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Abstract

The success of compressive sensing (CS) implies that an image can be compressed directly into acquisition with
the measurement number over the whole image less than pixel number of the image. In this paper, we extend
the existing CS by including the prior knowledge of K-cluster values available for the pixels or wavelet coefficients
of an image. In order to model such prior knowledge, we propose in this paper K-cluster-valued CS approach for
imaging, by incorporating the K-means algorithm in CoSaMP recovery algorithm. One significant advantage of the
proposed approach, rather than the conventional CS, is the capability of reducing measurement numbers required
for the accurate image reconstruction. Finally, the performance of conventional CS and K-cluster-valued CS is
evaluated using some natural images and background subtraction images.
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1 Introduction

Image compression is currently an active research area,
as it offers the promise of making the storage or trans-
mission of images more efficient. The aim of image
compression [1] is to reduce the data size of image and
then make the image stored or transmitted in an effi-
cient form. In image compression, we may transform
the image into an appropriate basis and only store or
transmit the important expansion coefficients [2]. Since
such coefficients are normally sparse (only few coeffi-
cients are nonzero) or compressible (decaying rapidly
according to power law), the compression (e.g., image
compression in JEPG2000 [3]) can be achieved via stor-
ing and transmitting the nonzero coefficients.

For example, assume that we have acquired an image
signal x € RY with N pixels. Through DCT or wavelet
transform, image x may be represented in terms of sets
of coefficients via a basis expansion: ¥ = Yo, where ¥ is
an N x N basis matrix. Therefore, # may be represented
by sparse coefficients & = {o;}%, where S (< N) coeffi-
cients are nonzero and then only these S coefficients
with their locations need to be stored such that the
compression can be achieved. Note that such « is
defined as S-sparse. In practice, it is clear [4] that the
natural images normally have compressible coefficients,
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decaying rapidly enough to zero when sorted, and thus
can be approximated well as S-sparse.

A Compressive sensing

Most recently compressive sensing (CS), as a sampling
method in image compression, has been proposed [5-7],
in order to compress the sparse/compressible signals x
directly into acquisition during the sensing procedure.
In CS, given M x N random measurement matrix ®, we
are able to achieve M-dimensional measurement values
y via inner product:

y=®x (1)

where each entry y; of y represents the value mea-
sured by measurement vector @ that is sth row of ®. It
has been proved [6] that image can be robustly recov-
ered from M = O(S log(N/S)) measurements. In practice,
M = 4S measurements are required for precise recovery
as reported in [4], and therefore, compression can be
reached by sensing and storing M measurements y. It
has been proved that the signal can be recovered by
seeking the sparest x# with the solution of convex pro-
gram [8]:

X =argmin || x’|; sty=®x @)

L
Equation 2 can be solved by a linear program within
polynomial time [9]. For reducing the computational
time, some other approaches have been proposed in the
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spirit of either greedy algorithms or combinatorial
algorithms.

These include orthogonal matching pursuit (OMP)
[10], StOMP [11], subspace pursuit [12] and CoSaMP
[13].

It is attractive that CS is also applicable to images
with sparse or compressible coefficients in the transform
domain since y can be written as y = ®¥x, in which ®¥
can be seen as M x N measurement matrix. In the
sequel, without generality loss we shall focus on the
images, sparse or compressible in the pixel domain.
However, in our experiments of Section 4, we shall also
consider the images, compressible in wavelet domain.

B Basic idea

Beyond CS, most recently, various extensions of CS have
been proposed. CS, at heart, utilizes the prior knowledge
of the sparsity of signal to compress the signal. Actually,
some signals, such as digital images, have some prior
knowledge other than sparsity. For example, we know
that the nonzero coefficients of images usually cluster
together, and a model-based CS was thus proposed in
[14-16] to integrate the prior knowledge of signal struc-
ture in CS for reducing the amount of measurements
required for the recovery of images. However, to our
best knowledge, all the state-of-the-art model-based CS
approaches only concentrate on the prior knowledge of
the locations of nonzero value pixels in digital images
and assume that all the N pixel values of a digital image
e R, For example, [17] proposed (S, C)-model-based
CS for reconstructing the S-sparse signal with the prior
knowledge of block sparsity model in which there are at
most C clusters with respect to the locations of nonzero
coefficients of the signal. This approach is applicable to
some practical problems such as MIMO channel equali-
zation. However, in some other applications, the values
of the sparse signal rather than nonzero-valued locations
cluster together. Therefore, in this paper, we consider
sparse signals with the prior knowledge of K-cluster-
valued coefficients, either in the canonical (pixel)
domain or in the wavelet domain.

