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Abstract

The detection of a known signal with unknown parameters in the presence of noise plus interferences (called total
noise) whose covariance matrix is unknown is an important problem which has received much attention these last
decades for applications such as radar, satellite localization or time acquisition in radio communications. However,
most of the available receivers assume a second order (SO) circular (or proper) total noise and become suboptimal
in the presence of SO noncircular (or improper) interferences, potentially present in the previous applications. The
scarce available receivers which take the potential SO noncircularity of the total noise into account have been
developed under the restrictive condition of a known signal with known parameters or under the assumption of a
random signal. For this reason, following a generalized likelihood ratio test (GLRT) approach, the purpose of this
paper is to introduce and to analyze the performance of different array receivers for the detection of a known
signal, with different sets of unknown parameters, corrupted by an unknown noncircular total noise. To simplify
the study, we limit the analysis to rectilinear known useful signals for which the baseband signal is real, which
concerns many applications.

Keywords: Detection, GLRT, Known signal, Unknown parameters, Noncircular, Rectilinear, Interferences, Widely lin-
ear, Arrays, Radar, GPS, Time acquisition, DS-CDMA

I. Introduction
The detection of a known signal with unknown para-
meters in the presence of noise plus interferences (called
total noise in the following), whose covariance matrix is
unknown, is a problem that has received much attention
these last decades for applications such as time or code
acquisition in radio communications networks, time of
arrival estimation in satellite location systems or target
detection in radar and sonar.
Among the detectors currently available, a spatio-tem-

poral adaptive detector which uses the sample covar-
iance matrix estimate from secondary (signal free) data
vectors is proposed in [1] and [2] by Brennan, Reed and
Mallett. This detector is modified in [3] by Robey et al
to derive a constant false-alarm rate test called the adap-
tive matched filter (AMF) detector, well suited for radar
applications. In [4] the previous problem is reconsidered

by Kelly as a binary hypothesis test: total noise only ver-
sus signal plus total noise. The Kelly’s detector uses the
maximum likelihood (ML) approach to estimate the
unknown parameters of the likelihood ratio test, namely
the total noise covariance matrix and the complex
amplitude of the useful signal. This detection scheme is
commonly referred to as the GLRT [5]. Extensions of
the Kelly’s GLRT approach assuming that no signal free
data vectors are available are presented in [6] and [7]
for radar and GPS applications respectively. In [8], Bren-
nan and Reed propose a minimum mean square error
detector for time acquisition purposes in the context of
multiusers DS-CDMA radio communications networks.
This problem is then reconsidered in [9] by Duglos and
Scholtz from a GLRT approach under a Gaussian noise
assumption and assuming the total noise covariance
matrix and the useful propagation channel are two
unknown parameters. The advantages of this detector
are presented in [6] in a radar context, with regard to* Correspondence: pascal.chevalier@cnam.fr
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structured detectors that exploit an a priori information
about the spatial signature of the targets.
Nevertheless, all the previous detectors assume impli-

citly or explicitly a second order (SO) circular [10] (or
proper [11]) total noise and become suboptimal in the
presence of SO noncircular (or improper [12]) interfer-
ences, which may be potentially present in radio com-
munications, localization and radar contexts. Indeed,
many modulated interferences share this feature, for
example, Amplitude Modulated (AM), Amplitude Phase
Shift Keying (ASK), Binary Phase Shift Keying (BPSK),
Rectangular Quadrature Amplitude Modulated, offset
QAM, Minimum Shift Keying (MSK) or Gaussian MSK
(GMSK) [13] interferences. For this reason, the problem
of optimal detection of a signal corrupted by SO noncir-
cular total noise has received an increasing attention
this last decade. In particular, a matched filtering
approach in SO noncircular total noise is presented in
[14] and [12] for radar and radio communications
respectively, but under the restrictive assumption of a
completely known signal. Alternative approaches, devel-
oped under the same restrictive assumptions, are pre-
sented in [16] and [15] using a deflection criterion and
the LRT respectively. In [17] the problem of optimal
detection in SO noncircular total noise is investigated
but under the assumption of a noncircular random sig-
nal. In [18] a GLRT approach is also proposed to detect
the noncircular character of the observations and its
performance is studied in [19].
However, despite these works, the major issue of prac-

tical use consisting in detecting a known signal with
unknown parameters in the presence of an arbitrary
unknown SO noncircular total noise has been scarcely
investigated up to now. To the best of our knowledge, it
has only been analyzed recently in [20] and [21] for syn-
chronization and time acquisition purposes in radio com-
munications networks, assuming a BPSK, MSK or GMSK
useful signal and both unknown total noise and unknown
useful propagation channel. For this reason, to fill the gap
previously mentioned and following a GLRT approach,
the purpose of this paper is to introduce and to analyze
the performance of different array receivers, associated
with different sets of unknown signal parameters, for the
detection of a known signal corrupted by an unknown
SO noncircular total noise. To simplify the analysis, only
rectilinear known useful signals are considered, i.e. useful
signals whose complex envelope is real such as AM,
PPM, ASK or BPSK signals, also called one dimensional
signals. This assumption is not so restrictive since recti-
linear signals, and BPSK signals in particular, are cur-
rently used in a large number of practical applications
such as DS-CDMA radio communications networks,
GNSS system [22], some IFF systems or some specific
radar systems which use binary coding signal [23]. For

such known waveforms, the new detectors introduced in
this paper implement optimal widely linear (WL) [24] fil-
ters contrary to the detectors proposed in [1,3,4,6-9] and
[25] which are deduced from optimal linear filters.
Section II introduces some hypotheses, data statistics

and the problem formulation. In section III, the optimal
receiver for the detection of a known rectilinear signal
with known parameters corrupted by a SO noncircular
total noise is presented as a reference receiver, jointly
with some of its performance. Various extensions of this
optimal receiver, assuming different sets of unknown
signal’s parameters, are presented in sections IV and V
from a GLRT approach for known and unknown signal
steering vector, respectively. Performance of all the
developed receivers are compared to each other in sec-
tion VI through computer simulations, displaying, in the
detection process, the great interest to take the potential
noncircular feature of the total noise into account.
Finally section VII concludes the paper. Note that most
of the results of the paper have been patented in [20]
and [26], whereas some results of the paper have been
partially presented in [27] and theoretical statistical per-
formances of some receivers have been studied in [28].

II. Hypotheses and problem formulation
A. Hypotheses
We consider an array of N Narrow-Band sensors receiv-
ing the contribution of a known rectilinear signal and a
total noise composed of some potentially SO noncircu-
lar interferences and a background noise. We assume
that the known rectilinear signal corresponds to a line-
arly modulated digital signal containing K known sym-
bols and whose complex envelope can be written as

s(t) =
K−1∑
n=0

anv(t − nT) (1)

where the known transmitted symbols, an (0 ≤ n ≤ K -
1) are real and deterministic, T is the symbol duration
and v(t) is a real-valued pulse shaped filter verifying the
Nyquist condition, i.e., such that r(nT) = v(t) ⊗ v(-t)*/t =

nT = 0 for n ≠ 0, where ⊗ is the convolution operation.
The signal s(t) may correspond to the synchronization
preamble of a radio communications link. For example,
each burst of the military 4285 HF standard is com-
posed of a synchronization sequence containing K = 80
known BPSK symbols, 3 × 16 known BPSK symbols for
Doppler tracking and 4 × 32 QPSK information sym-
bols. The filter v(t) corresponds to a raise cosine pulse
shape filter with a roll off equal to 0.25 or 0.3. The sig-
nal s(t) may also correspond to the PN code transmitted
by one satellite of a GNSS system where, in this case
and as shown in Appendix A, an and T correspond to
the transmitted chips and chip duration respectively
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whereas v(t) is a rectangular pulse of duration T. Finally,
although model (1) is generally not valid for conven-
tional radar applications, it holds for some specific radar
applications such as secondary surveillance radar (SSR),
currently used for air traffic control surveillance and
called Identification Friend and Foes (IFF) systems in
the military domain. For example for the standardized
S-mode of such systems, the signal transmitted by a tar-
get for its identification is a PPM signal which has the
form (1) where v(t) is a rectangular pulse of duration T
and where an = 0 or 1. Other specific active radars
transmit a series of N pulses such that each pulse is a
known binary sequence (an = ±1) of 13 chips (K = 13)
corresponding to a Barker code, whereas v(t) is a rectan-
gular pulse of duration T.
For a non frequency selective propagation channel

