via mechanisms common to other types of bacteria.
Lethal and edema toxin structure and intracellular effects
Lethal and edema toxins are each binary type exotoxins
comprised of protective antigen (PA) and the toxic moi-
eties lethal factor (LF) and edema factor (EF) [14,21,22].
During infection, PA binds to host cells via one of two
receptors: tumor endothelial marker 8 (TEM8) or capillary
morphogenesis gene-2 (CMG2) [23-25]. These receptors
are abundant on endothelial cells and in a variety of tissues
[14]. PA binding is necessary for host cell uptake of LF and
EF. LF inactivates mitogen-activated protein kinase kinases
1 to 4, 6 and 7 (MAPKKs) [21,22]. Recent data also show
that LF activates the Nlrp1 inflammasome in macrophages
and dendritic cells causing activation of caspase-1 and
the production of IL-1β and IL-18 and, subsequently
cell death [26-28]. EF has potent calmodulin-dependent
adenyl cyclase activity and increases intracellular concen-
trations of cyclic adenosine monophosphate (cAMP) and
possibly other cyclic nucleotides [29,30]. While neither
toxin stimulates a robust inflammatory response, growing
Table 1 Selected in vitro studies implicating lethal (LT) or ede

Study Toxin Cell type

Rolando, M. 2010 LT HUVEC

Guichard, A. 2010 LT Human brain, dermal and lung
microvascular endothelial cells
(HBMEC, HDMEC and HMVEC-Ls,
respectively)

Warfel, J. 2011 LT Human lung microvascular
endothelial cells

Liu, T. 2012 LT Rat pulmonary microvascular
endothelial cells

Guichard, A. 2010 ET Human brain, dermal and lung
microvascular endothelial cells
(HBMEC, HDMEC and HMVEC-Ls,
respectively)

Maddugoda, M. 2011 ET Mouse endothelial cells, HUVEC

Ebrahimi, C. 2011 ET HBMEC
evidence demonstrates that each can contribute to cardio-
vascular dysfunction and shock (Figure 1B).
Lethal toxin
Studies in an instrumented canine model clearly dem-
onstrated that LT produces profound cardiovascular
dysfunction. Twenty-four-hour LT infusions to simulate
toxin release during infection resulted in reductions in
central venous pressure (CVP) and mean arterial blood
pressure (MAP) that persisted for up to 72 hours [31,32].
These changes occurred in patterns similar to those in
patients with B. anthracis infection and shock; and were
greater in non-survivors than survivors. Hemodynamic
effects such as these frequently reflect peripheral vascular
dysfunction related either to endothelial barrier dysfunction
with extravasation of fluid or direct dilation of arterial
resistance or venous capacitance vessels. Consistent with
such effects, administration of fluids and vasopressors in
this LT-challenged model increased CVP, MAP and survival
[32]. Inhibition of LT with a PA-directed monoclonal
antibody (mAb) further increased these parameters. A
growing number of in vitro studies provide a basis for
ma toxin (ET) in endothelial cell dysfunction

Toxin effect

Exerted cytotoxic effects on endothelial cell monolayers with
elongation and redistribution of VE-cadherin and subsequent
cell death; increased caspase-3, 8 and 9 activity. Up-regulation
of TNF-related apoptosis-inducing ligand (TRAIL) and
down-regulation of xaf1 (XIAP associated factor-1) participated
in LT-induced caspase-3 activation; increased caspase-3
dependent cortactin and rhophilin-2 activity in combination
with calponin-1 expression appeared necessary for LT
mediated actin cable formation.

Lethal factor (LF) worked synergistically with edema factor (EF)
to reduce DE-cadherin levels at adherens junctions in HBMEC,
HDMECs and HMVEC-Ls.

Increased monolayer permeability, effects on permeability
associated with the activation of Rho associated kinase
(ROCK-1) and increased myosin light chain (MLC)
phosphorylation and subsequent actin stress fiber formation
and VE-cadherin gene and protein expression inhibition.

Increased gap formation and permeability of endothelial cell
monolayers; decreased p38 signaling; permeability effects
overcome by pmHSP27 over-expression.

Edema factor (EF) worked synergistically with lethal factor (LF)
to reduce DE-cadherin levels at adherens junctions in HBMEC,
HDMECs and HMVEC-Ls.

EF increased the permeability of HBMEC trans-well monolayers.

Stimulated trans-endothelial macro-aperture (TEM) tunnel
formation and increased endothelial permeability potentially
via cAMP mediated mechanisms.

Disrupted tight junction formation and barrier function and
monolayer integrity; contributed to disruption of endothelial
cells and ZO-1, a primary regulatory protein of tight junction
formation in the blood–brain barrier.



Remy et al. BMC Medicine 2013, 11:217 Page 4 of 6
http://www.biomedcentral.com/1741-7015/11/217
these changes with LT. Table 1 briefly summarizes findings
from recent studies demonstrating that LT may interfere
with endothelial barrier function via several mechanisms
including: disruption of endothelial cell stress kinase
pathways, endothelial apoptosis, and alterations in actin
fiber and cadherin function [33-36]. However, in contrast
to its potential deleterious effects on endothelial barrier
function, LT did not produce direct arterial dilation in an
isolated aortic ring model [37].
Evidence also suggests that LT depresses myocardial