As a matter of fact, it has been shown [18] that for the
most digital images, the intensities of each pixel are
usually the subspace® of [0, 255]. The motivation of this
paper is thereby to extend the model-based CS theory
to include such prior knowledge. Then, we propose a
reconstruction approach based on K-cluster-valued
intensities for CS (called K-cluster-valued CS) to incor-
porate K-means algorithm in CS for recovering the
images using only K clusters of nonzero intensity values,
U1 phorew g € [1, 255]. Once the measurement number
M is less than required 4S for image compression with
CS, there may exist several unreasonable solutions to
the estimation of target image. However, during the
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reconstruction procedure, the proposed K-cluster-valued
CS avoids the possibility of intensity values being
assigned beyond K clusters: {¢1, 4s,..., 4r}, and it thus
may be capable of discarding those unreasonable solu-
tions. So, K-cluster-valued CS is possible to reduce the
number of measurements M required for robust image
recovery. Note that in a gray image even we set cluster
number K to be 255 at limit, K-cluster-valued CS can
still avoid the recovered intensity values of each pixel to
be greater than 255 or less than 0 in conventional CS.
Since our proposed K-cluster-valued CS is an extension
of model-based CS, we shall briefly review the model-
based CS in the following section.

For instance, when we apply CS in compressing the
binary image, the measurement number M may be
reduced with the prior knowledge that only one cluster
of nonzero intensity values is available for reconstruct-
ing image. As illustrated in Figure 1, CS recovery algo-
rithm, even with insufficient measurements, is able to
refuse the solution not supported by the prior knowl-
edge of only binary values being available for image
intensities. Consequently, K-cluster-valued CS is possible
to reduce the measurement number for precise recon-
struction of the target image. Since our proposed K-
cluster-valued CS is an extension of model-based CS,
we shall briefly review the model-based CS in the fol-
lowing section.

2 Overview of model-based CS

Model-based CS [14] incorporates some other prior
knowledge rather than the sparsity or compressibility of
signal in CS. It is intuitive that the restriction of such an
additive prior knowledge may decrease the redundancy
of measurements in CS, and the reduction in measure-
ment number M of CS may therefore be possible.

In order to introduce the model-based CS, let us first
consider the model-based restricted isometry property
(RIP). Here, we define structured S sparsity model Mg
as the union of mg subspaces subjective to ||x||y < S.
Thus, the prior knowledge of the S-sparse signals can be
encoded in Mg. Then, RIP of [19] can be rewritten as

« An M x N matrix @ has the Mg-restricted isometry
property with constant S for all x € Mg, we have

(1=3pm) Ixl3 <l ®xll5 < (1+8r) I %115 ®3)

It has been proved [19] that if

2 12
M=> (ln(?_ms) +SIn +t (4)
CSMS 5/\45
where ¢ is a positive constant, then @ has

Mg-restricted isometry property with the probability at
least 1 - e”* given constant §xq,. It can be seen from
Equation 4 that as number of myg increases, more
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Figure 1 (a) The original 96 x 128 binary image, (b) the reconstructed image using CS with the prior knowledge that only one cluster
of nonzero intensity values exist, and (c) the reconstructed image without any prior knowledge. (d) The reconstruction results of 1-
cluster-intensity-based CS, after aligning 96 x 128 pixels of the image to be a vector with 12,288 entries, and (e) the reconstructing results of
conventional CS, after aligning 96x128 pixels of the image to be a vector with 12,288 entries. The sparsity S in this image is 1,592, and
measurement number M here is 35, which is smaller than 4S [4] required for the accurate recovery of image in conventional CS.
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measurement numbers will be required for recovering
the target signal, and model-based CS increasingly
resembles conventional CS, becoming equivalent to con-
N o

S ) It satisfies the
intuition that the more prior knowledge we have (such
that mgs decreases), the less measurement number is
required for target signal recovery.