(airborne applications for example), after a frequency
offset compensation, the vector of complex envelopes of
the signals at the output of the sensors is a scaled,
delayed, noisy and multidimensional version of s(t)
given by

xτ (t) = μsejφs s(t − τ )s + bTτ
(t) (2)

where t is the propagation delay, bTτ
(t) is the zero

mean total noise vector, μs and js are real parameters
controlling the amplitude and phase of the received
known signal on the first sensor respectively and s is
the steering vector of the known signal, such that its
first component is real. For a frequency selective propa-
gation channel, some other scaled and delayed versions
of the signal, corresponding to propagation multipaths,
are also received by the array but may be inserted in
bTτ

(t) as our goal is to detect one main path. We
deduce from (2) the following time-advanced model

x(t) = xτ (t + τ ) = μsejφs s(t)s + bTτ
(t + τ )

= μsejφs s(t)s + bT(t)
(3)

from which we wish to detect s(t). To do so, using the
fact that it is sufficient, under mild assumptions about
the noise, to work at the symbol rate after the matched
filtering operation by v(-t)*, where * is the complex con-
jugation operation, the sampled observation vector xv
(nT) at the output of v(-t)* can be written as

xv(nT) = μsejφsans + bTv(nT) (4)

where bTv(nT) is the zero mean sampled total noise
vector at the output of v(-t)*, which is assumed to be
uncorrelated with an.

B. Second order statistics of the data
The SO statistics of the data considered in the following
correspond to the first and second correlation matrices

of xv(nT), defined by Rx(nT) ≜ E[xv(nT)xv(nT)
H] and Cx

(nT) ≜ E[xv(nT)xv(nT)
T] respectively, where T and H

correspond to the transposition and transposition conju-
gation operation respectively. Under the assumptions of
section II-A, Rx(nT) and Cx(nT) can be written as

Rx(nT) = πs(nT)ssH + R(nT) (5)

Cx(nT) = ej2φsπs(nT)ssT + C(nT) (6)

where πs(nT) � μ2
s a

2
n is the instantaneous power of

the useful signal which should be received by an omni-
directional sensor of gain unity; R(nT) ≜ E[bTv(nT)bTv
(nT)H] and C(nT) ≜ E[bTv(nT)bTv(nT)

T] are the first and
second correlation matrices of bTv(nT) respectively.
Note that C(nT) = 0 ∀n for a SO circular total noise
vector and that the previous statistics depend on the
time parameter since both the known signal (rectilinear)
and the interferences (potentially digitally modulated)
are not stationary.

C. Problem formulation
We consider the detection problem with two hypotheses
H0 and H1, where H0 and H1 correspond to the pre-
sence of total noise only and signal plus total noise in
the observation vector respectively. This problem is
well-suited not only for radar applications but also for
synchronization or time acquisition purposes in radio
communications or in GNSS systems. Indeed, for such
applications, the problem may be formulated either as a
time of arrival estimation problem from observations or
as a detection problem of the training sequence (radio
communications) or of the spreading code (GNSS) from
time advanced observations, as explained in [21]. Under
these two hypotheses and (4), the observation vector xv
(nT) can be written as:

H1 : xv(nT) = μse
jφs ans + bTv(nT)

H0 : xv(nT) = bTv(nT).
(7)

The problem addressed in this paper then consists in
detecting, from a GLRT approach, the known symbols
or chips an (0 ≤ n ≤ K - 1), from the observation vectors
xv(nT) (0 ≤ n ≤ K - 1), for different sets of unknown
parameters, assuming the total noise bTv(nT) is poten-
tially SO noncircular. More precisely, we assume that
each of the parameters μs, js, s, R(nT) and C(nT) may
be either known or unknown, depending on the applica-
tion. We first address the unrealistic case of completely
known parameters in section III, while the cases of prac-
tical interest corresponding to some unknown para-
meters are addressed in sections IV and V from a GLRT
approach. To compute all these receivers, some theoreti-
cal assumptions, which are not necessary verified and
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which are not required in practical situations, are made.
These assumptions are not so restrictive in the sense
that GLRT-based receivers derived under these assump-
tions still provide good detection performance even if
most of the latter are not verified in practice. These the-
oretical assumptions correspond to
A.1: the samples bTv(nT), 0 ≤ n ≤ K - 1, are zero

mean, statistically independent, noncircular and jointly
Gaussian
A.2: the matrices R(nT) and C(nT) do not depend on

the symbol indice n
A.3: the samples bTv(nT) and am are uncorrelated ∀n,

m.
The statistical independence of the samples bTv(nT)

requires in particular propagation channels with no
delay spread and may be verified for temporally white
interferences. The Gaussian assumption is a theoretical
assumption allowing to only exploit the SO statistics of
the observations from a LRT or a GLRT approach
whatever the statistics of interference, Gaussian or not.
The noncircular assumption is true in the presence of
SO noncircular interferences but is generally not
exploited in detection problems up to now. Assump-
tion A.2 is true for cyclostationary interferences with
symbol period T. Finally A.3 is verified in particular
for a useful propagation channel with no delay spread.
It is also verified for a propagation channel with delay
spread for which the main path is the useful signal
whereas the others, sufficiently delayed, are included in
bTv(nT).

III. Optimal receiver for known parameters
A. Optimal receiver
In order to compute the optimal detector of a known
signal in a SO noncircular and Gaussian total noise,
and also to obtain a reference receiver for the follow-
ing sections, we consider in this section that para-
meters μs , js, s, R(nT) and C(nT) are known.
According to the statistical theory of detection [29],
the optimal receiver for the detection of symbols an
from xv(nT) over the known signal duration is the LRT
receiver. It consists in comparing to a threshold the
function LR(xv, K) defined by

LR(xv,K) �
p[xv(nT), 0 ≤ n ≤ K − 1, /H1]
p[xv(nT), 0 ≤ n ≤ K − 1, /H0]

(8)

where p[xv(nT), 0 ≤ n ≤ K - 1, /Hi] (i = 0, 1) is the
probability density of [xv(0), xv(T), .., xv((K - 1)T)] under
Hi. Using (7) into (8), we get

LR(xv,K) =
p[bTv(nT) = xv(nT) − μsejφs ans, 0 ≤ n ≤ K − 1]

p[bTv(nT) = xv(nT), 0 ≤ n ≤ K − 1]
(9)

Under A.1 the probability density of bTv(nT) becomes
a function of b̃Tv(nT) � [bTv(nT)T ,bTv(nT)H]T, given by
[30,31]

p[b̃Tv(nT)] = π−Ndet[Rb̃]
−1/2e−

1
2 b̃Tv(nT)

HR−1
b̃

b̃Tv(nT) (10)

where det(A) means determinant of A and where Rb̃ is
defined by

Rb̃ � Rb̃(nT) = E[b̃Tv(nT)b̃Tv(nT)H] =
(

R C
C∗ R∗

)
, (11)

where R ≜ R(nT) and C ≜ C(nT). Note that the matrix
Rb̃ contains the information about the SO noncircularity
of the total noise through the matrix C, which is not
null for SO noncircular total noise. From expression
(10) and assumptions A.1 and A.2, using the fact that
an = a∗

n and taking the logarithm of (9), it is easy to ver-
ify that a sufficient statistic for the previous detection
problem consists in comparing to a threshold the func-
tion OPT1(xv, K) defined by

OPT1(xv,K) � Re[̃sHφ R
−1
b̃

r̂x̃,a] = s̃Hφ R
−1
b̃

r̂x̃,a

� w̃H
1,ôrx̃,a = r̂y1,o,a.

