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Abstract

Blind source separation (BSS) and sound activity detection (SAD) from a sound source mixture with minimum prior
information are two major requirements for computational auditory scene analysis that recognizes auditory events in
many environments. In daily environments, BSS suffers from many problems such as reverberation, a permutation
problem in frequency-domain processing, and uncertainty about the number of sources in the observed mixture.
While many conventional BSS methods resort to a cascaded combination of subprocesses, e.g., frequency-wise
separation and permutation resolution, to overcome these problems, their outcomes may be affected by the worst
subprocess. Our aim is to develop a unified framework to cope with these problems. Our method, called permutation-
free infinite sparse factor analysis (PF-ISFA), is based on a nonparametric Bayesian framework that enables inference
without a pre-determined number of sources. It solves BSS, SAD and the permutation problem at the same time. Our
method has two key ideas: unified source activities for all the frequency bins and the activation probabilities of all the
frequency bins of all the sources. Experiments were carried out to evaluate the separation performance and the SAD
performance under four reverberant conditions. For separation performance in the BSS EVAL criteria, our method
outperformed conventional complex ISFA under all conditions. For SAD performance, our method outperformed the
conventional method by 5.9–0.5% in F-measure under the condition RT20 = 30–600 [ms], respectively.

1 Introduction
Computational auditory scene analysis (CASA) aims to
find auditory events and extract valuable information
from captured sound signals [1,2]. An overview of CASA
system is depicted in Figure 1. First, the CASA system cap-
tures sound signals by using a microphone array. Then,
it detects sound activities of each source and separates
the mixture into individual sources. Finally, it visualizes
the auditory events or recognizes these separated sound
sources. This article focuses on the source activity detec-
tion (SAD) and sound source separation. SAD is useful for
CASA systems because this function helps these systems
discover audio sources especially when a huge amount of
archived audio signals is analyzed. Another example of the
benefit of the SAD is compatibility with automatic speech
recognition. For accurate automatic speech recognition, it
is necessary to extract the voiced part, which is referred to
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as voice activity detection [3,4]. Sound source separation
is essential for CASA systems because we often observe
a mixture of multiple sound sources in our daily environ-
ment. Our goal is to develop a simultaneous sound activity
detection and sound source separation system for CASA.
The combination of sound source separation and source

activity detection should overcome the following difficul-
ties for real-world applications:

1. unknown mixing processes,
2. source number uncertainty,
3. reverberation, and
4. performance degradation caused by mutually

dependent functions.

The first one indicates that the CASA system should work
without information specific to a certain environment or a
situation such as the environment’s impulse responses or
the sound source locations. The second one expresses that
the CASA system should achieve robust estimation under
the condition that the number of sources is unknown. The
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Figure 1 Overview of CASA system and location of our method.

third one means that the mixture of audio signals cap-
tured in a room may contain reverberations that affect
the microphone array processing. The last one means that
cascaded processing to cope with the above-mentioned
difficulties may be severely affected by the worst subpro-
cess of the CASA system. When source separation pro-
cessing is performed in the frequency domain, the output
signals are affected by the permutation problem, which
is ambiguity in the output order for different frequency
bins. Conventional methods take the cascade approach.
The mixed signals are separated for each frequency bin
first, and then the permutation problem is solved. Asmen-
tioned above, the overall performance is limited to the
performance of the worst subprocess.
Our solution for overcoming these difficulties is as

follows. The mixing process is modeled stochastically
and inferred on the basis of this model. To handle
source number uncertainty, we introduce a nonparamet-
ric Bayesian approach. The reverberation is absorbed by
using frequency-domain processing. Unified analysis of
the source separation and permutation resolution is used
to optimize these mutually dependent functions.
This article presents a permutation-free infinite sparse