Next, we define M(x, S) as the algorithm obtaining the
best S-sparse approximation of %, &:

ventional CS at limit mg of being <

M(x, S) = argmin || x — X||» )
xeMs
Then, the prior knowledge can be encoded in algo-
rithm I in advance. Given such an algorithm, the
recovery method CoSaMP [13] may be extended for
model-based CS (See Algorithm 1 of [14] for the sum-
mary of model-based CoSaMP). Also, note that there
is no difference between conventional CS and model-
based CS in the measuring/sampling step summarized
in Equation 1.
It has also been proved in [14] that error bound of
model-based CoSaMP is

Ix—&12=2""lxl2+15 || el (6)

for Mg-RIP constant daq,; < 0.1 In Equation 6, ¢ is
the noises additive to the measurements, i is the itera-
tion number and %' is the estimated % at the ith itera-
tion. This equation guarantees the error of model-based
CS to be the same as conventional CS.

In a word, on the basis of prior knowledge encoded in
advance, the model-based CS is capable of reducing the
measurement numbers without increasing any error

bound.

3 K-cluster-valued CS
In this section, we provide the detail of the proposed
approach on the basis of model-based CS. It is intuitive
that a digital image is comprised of the pixels with sev-
eral clusters (at most 256) of the intensities, rather than
all possible values used for estimating the image/signal
in conventional CS or model-based CS [14]. So, struc-
tured S sparsity model Mg as mentioned in Section II is
set here to be || x||p < Ss.t. X, €{0,1,2, ...,255} for
image reconstruction. Then, the algorithm of Equation 5
for obtaining & = {&,}) is

N

M(x, S) = argmin Z I X — Xnll2, s.t.
£,€(0,1,2,..,255) o7

I&llo <S  (7)

The K-means algorithm [20] ensures that the clusters
of data with the same or similar values can be identified
in the same data set. So, K-means algorithm can be
applied to the algorithm of Equation 7 using at most K
= 255 clusters of nonzero intensities to reconstruct the
target image at each iteration of recovery algorithm in
CS. However, in practice, since most digital images have
less than 255 clusters of nonzero intensities (the statisti-
cal analysis will be presented in the last part of this sec-
tion), K is normally set to be less than 255 for image
reconstruction. Even though K is the rough estimation
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of real cluster numbers, K-means algorithm still works
in model-based CS due to the fact that the goal of K-
means algorithm is to minimize ), || X, — X, |, where
Xn € {1, M2, ..., ux} with gy being the center of kth
cluster.

As assumed above, &' = (&, &), ..., &) are the esti-
mated gray values of all pixels in the image at the ith
iteration of recovery algorithm for CS. Then, we have
the prior knowledge that all the nonzero values of 3 can
be replaced at iteration i by K clusters of intensity values

{ni, pb, ..., wk), in which each ul € [1,255] Our aim
then is to partition the nonzero values of
{&il,&iz, ...,&L} into K (< 255) clusters®, at each iteration

of CS reconstruction step. To this end, we may apply K-
means algorithm [20] in model-based CS for target
image recovery.

Given each nonzero X in g, there is a corresponding
set of binary indicator rzk € {0, 1}, showing which of K
clusters the intensity value of nth pixel & is assigned to.
If 3% is assigned to be !, then 1!, = 1, and r;j =0forj#
k. Next, in K-cluster-valued CS, we may obtain r,;, and
ul at iteration i by minimizing the objective function:

N K
J=Y " k& — il ®)
n=1 k=1
For the purpose of minimizing /, we may apply an
iterative procedure involving two successive optimiza-
tions. The first optimization deals with minimizing J
with respect to rilk, keeping ;L;; fixed. Then, the second
optimization involves minimizing / relating to u;, with
ri, being fixed. Therefore, at iteration i, there are two-
stage optimizations for updating r;k and ,u;;, respectively:

1. Maximization: Since Equation 8 is a linear func-
tion of r,;, this optimization can be easily solved by
setting 7,4 to be 1 once k makes || &, — 11} ||, mini-
mum. In another word, each nonzero & is assigned
to the closest ;L;'z. So, this may be represented as
i { 1 if k=argmin; || & — uill, and & #0
=10 otherwise

©)

2. Expectation: In this stage, r, has been fixed such
that Equation 8 can be minimized with respect to /,L;;
by setting its derivative to be 0:

N . ~p .
2% (&, — ) =0 (10)
n=1
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So, Equation 8 can be solved by

N i s
Zn:l Tnkxn

N
Zn=1 T;k

The above two stages are then repeated until reaching
at convergence. However, it may converge to a local
minimization rather than global minimization. There-
fore, a good initialization procedure can reduce the
oscillations and improve the performance of the pro-
posed approach. Fortunately, we have the prior knowl-
edge that for an image,
{u"l, ,LLiz, ey M%} C{1,2, ...,255}. Hence, in the pro-
posed K-cluster-valued CS, the initial values of ,u;; may
be chosen randomly from [1, 255]. Then, the iterations
of the two stages of K-means are run until there is tri-
vial change in objective function J in Equation 8 or until
some maximum number of iterations (100 as set in Sec-
tion 4) is exceeded.

After these iterative two stages, the values of each &/,

Wi = (11)

are set to be /,L;'Z if 7, = 1. The proposed K-cluster-
valued CoSaMP recovery algorithm for CS is summar-
ized in Table 1. Note that the measuring method of K-
cluster-valued CS is same as the conventional CS, which
has already been expressed in Equation 1 of Section 1.

At each iteration, not only the measurement residual
but also EM is applied for estimating the target signal.
Since there are only a few clusters of intensity values for
the target image, it is able to reduce the error caused by
assigning unreasonable estimated values (e.g., more than
255 clusters) to each pixel at each iteration. Although
the estimation error of the image may influence the
clustering accuracy at each iteration, the minimization
of Equation 8 also makes such influence minimal and
the proposed approach converges after a few iterations.
The computational time reported in section 4 also
reveals that the robust of clustering.

Then, we have to answer how to confirm cluster num-
ber K for K-cluster-valued CS. Here, we first consider
the images sparse in pixel domain, and we statistically
tested on 1,000 images from Caltech 101 and Berkeley
Segmentation Database to obtain the optimal cluster
numbers of pixel intensities for K-means in each image,
which make the PSNR greater than 20 dB (since the
acceptable value for the quality of lossy image compres-
sion is above 20 dB [21]). The statistical results are
shown in Figure 2. As seen from this figure, more than
85% cluster numbers of intensities range below 10, and
thus 10 may be chosen as an optimal cluster number
for images sparse in pixel domain.

However, the images are hardly sparse in pixel
domain. Therefore, we need to consider clustering wave-
let coefficients of images. Toward the optimal cluster
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Table 1 Summary of the K-cluster-valued CoSaMP algorithm
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- Input: Measurement matrix @, measurement vector y, sparsity level S, and intensity cluster number K.

- Output: S-sparse approximation x of target image x.
- Initialization: 39 _ g, r=yandi=1.
While halting criterion = true
1 z < @*r {Compute the proxy of residual}
2 Q « supp(zy) {Identify the largest 2K components of the proxy}

3T <« QUsupp (&(i_l)) {Merge supports}

Ab|r < (I)}y and bITc < OfEstimate the image by least-squares solution}
5 fci < by {Prune to obtain the image approximation for the next iteration or output}

While N S r | & — pilla < threshold

6 For each n =1, 2,.., N, {Assign intensity values of each pixel to the closest intensity cluster}

;| lifk=argmin; || & —uill, and & #0

ro= .
nk 0 otherwise

S wN i
7Foreachn=1,2, ..., N, /,L;z = 1T (Optain the K cluster centres}

N i
PR

End

8Forn=1,2..,Nifr,=1,then &;l = I’L;z {Optimize the estimated image with K-cluster intensities}
9r = y— <I>5¢i {Update the measurement residual for the next iteration}