(12)

In (12), s̃φ � [ejφssT , e−jφssH]T and the vector r̂x̃,a is the
(2N × 1) vector defined by

r̂x̃,a �
1
K

K−1∑
n=0

x̃v(nT)an (13)

where x̃v(nT) � [xv(nT)T , xv(nT)H]T. Vector

w̃1,o � R−1
b̃

s̃φ is the so-called WL Spatial Matched Filter

(SMF) [32], i.e., the WL filter y(nT) = w̃Hx̃v(nT) which
maximizes the output signal to interference plus noise
ratio (SINR), whose output y1,o(nT) � w̃H

1,ox̃v(nT) is a

real quantity and r̂y1,o,a is defined by (13) where x̃v(nT)
has been replaced by y1,o(nT). Expression (12) then cor-
responds to the correlation of the WL SMF’s output, y1,
o(nT), with the known real symbols, an, over the known
signal duration, as depicted in the following Figure 1
In the particular case of a SO circular total noise (C = 0),

the receiver OPT1(xv, K) reduces to the conventional one
[25] defined by

CONV1(xv,K) � 2Re [e−jφssHR−1r̂x,a]

� 2Re [wH
1,c r̂x,a]

= 2Re [r̂y1,c,a] = 2r̂z1,c,a,

(14)

where w1,c � ejφsR−1s is the conventional
SMF, y1,c(nT) � wH

1,cxv(nT), z1,c(nT) � Re[y1,c(nT)], r̂x,a,
r̂y1,c,a and r̂z1,c,a are defined by (13) where x̃v(nT) has
been replaced by xv(nT), y1,c(nT) and z1,c(nT)
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respectively. Expression (14) then corresponds to the
correlation of the real part, z1,c(nT), of the SMF's output,
y1,c(nT), with the known real symbols, an, over the
known signal duration.

B. Performance
The performance of OPT1 and CONV1 receivers are
computed in terms of detection probability of the known
symbols an (0 ≤ n ≤ K - 1) for a given false alarm rate
(FAR), where the FAR corresponds to the probability that
OPT1(xv, K) or CONV1(xv, K) gets beyond the threshold
under H0 respectively. The FAR and detection probability
are computed analytically in [29] for the CONV1 receiver
under the assumption of a Gaussian and circular total
noise. However, in situations of practical interests which
are considered in this paper, the total noise is generally
neither Gaussian nor SO circular and the results of [29]
are no longer valid. Nevertheless, if K does not get too
small, we deduce from A.1 and the central limit theorem
that the contribution of the total noise in both (12) and
(14) is not far from being Gaussian. This means that the
detection probability of the known signal by OPT1 and
CONV1 receivers are not far from being directly related
to the SINR at the output of these receivers, noted
SINRopt1[K] and SINRconv1[K] respectively. Otherwise,
this detection probability is no longer a direct function of
the SINR but should still increase with the SINR. Substi-
tuting (7) into (12), we obtain

OPT1(xv,K) =
1
K

[
μsw̃

H
1,os̃φ

K−1∑
n=0

a2n +
K−1∑
n=0

w̃H
1,ob̃Tv(nT)an

]
. (15)

If we assume that A.1, A.2 and A.3 are verified,
SINRopt1[K], which is the ratio between the expected
value of the square modulus of the two terms of the
right hand side of expression (15), is given by

SINRopt1[K] =

[
K−1∑
n=0

πs(nT)

]
s̃Hφ R

−1
b̃

s̃φ

= Kπss̃
H
φ R

−1
b̃

s̃φ = KSINRo

(16)

where πs �
1
K

[∑K−1
n=0 πs(nT)

]
is the time average, over

the known signal duration, of the useful signal input
power received by an omnidirectional sensor and

SINRo � πss̃
H
φ R

−1
b̃

s̃φ is the SINR at the output of the

SMF w̃1,o In a similar way, it is straightforward to show
that SINRconv1[K] is given by

SINRconv1 [K] = 2

[
K−1∑
n=0

πs(nT)

]
×

sHR−1s

1 + Re
[
e−j2φs s

HR−1CR−1∗s∗
sHR−1s

] (17)

that is to say

SINRconv1 [K] =
2KπssHR−1s

1 + Re
[
e−j2φs s

HR−1CR−1∗s∗
sHR−1s

]
= KSINRc

(18)

where SINRc is the SINR at the output of the real part
of the SMF w1,c. Note that for a SO circular total noise
(C = 0), SINRo = SINRc = 2πss

HR-1s and we get

SINRopt1[K] = SINRconv1[K] = 2KπssHR−1s. (19)

Computation and comparison of SINRo and SINRc are
done in [32] in the presence of one rectilinear interfer-
ence plus background noise and is not reported here.
This comparison displays in particular the great interest
of taking the SO noncircularity of the total noise into
account in the receiver’s computation as well as the cap-
ability of the optimal receiver to perform, in this case,
single antenna interference cancellation (SAIC) of a rec-
tilinear interference by exploiting the phase diversity
between the sources. Illustrations of CONV1 and OPT1

receiver performance are presented in section VI.

IV. GLRT receivers for a known signal steering
vector
In most of situations of practical interest, the parameters
μs, js, R(nT) and C(nT) are unknown while, for some
applications, the steering vector s is known. This is in

Figure 1 Functional scheme of the OPT1 receiver.
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particular the case for radar applications for which a
Doppler and a range processing currently take place at
the output of a beam, which is mechanically or electroni-
cally steered in a given direction and scanned to monitor
all the directions of space. In this case, the steering vector
s is associated with the current direction of the beam.
Another example corresponds to satellite localization for
which the satellite positions are known and the vector s
may be associated, in this case, with the direction of one
of the satellites. Moreover, in some cases, some signal
free observation vectors (called secondary observation
vectors) sharing the same total noise SO statistics are
available in addition to the observation vectors contain-
ing the signal to be detected plus the total noise (called
primary observation vectors). For example the secondary
observation vectors may correspond to samples of data
associated with another range than the range of the
detected target in radar or to observations in the absence
of useful signal. In such situations, we will say that a total
noise alone reference (TNAR) is available. In other appli-
cations, a TNAR is difficult to built, due for example to
the total noise potential nonstationarity or to the pre-
sence of multipaths. For all the reasons previously
described, following a GLRT approach, we introduce in
sections IV-A, IV-B and IV-C several new receivers for
the detection of a known real-valued signal, with different
sets of unknown parameters, corrupted by a SO noncir-
cular total noise. More precisely, these receivers assume
that the parameters μs and js are unknown, the vector s
is known and the matrices R(nT ) and C(nT) are either
known (section IV-A) or unknown, assuming (section
IV-B) or not (section IV-C) that a TNAR is available in
this latter case.

A. Unknown parameters (μs, js) and known total
noise (R, C)
Under the assumptions A.1 and A.2, assuming known
parameters R, C and s and unknown parameters μs and
js, the GLRT-based receiver for the detection of the
known real-valued symbols an (0 ≤ n ≤ K - 1) in the SO
noncircular total noise characterized by R and C is
given by (9) where p[b̃Tv(nT)] is defined by (10) and
where μsejφs have to be replaced in (9) by its ML esti-
mate. Under the previous assumptions, it is shown in

Appendix B that the ML estimate, μ̂sφ̃s
, of the (2 × 1)

vector μsφ̃s = [μsejφs ,μse−jφs]T is given by

μ̂sφ̃s =
K∑K−1

n=0 a2n
[SHR−1

b̃
S]−1SHR−1

b̃
r̂x̃,a (20)

where r̂x̃,a is defined by (13) and S is the (2N × 2)
matrix defined by

S �
(
s 0
0 s∗

)
. (21)

Inserting (20) into (9), we obtain a sufficient statistic
for the previous detection problem, which is given by

OPT2(xv,K) � r̂Hx̃,aR
−1
b̃

S[SHR−1
b̃

S]−1SHR−1
b̃

r̂x̃,a. (22)

In the particular case of a SO circular total noise (C = 0),
we easily verify that (22) reduces to the sufficient statistic,
CONV2(xv, K), found in [3] and defined by

CONV2(xv,K) �
|sHR−1r̂x,a|2
sHR−1s

(23)

which is proportional to the square modulus of the
correlation between the SMF’s output, y1,c(nT), and the
known real-valued symbols, an, over the known signal
duration.