function. In canines, a 24-hour LT infusion caused progres-
sive decreases in left ventricular ejection fraction (LVEF)
that were blocked by PA-mAb [31,32]. Although CVP
was reduced, pulmonary artery occlusion pressure was not,
suggesting that decreased preload was not the primary basis
for LVEF reductions. Similar to mice, more recent work in
rabbits demonstrated that LT produced direct myocardial
injury with dose dependent cardiac necrosis and increases
in cardiac biomarkers [38,39]. In in vitro studies, LT altered
intracellular cardiomyocyte-Ca++ handling and depressed
cardiomyocyte function [40]. LT associated dysregulation of
autophagy, ubiquitin-proteasome, and mitochondrial func-
tion may have contributed to this cardiomyocyte depres-
sion via TLR-4 [41,42]. Thus, hypotension in patients with
B. anthracis may also relate to the inhibitory effects of LT
on cardiac function. However, in contrast to data
supporting a myocardial depressant effect of LT in studies
in an isolated perfused rat heart model, LT only altered
myocardial function when administered in doses substan-
tially higher than those producing lethality in vivo [43].
Furthermore, observations in patients with B. anthracis
infection, while limited, have not demonstrated consistent
abnormalities in myocardial function [1-3].
In addition to its direct cardiovascular effects, LT may

contribute to shock by promoting B. anthracis infection
[44]. LT inactivates MAPKK pathways central to innate
and adaptive immune responses and, therefore, may
impair host defense and microbial clearance [22,25,45-47].
In one murine model, pretreatment with sublethal LT
doses before intravenous E. coli challenge, increased blood
bacterial counts and worsened survival [48]. Moreover,
pretreatment of rats with sub-lethal LT doses inhibited
inflammatory mediator release stimulated by lipopolysac-
charide (LPS) or E. coli challenges [14]. These inhibitory
effects of LT on immune responses have been proposed as
a basis for the high bacterial loads noted in patients dying
with B. anthracis infection [13,19,21,22].

Edema toxin
Increasing evidence indicates that ET may also be import-
ant in the pathogenesis of shock during B. anthracis infec-
tion. Twenty-four-hour ET challenge in canines produced
rapid and profound reductions in CVP, MAP and systemic
vascular resistance (SVR) that persisted for 72 hours [31].
Recent in vitro studies, summarized in Table 1, suggest
that ET may impair endothelial barrier function by al-
tering adherens’ junction function or by inducing trans-
endothelial macro-aperture tunnels [36,49,50]. However,
endothelial impairment is not entirely consistent with
EFs’ recognized action as a potent adenyl-cyclase, since
increased cellular cAMP levels may actually have pro-
tective effects on endothelial barrier function [12,51,52].
Consistent with this, ET in one study increased endothelial
barrier resistance [53]. Alternatively, very high cAMP
levels and their intracellular location may have paradoxical
effects on endothelial integrity resulting in a net loss of
barrier function [12,51,52].
Growing data suggests that EFs’ potent adenyl cyclase

actions may stimulate direct arterial or venous dilation.
It is well known that increased intracellular cAMP levels
stimulate vascular smooth muscle relaxation [54,55].
The very rapid reductions in CVP, MAP and SVR noted
with ET in the canine model were consistent with a direct
vasorelaxant effect rather than with disruption of endothe-
lial barrier function and extravasation of fluid [31]. Findings
from two ex vivo models further support this possibility.
In an isolated perfused rat heart model, ET produced
significant increases in coronary flow rate (CFR) consistent
with a direct vasodilatory effect [43]. These changes with
ET were associated with increases in both myocardial
tissue and effluent cAMP levels. Adefovir, a nucleoside
which interferes with EF adenyl-cyclase activity, inhibited
these ET effects [56,57]. In a rat aortic ring model, incuba-
tion with ET increased cAMP levels and reduced arterial
responsiveness to subsequent contraction with phenyl-
ephrine [37]. ET also caused relaxation in rings already
pre-contracted with phenylephrine. This ability of ET to
inhibit catecholamine function may provide a basis for
the resistance to conventional hemodynamic support noted
in patients with injectional B. anthracis infection [1-3].
Finally, ET may augment the effects of LT. In mouse,

rat and canine models, nonlethal ET doses increased the
lethality of LT [14,31]. ET also potentiated the inhibitory
effects of LT on chemotaxis and the function of dendritic
and T-cells [14]. ET’s ability to up-regulate the expression
of PA receptors on macrophages and dendritic cells
in vitro and to increase the rate of toxin internalization
may provide a basis for synergism with LT [58]. Growing
recognition of ET’s potential role in the pathogenesis of
shock with B. anthracis suggests that if toxin-directed
therapies are to be considered for patients, they should be
directed at both LT and ET [2].

Non-toxin metalloproteases
Besides LF, B. anthracis produces other metalloproteases
potentially important in the pathogenesis of vascular and
nonvascular tissue injury. The delta Ames (pXO1- and
pXO2-) B. anthracis strain produces metalloproteases
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belonging to the M4 thermolysin and M9 bacterial collage-
nase families [59,60]. In murine models, administration of
these metalloproteases produced hemorrhagic tissue injury
while treatment with selective metalloprotease-inhibitors
improved survival [61,62]. B. anthracis metalloproteases
Npr599 and InhA cleaved host structural and regulatory
proteins important in endothelial function, including
plasma ADAMTS13, von Willebrand factor (VWF) sub-
strate FRETS-VWF73, and VWF itself [63]. InhA also
stimulated plasminogen activator inhibitor (PAI-1) in
mouse liver and increased blood–brain barrier permeability
in both mouse brain and human brain microvasculature
endothelial cells by disrupting endothelial tight junction
proteins [61,62,64,65]. What the relative roles are of LF
and these other metalloproteases during shock in patients
with B. anthracis infections require study.

Conclusions
There is growing evidence that the pathogenesis of
cardiovascular dysfunction and shock during B. anthracis
infection is complex and likely involves both non-toxin
and toxin components. Further understanding of how
these components interact is essential for improving the
management of severe B. anthracis infection and shock.
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