10 i =i+ 1 {Update the iteration number}
End

return x5!

number of wavelet coefficients, we also statistically
tested on the same 1,000 images as above with the fol-
lowing procedure: (1) obtain the wavelet coefficients of
each image, and set wavelet coefficients less than 20 to
be 0; (2) reconstruct the image with nonzero wavelet
coefficients by non-K means algorithm and compute the
PSNR of reconstructed image; (3) reconstruct the image
by K means algorithm with increasing number of clus-
ters of nonzero wavelet coefficients, and once the cluster
number makes the difference in the PSNRs between
images reconstructed by non-K means and K-means
algorithms less than 2 dB, we output this cluster num-
ber as optimal one. The statistical results are then

160
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100{- | | —

60t / \ ]

image number

[
w \ ]

\
20 / \ f
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0 . . . N -
0 5 10 15 20 25 30 35
cluster number

Figure 2 The number of images along with their optimal
cluster numbers of intensities for K-mean algorithm. Note that
the cluster number is chosen to be optimal one once it makes the
accuracy of K-mean algorithm greater than 20 dB.

demonstrated in Figure 3. From this figure, we may con-
firm that clustering is a reliable prior in the wavelet
transform for images, and 40 is an optimal cluster num-
ber for wavelet coefficients.

4 Experimental results

In this section, experiments were performed for validat-
ing the proposed K-cluster-valued CS. For comparison,
we also applied the conventional CS to exactly the same
images. In all the experiments, we utilized random
Gaussian matrix as the measurement matrix ® on the
images. For conventional CS and K-cluster-valued CS,
the maximum iteration numbers of CoSaMP were both
set to be 30. Besides, the iterations can also be halted

80

700
o Il
50 | |

40 I \

image number

|
300 ‘ W

0 20 40 60 80 100 120
cluster number

Figure 3 The number of images along with their optimal
cluster numbers of wavelet coefficients for K-mean algorithm.
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once || # — &Y, <1072 || 4|l For K-cluster-valued

CS, the iterative two stages of K-means algorithm are
repeated 100 times. The experiments have been per-
formed under the following system environments:
Matlab R2008b on a computer with Pentium(R) D 2.8-
GHz CPU and 3-GB RAM. Section A focuses on utiliz-
ing the K-cluster-valued and conventional CSs to com-
press one lunar image relying on a canonical (pixel)
sparsity basis. This subsection shows the results in
detail. In Section B, we demonstrate the experiments on
other extensive images in brief. This subsection mainly
concentrates on the 2D images, using either a canonical
sparsity basis or wavelet sparsity basis, as the input to
our experiments. In addition, the experiments on some
background subtracted images in color are demon-
strated as well.

A One experiment in detail

First of all, a lunar image (Figure 4a) was tested on con-
ventional CS. Then, the reconstructed image is shown
in Figure 4b using the recovery methods of CoSaMP,
with M = 3§ = 5217 random Gaussian measurements,
where S = 1739 indicates the nonzero intensity values of
the lunar image. Note that the measurement number M
is approximately ;N, which is high compared to the
undersampling ratio in wavelet domain. However, the
advantage of the proposed and conventional CSs is that
the image can be compressed directly during the acqui-
sition procedure. Further, we utilized the K-cluster-
valued CS to reconstruct the target lunar image given
the same measurements. The recovery results are shown
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in Figure 4c-f with cluster numbers K = 2, 5, 10 and 50,
respectively. From Figure 4, it can be seen that when
the measurements are insufficient (less than 4S), K-clus-
ter-valued CS outperforms over conventional CS refer-
ring to recovery accuracy. We may see that once the
cluster number increases, the reconstructed images
become smoother and the accuracy thus will be better.
Moreover, there is almost no difference between the
images reconstructed by 10-cluster and 50-cluster, and
it agrees with statistical analysis of the cluster number
introduced in the above section.

From the viewpoint of computational time, as can
been seen from Figure 4, K-cluster-valued CS runs faster
than conventional CS when cluster number K is small
(e.g., K = 2, 5 and 10). It may be due to the fast conver-
gence of K-cluster-valued CoSaMP caused by more
accurate recovery result at each iteration.