B. Unknown parameters (μs, js) and total noise (R, C) with
a TNAR
We assume in this section that s is known, parameters
μs, js, R and C are unknown and that a TNAR is avail-
able. We denote by bTv(nT)’ (0 ≤ n ≤ K’ - 1) the K’ sam-
ples of the secondary data, which contain the total noise
only such that R(nT)’ ≜ E[bTv(nT)’bTv(nT)’

H] = R(nT)
and C(nT)’ ≜ E[bTv(nT)’bTv(nT)’

T ] = C(nT). Under both
this assumption and A.1, A.2, matrices R and C may be
estimated either from the secondary data only or from
both the primary and the secondary data, which gives
rise to two different receivers.
1) Total noise estimation from secondary data only
When the matrices R and C are estimated from the sec-
ondary data only, assuming K’ ≥ 2N (to ensure the
invertibility of (24)) and the samples bTv(nT)’ (0 ≤ n ≤
K’ - 1) also verify assumptions A.1 and A.2, the ML esti-
mate of Rb̃ is given by

R̂b̃ =
1
K ′

K ′−1∑
n=0

b̃Tv(nT)′b̃Tv(nT)′
H (24)

where b̃Tv(nT)′ � [bTv(nT)′T ,bTv(nT)′H]T. In these
conditions, following a GLRT approach, we deduce

from (20) that the ML estimate, μ̂sφ̃s
, of the vector μsφ̃s

is given by

μ̂sφ̃s =
K∑K−1

n=0 a2n
[SHR̂

−1
b̃ S]−1SHR̂

−1
b̃ r̂x̃,a (25)

and using (25) into (9), we deduce that a sufficient
statistic for the previous detection problem is given by

OPT3(xv,K,K ′) � r̂Hx̃,aR̂
−1
b̃ S[SHR̂

−1
b̃ S]−1SHR̂

−1
b̃ r̂x̃,a. (26)
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In the particular case of a SO circular total noise (C =
0), whose SO circularity is a priori known or assumed,
(26) reduces to the well-known AMF detector, described
in [3] and defined by

CONV3(xv,K,K ′) � |sHR̂−1
r̂x,a|2

sHR̂
−1

s
(27)

where R̂ is defined by (24) but with bTv(nT)’ instead of

b̃Tv(nT)′.
2) Total noise estimation from both primary and
secondary data
When the matrices R and C are estimated from both
the K primary and the K’ secondary data, and assuming
that the samples bTv(nT)’ (0 ≤ n ≤ K’ - 1) also verify
assumptions A.1, A.2 and K + K’ ≥ 2N (to ensure the
invertibility of (28) and (29)), it is shown in Appendix C

that the ML estimates, R̂b̃,0 and R̂b̃,1 of R̂b̃ under H0 and

H1 respectively are given by

R̂b̃,0 =
1

K + K ′

[
K−1∑
n=0

x̃v(nT)̃xv(nT)
H

+
K ′−1∑
n=0

b̃Tv(nT)
′b̃Tv(nT)

′H
] (28)

and

R̂b̃,1 =
1

K + K ′

[
K−1∑
n=0

(̃
xv(nT) − μsanSφ̃s

)
×

(̃
xv(nT) − μsanSφ̃s

)H
+

K ′−1∑
n=0

b̃Tv(nT)
′b̃Tv(nT)

′H
](29)

respectively. In these conditions, following a GLRT

approach, the ML estimate, μ̂sφ̃s
of the vector μsφ̃s is

shown in Appendix C to be given by

̂

μs φ̃s =
K + K ′

K

([
K + K ′

K2

K−1∑
n=0

a2n − r̂Hx̃,aR̂
−1
b̃,0̂rx̃,a

]

SHR̂
−1
b̃,0S + SHR̂

−1
b̃,0̂rx̃,âr

H
x̃,aR̂

−1
b̃,0S

)−1
SHR̂

−1
b̃,0̂rx̃,a

(30)

Using (30) into (9), we deduce that a sufficient statistic
for the previous detection problem is shown in Appen-
dix C to be given by

OPT4(xv,K,K ′) �
r̂Hx̃,aR̂

−1
b,0S[S

HR̂
−1
b̃,0S]

−1
SHR̂

−1
b̃,0 r̂x̃,a

1 − K
K+K ′ r̂

H
x̃,aR̂

−1
b̃,0 r̂x̃,a

.(31)

In the particular case of a SO circular total noise (C =
0), whose SO circularity is a priori known or assumed,
(31) reduces to the conventional statistic defined by

CONV4(xv,K,K ′) �
|sHR̂−1

b,0 r̂x,a|2

sHR̂
−1
b,0s

(
1 − K

K+K ′ r̂
H
x,aR̂

−1
b,0 r̂x,a

)(32)
where R̂b,0 is defined by

R̂b,0 =
1

K + K ′

[
K−1∑
n=0

xv(nT)xv(nT)
H

+
K ′−1∑
n=0

bTv(nT)
′bTv(nT)

′H
]
.

(33)

Note that for K = 1 and assuming K’ ≥ 2N, expression
(31) reduces, after some elementary algebraic manipula-
tions, to the following expression

CONV4(xv, 1,K ′) � |sHR̂−1
b xv(0)|2

sHR̂
−1
b s

(
1 + 1

K ′ xv(0)
HR̂

−1
b xv(0)

) (34)

where R̂b is defined by (24) with bTv(nT)’ instead of

b̃Tv(nT)′. Expression (34) is nothing else than the Kelly’s
detector [4], whose extensions to an arbitrary number of
primary samples are given by (32) for a SO circular total
noise and by (31) for both a SO noncircular total noise
and a real-valued signal to be detected. Note finally that
for a very large number of secondary snapshots (K’ ®
∞), (28) becomes equivalent to (24) and receiver (31)
reduces to (26).

C. Unknown parameters (μs, js) and total noise (R, C)
without a TNAR
We assume in this section that s is known, parameters μs,
js, R and C are unknown and that a TNAR is not avail-
able. Under both these assumptions and A.1, A.2, matrices
R and C may be estimated from the K primary data only,
assuming that K ≥ 2N (to ensure the invertibility of the

estimated matrices). The ML estimates, R̂b̃,0 and R̂b̃,1, of R̂b̃

under H0 and H1 respectively are then given by (28) and
(29) respectively for K’ = 0. We then obtain

R̂b̃,0 =
1
K

K−1∑
n=0

x̃v(nT)x̃v(nT)
H � R̂x̃ (35)

and

R̂b̃,1 =
1
K

K−1∑
n=0

(̃
xv(nT) − μsanSφ̃s

)
(̃
xv(nT) − μsanSφ̃s

)H
(36)
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In these conditions, following a GLRT approach, the

ML estimate, μ̂sφ̃s
, of the vector μsφ̃s is given by (30) for

K’ = 0 and can be written as

μ̂s φ̃s =

([
1
K

K−1∑
n=0

a2n − r̂Hx̃,aR̂
−1
x̃ r̂x̃,a

]
SHR̂

−1
x̃ S

+SHR̂
−1
x̃ r̂x̃,ârHx̃,aR̂

−1
x̃ S

)−1
SHR̂

−1
x̃ r̂x̃,a

(37)

Using (37) into (9), we deduce that a sufficient statistic
for the previous detection problem is given by (31) for
K’ = 0 and can be written as

OPT5(xv,K) �
r̂Hx̃,aR̂

−1
x̃ S[SHR̂

−1
x̃ S]

−1
SHR̂

−1
x̃ r̂x̃,a

1 − r̂Hx̃,aR̂
−1
x̃ r̂x̃,a

. (38)

In the particular case of a SO circular total noise (C = 0),
whose SO circularity is a priori known or assumed, (38)
reduces to the conventional detector described in [[6],
rel.16] and defined by

CONV5(xv,K) �
|sHR̂−1

x r̂x,a|2
sHR̂

−1
x s

(
1 − r̂Hx,aR̂

−1
x r̂x,a

) (39)

where R̂x is defined by (35) with xv(nT) instead of
x̃v(nT). Note that when K becomes very large (K ® ∞),
(38) and (39) also correspond to (31) and (32) respec-
tively. Moreover, for a very weak desired signal and
(SINRo ≪ 1), R̂x̃ ≈ R̂b̃ defined by (24) with K and

b̃Tv(nT) instead of K’ and b̃Tv(nT)′,R̂x ≈ R̂b defined by

(24) with K and bTv(nT) instead of K’ and b̃Tv(nT)′,

r̂Hx̃,aR̂
−1
x̃ r̂x̃,a � 1 and r̂Hx,aR̂

−1
x r̂x,a � 1. We then deduce

that (38) and (39) reduce to (26) and (27) respectively.