factor analysis (PF-ISFA): a joint estimation method that
simultaneously achieves frequency-domain source sepa-
ration and SAD using a minimum amount of prior infor-
mation. PF-ISFA achieves robust estimation without using
prior information about the number of sources. PF-ISFA
extends the frequency-domain ISFA [5], which is a non-
parametric Bayesian frequency-domain source separation
method. We build a generative process that explains the
observed sound source mixture and derive a Bayesian
inference to retrieve respective sound sources and sound
activities. The key idea of PF-ISFA is that all the frequency
bins of signals are processed at the same time to avoid the
permutation problem. In particular, a unified source activ-
ity for all frequency bins is introduced into its generative
model.
The rest of this article is organized as follows. Section 2

summarizes the main problem treated, and introduces

study related to our method. Section 3 explains con-
ventional ISFA in the time and frequency domains and
then introduces our new method PF-ISFA. Section 4
gives detailed posterior inferences of PF-ISFA. Section 5
presents experimental results, and Section 6 concludes
this article.

2 Problem statement and related study
This section starts by summarizing the problem that is
solved in this article and the assumptions needed to solve
it. After that, the study related to this problem, especially
concerning source separation, the permutation problem,
and sound detection methods, are introduced.

2.1 Problem statement
The problem statement is briefly summarized below.
Input:

• Sound mixtures of K sources captured by D
microphones.

Output:

• Estimated K source signals,
• Detected source activities of source signals.

Assumptions:

1. The number of sources K is not more than the
number of microphones D.

2. The locations of the sources do not change.

The sound activity represents whether or not sound
is active in each time frame. This sound activity esti-
mation enables sound detection. The system estimates
the source activities of K source signals and separates
the D mixed signals captured by the microphones into
K sources without prior information, such as locations,
microphone locations, and impulse responses between
sound sources and microphones. The first assumption
means that this system deals with a determined or over-
determined problem. The second assumption means that
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the mixing process from the sources to the microphones
is unchanged.

2.2 Requirements
This system should fulfill some requirements in order
to work in daily environments. These requirements are
summarized as follows.

1. Blind source separation,
2. Frequency domain processing,
3. Permutation resolution,
4. Robust estimation without source knowledge, and
5. Unified approach.

These requirements are described in detail below.

2.2.1 Blind source separation
One of the system’s major requirements is to work
with the minimum amount of prior information. This is
because getting prior information, such as the direction
of arrival of sound or the reverberation level of the room,
in advance is a troublesome task for the system. In addi-
tion, even if the prior information can be obtained, the
separation performance is severely affected by the quality
of the information. The system should not be dependent
on such information. The source separation method that
uses the minimum prior information is called blind source
separation (BSS).

2.2.2 Frequency domain processing
There are two reasons why frequency domain processing
is inevitable for CASA. One is to deal with reverbera-
tion and the other is to model source signals using the
sparseness of sound energy.
The mixing process of speech signals in our daily sur-

roundings is modeled as a convoluted mixture [6]. The
signals captured by the microphones consist of a mixture
of ones from various sources and they are contaminated
by reflections, reverberations, and arrival time lags at
the microphones. To model these time-delayed signals, a
convoluted mixture is often used.
Attempts to solve a BSS problem involving convoluted

mixtures of signals mainly use, frequency domain pro-
cessing. This is because the convoluted mixture in the
time domain can be explained in a simplistic form in
the frequency domain. Specifically, the short time Fourier
transform (STFT) can convert a convolutedmixture in the
time domain into instantaneousmixtures for all frequency
bins. In other words, STFT can absorb the reverberation
of the source signals within the window length. Thus, fre-
quency domain processing is effective when BSS is applied
to audio signals in practical situations.

2.2.3 Permutation resolution
As mentioned above, the convoluted mixture in the time
domain is converted into instantaneous mixtures for

individual frequency bins. Many frequency-domain BSS
methods independently separate the mixed signals for all
the frequency bins; thus, an ambiguity arises in the out-
put order. The system must arrange the separated signals
in the correct order for the frequency bins. This is called
the “permutation problem”. The permutation problem
should be solved in order to achieve frequency-domain
BSS.