Next, we shall compare the recovery error of conven-
tional and K-cluster-valued CSs in terms of peak signal-
to-noise ratio (PSNR). PSNR refers to the ratio between
the maximum possible power of a signal and the power
of corrupting noise that affects the fidelity of its repre-
sentation. Since many signals have very wide dynamic
ranges, PSNR is normally expressed in terms of the
logarithmic decibel scale. In our experiments, PSNR, as
a measure of quality of lossy image compression, is
defined by:

255¢/N

R (12)
| x — Xl

PSNR = 20log;,

(a) Original image

(b) Conventional CoSaMP

(c) 2-clusters intensities based CoSaMP

(d) S-clusters intensities based CoSaMP (e) 10-clusters intensities based CoSaMP (f) 50-clusters intensities based CoSaMP

Figure 4 (a) The original lunar gray image (resolution: 128 x 128) with S = 1,739 nonzero values. The random Gaussian measurement
number of CS over this image is M = 35 = 5,217 measurements, which is 1222;1728[\](’\' ;N) (b) The reconstructed image using conventional
CoSaMP recovery method. (c)-(f) The images reconstructed with 2, 5, 10 and 50 clusters of values for intensities CoSaMPs. The computational

time is (b) 5.82 s (c) 294 s (d) 3.24 s (e) 5.74 s and (f) 10.36 s.
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where N is the number of pixels at each image and
255 is the dynamic range of intensities of the image. x
and % are the intensities of the original image and com-
pressed image, respectively.

Then, we run Monte Carlo (50 times) simulation on
computing the PSNR of image reconstruction via con-
ventional and K-cluster-valued CSs. The results can be
seen in Figure 5. Figure 5a shows the impact of mea-
surement number M on the performance of K-cluster-
valued and conventional CSs for the target image dis-
played in Figure 4. Since the acceptable value for the
quality of lossy image compression is above 20 dB [21],
Figure 5a reveals that the proposed K-cluster-valued CS
approach reaches at tolerable recovery result when M =
3S, while the conventional CS fails®. Also, it can be
further seen that even when the measurement number
is sufficient (M = 4S), the performance of K-cluster-
valued CS is superior to conventional one. Figure 5b
further shows the performance of K-cluster-valued CS
given different cluster number K. We can observe that
K-cluster-valued CS works well with different cluster
numbers and that the more cluster number we choose,
the better K-cluster-valued CS will perform in most
cases.

B More experiments in general
In this subsection, we evaluated our proposed approach
on three different images sets: (1) the image set chosen
from Caltech 101 database contains five images, sparse
in pixel domain; (2) the natural image set contains four
images, sparse or compressible in wavelet domain; (3)
background subtracted color image set.

For the first image set, since we have concluded in the
above section that 10 can be seen as an optimal cluster

Page 7 of 10

number of intensities for the images sparse in pixel
domain, we set K of K-cluster-valued CS to be 10. In
addition, all the measurement numbers used for com-
pressing these images were chosen to be 3§, which is
less than the least measurement number 4S required for
successful reconstruction in conventional CS [4]. Then,
the reconstruction results are presented in Figure 6, and
these results show the better performance of K-cluster-
valued CS for compressing images that are sparse in
standard domain.

With the second image set, we have evaluated the pro-
mise of the proposed CS approach on compressing the
images in wavelet domain. Here, as aforementioned in
Section 3, we chose the cluster number of wavelet coef-
ficients for K-cluster-valued CS to be 40 as concluded in
the above section. In order to obtain the more accurate
results, the measurement numbers here were all set to
be 3.5S, where S is the number of largest S wavelet coef-
ficients used for image reconstruction. Then, the input
and output images are shown in Figure 7, and the
PSNRs of the reconstructed images in this figure are
further demonstrated in Table 2. Again, K-cluster-valued
CS offers the better performance in compressing images,
sparse in wavelet domain.