V. GLRT receiver for an unknown signal steering
vector
In some situations of practical interest such as in
radio communications, the steering vector s is often
unknown jointly with the parameters μs, js, R(nT)
and C(nT). Moreover, in some cases, some signal free
observation vectors (secondary observation vectors)
sharing the same total noise SO statistics are still
available in addition to the primary observation vec-
tors and may correspond to samples of data asso-
ciated with adjacent channels, adjacent time slots or
guard intervals. For these reasons, we introduce in
sections V-A, V-B and V-C several new receivers for
the detection of a known real-valued signal, with dif-
ferent sets of unknown parameters and whose steering
vector is unknown, corrupted by a SO noncircular
total noise.

A. Unknown parameters (μs, js, s) and known
total noise (R, C)
Under the assumptions A.1 to A.4, assuming known
parameters R, C and unknown parameters μs, js, and s,
the GLRT-based receiver for the detection of the known
real symbols an (0 ≤ n ≤ K - 1) in the SO noncircular
total noise characterized by R and C, is given by (9)
where p[b̃Tv(nT)] is defined by (10). Defining the
unknown desired channel vector hs by hs � μsejφss, the
unknown extended (2N × 1) desired channel vector

h̃s � [hT
s ,h

H
s ]

T has to be replaced by its ML estimate.
Under the previous assumptions, it is shown in Appen-

dix D that the ML estimate, ˆ̃hs
of h̃s is given by

ˆ̃hs =

(
1
K

K−1∑
n=0

a2n

)−1

r̂x̃,a. (40)

Inserting (40) into (9), we obtain a sufficient statistic
for the previous detection problem, given by

OPT6(xv,K) � r̂Hx̃,aR
−1
b̃

r̂x̃,a (41)

In the particular case of a SO circular total noise (C = 0),
we easily verify that (41) reduces to the sufficient statistic,
CONV6(xv, K), defined by

CONV6(xv,K) � r̂Hx,aR
−1r̂x,a (42)

B. Unknown parameters (μs, js, s) and total noise (R, C)
with a TNAR
We assume in this section that parameters μs, js, R, C
and s are unknown but that a TNAR is available. We
note bTv(nT)’ (0 ≤ n ≤ K’ - 1) the K’ samples of the sec-
ondary data, which only contain the total noise such that
R(nT)’ ≜ E[bTv(nT)’bTv(nT)’

H] = R(nT) and C(nT)’ ≜ E
[bTv(nT)’bTv(nT)’

T ] = C(nT).
1) Total noise estimation from secondary data only
When the matrices R and C are estimated from the sec-
ondary data only and assuming that the samples bTv
(nT)’ (0 ≤ n ≤ K’ - 1) also verify assumptions A.1, A.2
and K + K’ ≥ 2N, the ML estimate, R̂b̃ of Rb̃ is given by

(24) while the ML estimate, ˆ̃hs
of h̃s is still given by

(40). Using (24) and (40) into (9), we deduce that a suf-
ficient statistic for the previous detection problem is
given by

OPT7(xv,K,K ′) � r̂Hx̃,aR̂
−1
b̃ r̂x̃,a (43)

In the particular case of a SO circular total noise (C = 0),
whose SO circularity is a priori known or assumed, (43)
reduces to the detector defined by

CONV7(xv,K,K ′) � r̂Hx,aR̂
−1

r̂x,a (44)
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where R̂ is defined by (24) but with bTv(nT)’ instead of

b̃Tv(nT)′.
2) Total noise estimation from both primary and
secondary data
When the matrices R and C are estimated from both
the K primary and the K’ secondary data, and assuming
that the samples bTv(nT)’ (0 ≤ n ≤ K’ - 1) also verify
assumptions A.1, A.2 and K + K’ ≥ 2N, it has been

shown in Appendix C that the ML estimates, R̂b̃,0 and

R̂b̃,1 of Rb̃ under H0 and H1 respectively are given by (28)

and (29) respectively, while the ML estimate, ˆ̃hs
of h̃s is

still given by (40). Using (28), (29) and (40) into (9), it is
shown in Appendix E that a sufficient statistic for the
previous detection problem is given by

OPT8(xv,K,K ′) � r̂Hx̃,aR̂
−1
b̃,0 r̂x̃,a (45)

In the particular case of a SO circular total noise (C = 0),
whose SO circularity is a priori known or assumed, (45)
reduces to the following detector

CONV8(xv,K,K ′) � r̂Hx,aR̂
−1
b,0 r̂x,a (46)

where R̂b,0 is defined by (33). Note finally that for a
very large number of secondary snapshots (K’ ® ∞),
(45) becomes equivalent to (43) and receiver (46)
reduces to (44).

C. Unknown parameters (μs, js, s) and total noise (R, C)
without a TNAR
We assume in this section that parameters μs, js, R, C
and s are unknown and that no TNAR is available.
Under both these assumptions and A.1, A.2, matrices R
and C may be estimated from the K primary data only,

assuming that K ≥ 2N. The ML estimates, R̂b̃,0 and R̂b̃,1

of Rb̃ under H0 and H1 respectively are then given by
(28) and (29) respectively for K’ = 0, while the ML esti-

mate, ˆ̃hs
of h̃s is still given by (40). Using (28), (29) and

(40) into (9), we deduce from (45) that a sufficient sta-
tistic for the previous detection problem is given by

OPT9(xv,K) � r̂Hx̃,aR̂
−1
x̃ r̂x̃,a (47)

which corresponds to the detector introduced in [20]
and [21] for synchronization purposes in SO noncircular
context. In the particular case of a SO circular total
noise (C = 0), whose SO circularity is a priori known or
assumed, (47) reduces to the following detector

CONV9(xv,K) � r̂Hx,aR̂
−1
x r̂x,a (48)

which is nothing else than the detector introduced in [8]
and [9] for synchronization purposes in SO circular

contexts. Note finally that for very large values of K (K ®
∞), (47) becomes equivalent to (45) and receiver (48)
reduces to (46).

VI. Performances of receivers in the presence of
so noncircular interferences
A. Total noise model
To be able to quantify and to compare the performance
of the previous receivers, we assume in this section that
the propagation channels have no delay spread and that
the total noise, bTv(kT), is composed of P interferences,
potentially SO noncircular, plus a background noise.
Under these assumptions, the vector bTv(kT) can be
written as

bTv(kT) =
P∑
p=1

jp,v(kT)ejφp jp + bv(kT) (49)

where bv(kT) is the zero mean sampled noise vector at
the output of v(-t)*, which is assumed to be SO circular,
spatially white and uncorrelated with the interferences;
jp,v(kT) is the sampled complex envelope (or base band
signal) of the interference p after the matched filtering
operation, which is assumed to be uncorrelated with jq,v
(kT) for q ≠ p; jp and jp are respectively the carrier
phase (on the first sensor) and the steering vector of the
interference p, such that its first component is real-
valued. Under these assumptions, the matrices R(kT)
and C(kT), defined in section II-B, can be written as

R(kT) =
P∑
p=1

πp(kT)jpj
H
p + η2I (50)

C(kT) =
P∑
p=1

cp(kT)e2jφp jpj
T
p (51)

where h2 is the mean power of the background noise
per sensor; I is the (N × N) identity matrix; πp(kT) ≜ E[|
jp,v(kT)|

2] is the instantaneous power of the interference
p at the output of the filter v(-t)* received by an omni-
directional sensor for a free space propagation; cp(kT) ≜
E[jp,v(kT)

2] characterizes the SO noncircularity of the
interference p. In particular, cp(kT) = πp(kT) for a BPSK
interference p, whereas cp(kT) = 0 for a QPSK interfer-
ence p.

B. Computer simulations
1) Hypotheses
To facilitate the analysis of the computer simulations
presented in this section, all the introduced receivers are
summarized in Table 1 with their name, their hypoth-
eses and the associated unknown parameters they esti-
mate. On the other hand, to illustrate the performance
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of the previous detectors, we consider a radio communi-
cation link for which a training sequence of K known
symbols is transmitted at each burst. The BPSK useful
signal is assumed to be corrupted by either one or two
synchronous interferences, either BPSK or QPSK, shar-
ing the same symbol duration and pulse shape filter as
the desired signal. We consider a linear array of N
omnidirectional sensors equispaced half a wavelength
apart. The phase js and the direction of arrival θs, with
respect to broadside, of the desired signal are assumed
to be constant over a burst. The same assumptions hold
for the interference p (1 ≤ p ≤ 2) for which the phase
and direction of arrival are denoted by jp and θp respec-
tively. The input SNR is defined by SNR = πs/h2,
whereas the input Interference to Noise Ratio of the
interference p is defined by INRp = πp/h2 where πp = πp
(kT). The performance of the previous detectors are
computed in terms of Probability of Detection (PD) of
the known useful signal as a function of either its input
SNR or the Probability of False Alarm (PFA). The PD

and the PFA are the probability that the considered
detector gets beyond the threshold under H1 and H0

respectively. For a given detector and a given scenario,
the threshold is directly related to the PFA and is com-
puted by Monte Carlo simulations. For the simulations,
the PD is computed from 100 000 bursts. When a
TNAR is available, K’ = K.
2) Scenarios with P = 1 interference
We first consider scenarios for which the phase and
direction of arrival of the sources are constant over all
the bursts, the total noise is composed of P = 1 BPSK
interference plus a background noise and K = 16. The
BPSK desired signal has a phase js = 0° and a direction
of arrival θs = 0° whereas the interference has a direction
of arrival θ1 = 20° and an input INR such that INR =
SNR + 15 dB. Under the previous assumptions, Figures 2
and 3 show the variations of the PD at the output of both
the 9 optimal detectors and the 9 conventional detectors
considered in this paper, as a function of the input SNR

of the desired signal for a PFA equal to 0.001. On these
figures, to simplify the notations, the optimal and con-
ventional detectors are called Oi (dotted lines) and Ci

(full lines), (1 ≤ i ≤ 9), respectively. For Figures 2a and 2b,
the phase of the interference is equal to js = 15°, whereas
for Figures 3a and 3b, j1 = 45°. For Figures 2a and 3a,
N = 1, whereas for Figures 2b and 3b, N = 2. Figures 4
and 5 show, under the same assumptions as Figure 2 and
3 respectively, the same variations of PD for the same
receivers but as a function of the PFA, i.e., the receiver
operating characteristic (COR), for SNR = 0 dB.
Figures 2a, 3a, 4a and 5a show, for N = 1 sensor, the

poor detection of the desired signal from all the con-
ventional detectors due to their incapability to reject the
strong interference. On the contrary, the optimal detec-
tors, which exploit the SO noncircularity of both the
desired signal and the interference, perform SAIC due
to the exploitation of the phase diversity between the
sources. Note that SAIC is possible since the SO non-
circularity of both the desired signal and interference
are exploited by the receiver, which is not the case for
the WL MVDR beamformer introduced in [33] which
does not exploit the SO noncircularity of the desired
signal. Comparison of Figures 2a and 3a or 4a and 5a
shows increasing performance of the optimal detectors
as the phase diversity between the sources increases. In
both cases, the O1 detector, which assumes that all the
parameters of the sources are known, gives the best
performance. In a same way, the O9 detector, which
assumes that all the parameters of the sources are
unknown, has the lowest performance. Moreover, for a
given set of unknown desired signal parameters, the a
priori knowledge of the noise statistics (O2 and O6)
increases the performance with respect to the absence
of knowledge of the latter. In a same way, the knowl-
edge of a TNAR (O3, O4, O7, O8) allows to roughly
increase the performance with respect to an absence of
TNAR (O5, O9). Finally, counterintuitively, the use of
both primary and secondary data for the estimation of

Table 1 Synthesis of the different receivers and associated unknown parameters and hypotheses

Known parameters Unknown parameters Hypotheses Receivers

μs, js, s, R(nT), C(nT) No No OPT(CONV)1(xv, K)

s, R(nT), C(nT ) μs, js No OPT(CONV)2(xv, K)

s μs, js, R(nT), C(nT) TNAR available, R, C on sec. data OPT(CONV)3(xv, K, K’)

s μs, js, R(nT), C(nT) TNAR available, R, C on sec.+prim. Data OPT(CONV)4(xv, K, K’)

s μs, js, R(nT), C(nT) No TNAR OPT(CONV)5(xv, K)

R(nT), C(nT) μs, js, s No OPT(CONV)6(xv, K)

No μs, js, s, R(nT), C(nT) TNAR available, R, C on sec. data OPT(CONV)7(xv, K, K’)

No μs, js, s, R(nT), C(nT) TNAR available, R, C on sec.+prim. data OPT(CONV)8(xv, K, K’)

No μs, js, s, R(nT), C(nT) No TNAR OPT(CONV)9(xv, K)
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the noise correlation matrix (O4, O8) degrades the per-
formance with respect to the use of secondary data only
(O3, O7) for this estimation. This is due to the fact that
contrary to the LRT receiver which is optimal for

detection, GLRT receivers are sub-optimal receivers
which generate estimates of the noise covariance matrix
with more variance when primary data are used. More
precisely, the variance of the noise covariance matrix

Figure 2 PD as a function of the SNR, K = K’ = 16, P = 1 BPSK interference, INR = SNR + 15 dB, θs = 0°, θ1 = 20°, js = 0°, j1 = 15°, PF A

= 0.001, 100 000 Bursts, N = 1 (a), N = 2 (b).
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estimate and then the associated performance degrada-
tion increases with an increasing relative weight given
to the primary data with respect to secondary data in
the linear combination of the two estimates, which

explains the result. On the contrary, in such situations,
an optimal receiver would necessarily decide to discard
the primary data and to keep only the secondary data
not to increase the variance of the noise covariance

Figure 3 PD as a function of the SNR, K = K’ = 16, P = 1 BPSK interference, INR = SNR + 15 dB, INR = 15 dB, θs = 0°, θ1 = 20°, js = 0°,
j1 = 45°, PF A = 0.001, 100 000 Bursts, N = 1 (a), N = 2 (b).
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matrix estimate and then not to decrease the perfor-
mance. However, this optimal process does not corre-
spond to a GLRT receiver and is perhaps to invent. The
same reasoning holds for OPT7, OPT8 and OPT9

receivers.

Figures 2b, 3b, 4b and 5b show that, for N = 2 sensors,
all the conventional detectors have an increased detection
probability with respect to the case N = 1 due to their cap-
ability to reject the interference thanks to the spatial dis-
crimination between the sources. Moreover, we note, for a

Figure 4 PD as a function of the PF A (COR), K = K’ = 16, P = 1 BPSK interference, SNR = 0 dB, INR = 15 dB, θs = 0°, θ1 = 20°, js = 0°,
j1 = 15°, 100 000 Bursts, N = 1 (a), N = 2 (b).
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given set of estimated parameters, much better perfor-
mance of the optimal detectors due to the joint spatial and
phase discriminations between the sources. Comparison of
Figures 2b and 3b or 4b and 5b shows again increasing

performance of the optimal detectors as the phase diver-
sity between the sources increases. We still note the best
performance of the completely informed detectors (C1 and
O1) and the lowest performance of the less informed