The K-clusters-valued CS is also applicable to back-
ground subtracted images. Here, we tested the proposed
K-clusters-valued CS and conventional CS on the third
image set with two background subtraction images from
[16]. According to [16], these images are obtained by
selecting at random two frames of video sequence and
subtracting them in a pixel-wise fashion. For each
image, we set the cluster number K to be 10 as well.
Then, we performed K-clusters-valued CoSaMP and
conventional CoSaMP under M = 3S Gaussian random

34 T T T S

3p| | = — — 5clusters based CS , - "7
—— 50-clusters based CS /// P
30 Conventional CS ’, f/
/ / /
i

281 /s /
;o
26 ,
, /
/
241 .
<7
22 <y
// <
20f 7 /
- ~
. .

PSNR

Number of Measurements

(a)

Figure 5 (a) The reconstruction error of Figure 4 measured by PSNR. In this figure, the PSNR (vertical axis) is shown along with various
measurement number and the values at the horizontal axis indicate how many times of sparsity level S. (b) The results of PSNR output by K-
cluster-valued CS with various cluster numbers K. The measurement number M here is set to be 3S.

35

301 q

251 \/ ]

201 q

PSNR
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Cluster number K

(b)
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(a) Original image (b) Conventional CoSaMP (¢) 10-cluster intensities  valued
CoSaMP

Figure 6 (a) The original gray images. The measurement numbers of both conventional and K-cluster-valued CS over these images are M =

3S, where S is the sparse level. (b) The reconstructed images using conventional CoSaMP recovery method. (c) The images reconstructed by K-

cluster-valued CoSaMP. Note that cluster number K was chosen to be 10 for all these images.

measurements. The recovery results are shown in Figure
8. We may see from this figure that K-cluster-valued CS
outperforms conventional one and that K-cluster-valued
CS is also capable of recovering background subtracted
images with insufficient measurements (e.g., 3S
measurements).

5 Conclusions

In this paper, in order to compress the image, we have
aimed to propose an advanced model-based CS, named
K-cluster-valued CS, which utilizes K-means algorithm
as the model for CS. In contrast to conventional CS, the
proposed K-cluster-valued CS incorporates the prior

knowledge that only K clusters values of intensities are
available for all the pixels of an image. In this paper, we
also investigated cluster number K as prior knowledge.
Such prior knowledge goes beyond the simple sparsity/
compressibility of CS and therefore has the advantage in
using fewer measurements than conventional CS for
accurate image reconstruction. This way, K-cluster-
valued CS is applicable to other K-cluster-valued signals
(e.g., binary digital signals) besides the images. Also, it is
applicable to other model-based CS by considering all
the prior knowledge together. Moreover, the experi-
ments were performed and presented to validate the
proposed approach.
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(a) Original image (b) Conventional CoSaMP (c) K-cluster valued CoSaMP

Figure 7 (a) The original gray images measured by CS with wavelet sparsity basis. The measurement numbers of both conventional and
K-cluster-valued CS over these images are M = 3.55, where S is the number of compressible wavelet coefficients greater than threshold 20. (b)
The reconstructed images using the conventional CoSaMP recovery method. (c) The images reconstructed by K-cluster-valued (wavelet
coefficients) CoSaMP. Note that cluster number K was chosen to be 40 for all these images.

Endnotes

. . *This is the usual case since an image is normally com-

Table 2 The PSNRs of reconstructed images of Figure 7 . . . . L.
prised of a few categories of objects with limited color

Methods (a) (b) (c) (d) . e . . . .

: intensities as exploited in computer vision community.
Conventional CoSaMP 2261 2210 20.85 2167 bThe K clusters can also be applied in color image by
K-cluster-valued CoSaMP 31.03 27.39 28.20 26.95 extending each gray value JAc;l to be 3 space comprising
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N
(a) Original image (b) Conventional CoSaMP (¢) 10-clusters intensities  valued
CoSaMP
Figure 8 (a) Two original background subtraction images. The recovery results are shown in (b) for conventional CS and (c) for K-cluster-
valued CS, using M = 3S random Gaussian measurements for each image. Note that cluster number K was 10 for K-cluster-valued CS.
J

the intensities of the red, blue and green channels. “It is
due to the fact that conventional CS does not have any
prior knowledge of the range of intensity values of the
pixels.
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