Figure 5 PD as a function of the PF A (COR), K = K’ = 16, P = 1 BPSK interference, SNR = 0 dB, INR = 15 dB, θs = 0°, θ1 = 20°, js = 0°,
j1 = 45°, 100 000 Bursts, N = 1 (a), N = 2 (b).
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detectors (C9 and O9). We note again, for a given set of
unknown desired signal parameters, that better perfor-
mance are obtained when the total noise is either known
or estimated from secondary data only. In a same way, the
knowledge of a TNAR allows to increase the performance
in comparison with an absence of TNAR. Finally, for a
given set of total noise parameters, the a priori knowledge
of the signal steering vector s increases the performance.
3) Scenarios with P = 2 interferences
We now consider scenarios for which the total noise is
composed of P = 2 interferences plus a background
noise. The first interference is BPSK modulated with a
direction of arrival equal to θ1 = 20°. The second inter-
ference is QPSK modulated with a phase and a direction
of arrival equal to j2 = 25° and θ2 = 40° respectively.
The INR of both interferences is equal to INR = SNR +
15 dB. Under the previous assumptions, Figures 6a and
6b show, for N = 2 and for a PFA equal to 0.001, the
variations of the PD at the output of both the 9 optimal
detectors and the 9 conventional detectors considered in
this paper, as a function of the input SNR of the desired
signal, for j1 = 15° and j1 = 45° respectively. Figures 7a
and 7b show, under the same assumptions as Figure 6a
and 6b respectively, the same variations of the same
receivers but as a function of the PFA for SNR = 0 dB.
We note the poor detection of the desired signal from

all the conventional detectors compared to the optimal
ones, due to their difficulty to reject the two strong
interferences since the array is overconstrained (P = N =
2). On the contrary, the optimal detectors, which discri-
minate the sources by both the direction of arrival and
the phase, succeed in rejecting these two interferences
since one is rectilinear, which generates a good detec-
tion of the desired signal in most cases. More precisely,
it has been shown in [33] and [32] that a BPSK source
generates only one source in the extended observation
vector, while a QPSK source generates two sources. The
protection of the desired signal and the rejection of the
two interferences then require 1 + 1 + 2 = 4 degrees of
freedom, which in fact corresponds to the number of
degrees of freedom, 2N = 4, effectively available, hence
the result. Comparison of Figures 6a and 6b or 7a and
7b shows again increasing performance of the optimal
detectors as the phase diversity between the desired sig-
nal and the BPSK interference increases. Again, the O1

detector gives the best performance while the O9 detec-
tor gives the lowest ones. Again, the a priori knowledge
of the noise statistics or of a TNAR or of the desired
signal steering vector allows an increase in
performances.

VII. Conclusion
Several new receivers for the detection of a known recti-
linear signal, with different sets of unknown parameters,

corrupted by SO noncircular interferences have been
presented in this paper. It has been shown that taking
the potential noncircularity property of the interferences
into account may dramatically improve the performance
of both mono and multi-sensors receivers, due to the
joint exploitation of phase and spatial discrimination
between the sources. In particular, the capability of the
new detectors to do SAIC of rectilinear interferences, by
exploiting the phase diversity between the sources has
been verified for all the new detectors. It also puts for-
ward that the more a priori information on the signal,
the better the performance.

Appendix A
In this Appendix, we show that the signal transmitted
by a GNSS satellite may be written as (1). For GNSS
applications, as explained in [7], the signal which is
transmitted by a GNSS satellite is a known direct
sequence spread-spectrum (SS) signal which can be
written as

s(t) =
K−1∑
n=0

anc(t − nT) (A:1)

where an = ±1, T is the symbol duration and c(t) is
the SS code defined by

c(t) =
SF−1∑
q=0

uqw(t − qTc) (A:2)

where Tc is the chip duration, SF = T/Tc is the spread-
ing factor, uq = ±1 is the chip number q and w(t) is the
rectangular pulse of duration Tc. Using (A.2) into (A.1),
we obtain

s(t) =
K−1∑
n=0

an
SF−1∑
q=0

uqw(t − (q + nSF)Tc). (A:3)

Defining l = q + nSF and dl = d(q + nSF) = anuq,
expression (A.3) takes the form

s(t) =
K SF−1∑
l=0

dlw(t − lTc) (A:4)

which has the same form as (1) where real-valued
symbols an are replaced by real-valued chips dl(±1),
where T is replaced by Tc and where K is replaced by K
SF - 1. We easily verify that w(t) ⊗ w(−t)∗|t=nTc = 0 for
n ≠ 0.

Appendix B
In this Appendix, we derive expressions (20) and (22)
for unknown parameters (μs, js) and known
parameters s and Rb̃. To this aim, we
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Figure 6 PD as a function of the SNR, K = K’ = 16, P = 2 interferences, 1: BPSK, 2: QPSK, INR1 = INR2 = SNR + 15 dB, θs = 0°, θ1 = 20°,
θ2 = 40°, js = 0°, j2 = 25°, N = 2, PF A = 0.001, 100 000 Bursts, j1 = 15° (a), j1 = 45° (b).
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Figure 7 PD as a function of the PF A (COR), K = K’ = 16, P = 2 interferences, 1: BPSK, 2: QPSK, SNR = 0 dB, INR1 = INR2 = 15 dB, θs =
0°, θ1 = 20°, θ2 = 40°, js = 0°, j2 = 25°, N = 2, 100 000 Bursts, j1 = 15° (a), f1 = 45° (b).
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denote s̃φ � [ejφssT , e−jφssH]T as s̃φ = Sφ̃s where S is
defined by (21) and where φ̃s = [ejφs , e−jφs ]T. We deduce
from (9), (10) and assumptions A.1, A.2 that the ML
estimate of μsφ̃s under H1 maximizes the Likelihood
function L1(μsφ̃s) given by

L1(μsφ̃s) =
K−1∏
n=0

p[b̃Tv(nT) = x̃v(nT) − μsanSφ̃s/an,S,Rb̃]. (B:1)

Using (10) into (B.1) and taking the Logarithm of
L1(μsφ̃s), we obtain

log[L1(μsφ̃s)] = −NK log(π) − K

2
log(det[Rb̃])

− 1
2

K−1∑
n=0

[x̃v(nT) − μsanSφ̃s]
H
R−1
b̃

[x̃v(nT) − μsanSφ̃s].

(B:2)

The vector (μsφ̃s) which maximizes (B.2) is thus the
one which minimizes

C(φ̃s) =
K−1∑
n=0

[̃xv(nT) − μsanSφ̃s]
H
R−1
b̃

[̃xv(nT) − μsanSφ̃s],

(B:3)

which finally corresponds to (20). Using (10) into (9)
and taking the Logarithm of (9), we obtain

log[LR(xv,K)] = −1
2

μ2
s

K−1∑
n=0

a2nφ̃
H
s S

HR−1
b̃

Sφ̃s

+
1
2
2μsRe

[
K−1∑
n=0

x̃v(nT)
HanR−1

b̃
Sφ̃s

]
.

(B:4)

Using (20) into (B.4), it is straightforward to verify
that a sufficient statistics of (B.4) is given by (22).

Appendix C
In this Appendix, we derive expressions (28) to (31) for
unknown parameters (μs,φs,Rb̃) and a known vector s
when Rb̃ is estimated from both K primary and K’ sec-
ondary observations. We deduce from assumptions A.1
and A.2 that the ML estimate of Rb̃ under H1, from pri-
mary and secondary observations, maximizes the Likeli-
hood function

L1(Rb̃,μsφ̃s) =
K−1∏
n=0

p[̃bTv(nT) = x̃v(nT)

−μsanSφ̃s/an,S]
K ′−1∏
n=0

p[̃bTv(nT) = b̃Tv(nT)
′].

(C:1)

In a similar way, the ML estimate of Rb̃ under H0,
from primary and secondary observations, maximizes
the Likelihood function

L0(Rb̃) =
K−1∏
n=0

p[̃bTv(nT) = x̃v(nT)]×

K ′−1∏
n=0

p[̃bTv(nT) = b̃Tv(nT)
′].

(C:2)

Using (10) into (C.1) and taking the Logarithm of
L1(Rb̃, φ̃s), we obtain

log(L1[Rb̃,μsφ̃s)] = −N(K + K ′) log(π) − (K + K ′)
2

log(det[Rb̃])

− 1
2

K−1∑
n=0

[x̃v(nT) − μsanSφ̃s]
H
R−1
b̃

[x̃v(nT) − μsanSφ̃s]

− 1
2

K ′−1∑
n=0

b̃Tv(nT)′
HR−1

b̃
b̃Tv(nT)′.

(C:3)

It is well-known [9] that the ML estimate, R̂b̃,1 of Rb̃

under H1, i.e., the matrix R̂b̃,1 which maximizes (C.3) is

given by (29). In a similar way, it is straightforward to

show that the ML estimate, R̂b̃,0 of Rb̃ under H0 is given

by (28). On the other hand, using (29) into (C.3), we
obtain under H1

K−1∑
n=0

[̃xv(nT) − μsanSφ̃s]
H
R̂

−1
b̃,1 [̃xv(nT) − μsanSφ̃s]

+
K ′−1∑
n=0

b̃Tv(nT)′
HR̂

−1
b̃,1b̃Tv(nT)′

= (K + K ′)Tr[̂R−1
b̃,1R̂b̃,1] = 2N(K + K ′),

(C:4)

where Tr[A] means Trace of matrix A. In a similar
way, we obtain under H0

K−1∑
n=0

x̃v(nT)
HR̂

−1
b̃,0 x̃v(nT)

+
K ′−1∑
n=0

b̃Tv(nT)
′HR̂−1

b̃,0 b̃Tv(nT)
′

= (K + K ′)Tr[̂R−1
b̃,0R̂b̃,0] = 2N(K + K ′).

(C:5)

According to the statistical theory of detection, the
optimal receiver for the detection of the K symbols an
from both the K primary data xv(nT) and the K0 second-
ary data bTv(nT)’ consists in comparing to a threshold
the ratio between (C.1) and (C.2). Using (10) into (C.1)

and (C.2), replacing Rb̃ by R̂b̃,1 under H1, Rb̃ by R̂b̃,0

under H0 and using (C.4) and (C.5), it is straightforward
to show that the previous Likelihood receiver,
LR(xv,K) = L1(Rb̃,μsφ̃s)/L0(Rb̃), takes the form

Chevalier et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:56
http://asp.eurasipjournals.com/content/2011/1/56

Page 18 of 20



LR(xv,K) =

(
det[R̂b̃,0]

det[R̂b̃,1]

)(K+K ′/2

. (C:6)

To compute (C.6), we define the following

parameters: u’ � K
K+K ′ r̂x̃,a, v’ � Sφ̃s, u � R̂

−1/2

b̃,0 u’,

v � R̂
−1/2

b̃,0 v’, where R̂
−1/2

b̃,0
is the inverse of a square

root, R̂
1/2

b̃,0
of R̂b̃,0 and

α � 1
K + K ′

K−1∑
n=0

a2n. (C:7)

Using these notations and from (28) and (29) we
obtain

R̂b̃,1 = R̂b̃,0 + αμ2
s v’v’

H − μs(v’u’
H + u’v’H) (C:8)

and then

R̂b̃,1 = R̂
1/2

b̃,0
[I + αμ2

s vv
H − μs(vuH + uvH)]̂R

1/2H

b̃,0

= R̂
1/2

b̃,0
[I + B]̂R

1/2H

b̃,0
,

(C:9)

where B � αμ2
s vv

H − μs(vuH + uvH) is an Hermitian
matrix such that span {B} = span{u, v} and whose rank
is equal to 2. We deduce from (C.9) that

det[̂Rb̃,1] = det[̂Rb̃,0] det[I + B]

= det[̂Rb̃,0](1 + λ1)(1 + λ2)

= (1 + � + 	) det[̂Rb̃,0],

(C:10)

where l1 and l2 are the two non zero eigenvalues of
B and where Σ ≜ l1 + l2 and Π ≜ l1l2. Using (C.10)
into (C.6) we obtain

LR(xv,K) =
(

1
1 + � + 	

)(K+K ′)/2

. (C:11)

A straightforward computation of l1 and l2 from B
gives

1 + � + 	 = 1 − μs(vHu + uHv)

+ μ2
s v

Hv(α − uHu) + μ2
s |vHu|2 (C:12)

and using the definition of v we obtain

1 + � + 	 = 1 − 2μsRe[uHR̂
−1/2

b̃,0
Sφ̃s]

+ μ2
s φ̃

H
s S

HR̂
−1
b̃,0Sφ̃s(α − uHu)

+ μ2
s |uHR̂

−1/2

b̃,0
Sφ̃s|2.

(C:13)

The ML estimate of μsφ̃s under H1 maximizes the Like-
lihood function (C.1) and thus the LR (C.11). It then

corresponds to the quantity μsφ̃s which minimizes (C.13).

Introducing the following parameters: z � SH(R̂b̃,0)
−H/2u

and A � SHR̂
−1
b̃,0S, where R̂

−H/2

b̃,0 � (R̂
1/2H

b̃,0 )−1, the vector

μsφ̃s, which minimizes (C.13) is given by

μ̂sφ̃s = [(α − uHu)A + zzH]−1z, (C:14)

which also corresponds to (30). Inserting (C.14) into
(C.13) we obtain

1 + � + 	 = 1 − zH[(α − uHu)A + zzH]−1z. (C:15)

Applying the matrix inversion lemma to [(a -uHu)A +
zzH]-1, we obtain, after straightforward computations

1 + � + 	 = 1 − zHA−1z

α − uHu + zHA−1z
, (C:16)

which proves that LR(xv, K) defined by (C.11) is an

increasing function of the sufficient statistic zHA−1z
α−uHu

which

is finally proportional to (31).

Appendix D
In this Appendix, we derive expressions (40) and (41)
for unknown parameters (μs, js, s) and a known matrix
Rb̃. To this aim, we denote hs � μsejφss and

h̃s = [hT
s ,h

H
s ]

T. We then deduce from assumptions A.1

and A.2 that the ML estimate of h̃s under H1 maximizes
the Likelihood function L1(h̃s) given by

L1(h̃s) =
K−1∏
n=0

p[b̃Tv(nT) = x̃v(nT) − anh̃s/an,Rb̃]. (D:1)

Using (10) into (D.1) and taking the Logarithm of

L1(h̃s), we obtain

log[L1(h̃s)] = −NK log(π) − K

2
log(det[Rb̃])

− 1
2

K−1∑
n=0

[x̃v(nT) − anh̃s]
H
R−1
b̃

[x̃v(nT) − anh̃s].
(D:2)

The vector h̃s which maximizes (D.2) corresponds to
(40). Using (10) into (9) and taking the Logarithm of
(9), we obtain

log[LR(xv,K)] = −1
2

K−1∑
n=0

a2n h̃
H
s R

−1
b̃

h̃s

+
1
2
2Re

[
K−1∑
n=0

añxv(nT)
HR−1

b̃
h̃s

]
.

(D:3)

Using (40) into (B.4), it is straightforward to verify
that a sufficient statistics of (D.3) is given by (41).
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Appendix E
In this Appendix, we derive expression (45) for
unknown parameters (μs,φs, s,Rb̃) when Rb̃ is estimated
from both K primary and K’ secondary observations. We
deduce from Appendix D and assumptions A.1 and A.2
that the ML estimate of h̃s does not depend on the total
noise statistics and is still given by (40). Following the
same development as the one presented in Appendix C,

we deduce that the ML estimate, R̂b̃,1, of Rb̃ under H1, is

given by (29), the ML estimate, R̂b̃,0, of Rb̃ under H0, is

given by (28) and the Likelihood ratio receiver is given
by (C.6). Moreover, using the notations introduced in
Appendix C, we obtain from (28) and (29)

R̂b̃,1 = R̂b̃,0 + αh̃sh̃
H
s − (h̃su’

H + u’h̃
H
s ) (E:1)

and we deduce from appendix C that the Likelihood
ratio receiver is still given by (C.11) where

1 + � + 	 = 1 − 2Re[uHR̂
−1/2

b̃,0
h̃s]

+h̃
H
s R̂

−1
b̃,0 h̃s(α − uHu) + |uHR̂

−1/2

b̃,0
h̃s|2.

(E:2)

Inserting (40) into (E.2) we deduce, after straightfor-
ward manipulations, that

1 + � + 	 = 1 − uHu
α

(E:3)

which proves that LR(xv, K) defined by (C.11) is an

increasing function of the sufficient statistic uHu
α

which

is finally proportional to (45).
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