2.2.4 Robust estimationwithout source knowledge
Many CASA systems and many source separation meth-
ods use prior knowledge about source signals for robust
estimation to improve the performance. For instance,
HARK [7] localizes the sound sources before separa-
tion by using the number of sources. When independent
component analysis (ICA), a well-known BSS method, is
applied to the input signals, principal component analy-
sis (PCA) is commonly used as preprocessing for ICA [8].
This is because the number of dimensions of ICA’s input
signals can be reduced. However, getting prior knowledge
about sources is difficult for the system, so robust estima-
tion without source knowledge is desirable. A nonpara-
metric Bayesian framework is helpful for robust inference
without knowing the number of sources.

2.2.5 Unified approach
A unified estimation method enables effective process-
ing because it makes the most of the information avail-
able from the observed signals. Many source separation
frameworks use a cascaded approach. For instance, HARK
[7] localizes the sources first and then separates the
observed signals into individual sources; the conventional
frequency-domain ICA separates the observations and
then resolves the permutation problem. One of the critical
weak points of these cascaded approaches is that the sep-
aration performance is limited to the performance of the
worst subprocess.

2.3 Related study
2.3.1 Source separationmethod of speech signals
Source separation is being actively studied for signal pro-
cessing. Some methods use the source and microphone
locations. Delay-and-sum beamforming and null beam-
forming are methods that emphasize or suppress the
signal from a specific direction. These methods can be
implemented with less computational complexity. HARK
uses geometric higher-order decorrelation-based source
separation (GHDSS) [9]. GHDSS separates mixed sig-
nals by using a higher-order decorrelation between the
sound source signals and geometric constraints derived
from the positional relationships among themicrophones.
The weak point of these methods is that they require the
source and microphone locations. This prior information
cannot easily be obtained in advance.
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Many BSS methods have already been introduced.
One well-known BSS method is ICA, which separates
mixed signals on the basis of the statistical independence
between of different source signals. Many algorithms are
used for ICA, such as the minimization mutual informa-
tion [10], Fast ICA [11], and JADE [12]. For BSS for speech
signals, frequency-domain ICA is commonly used [13].
While ICA does achieve BSS, it does not detect the activ-
ities of individual sources; moreover, frequency-domain
ICA is plagued by the permutation problem.
ISFA [14] is a BSS method based on the nonparametric

Bayesian approach. It achieves SAD and BSS simulta-
neously, but it is modeled in the time domain, so it is
vulnerable to the reverberation that often appears in our
daily surroundings.
Frequency-domain ISFA (FD-ISFA), which we proposed

in our previous study [5], can handle a convolutedmixture
that contains room reverberation. One problem for FD-
ISFA is the permutation problem. Conventional FD-ISFA
independently separates the signals for all the frequency
bins, so it cannot avoid permutation ambiguity.

2.3.2 Permutation problem
Some methods solve the permutation problem by post
processing. One method is based on estimation of the
direction of arrival and inter-frequency correlation of the
signal envelopes [15]; another uses the power ratio of the
signals as a dominance measure [16].
Other methods avoid this problem by using a unified

criterion from among all frequency bins. Independent
vector analysis (IVA) [17] and permutation-free ICA [18]
are BSS methods that avoid the permutation problem.
These methods are based on ICA and cannot simultane-
ously achieve sound source detection.

2.3.3 BSS framework achieving SAD
Some BSS frameworks obtain SAD information simulta-
neously. Switching ICA [19] is a BSS method which can
achieve SAD. Switching ICA employs a hidden Markov
model (HMM) on its model to represent whether the
source is active or not. The SAD information is obtained
from these estimated hidden variables of HMM. Non-
stationary Bayesian ICA [20] achieves dynamic source
separation by estimating the sources and the mixing
matrices for each time frame on the basis of variational
Bayesian inference. The SAD information is obtained
from automatic relevance determination (ARD) parame-
ters, which are the precision parameters of the probabilis-
tic density of the mixing matrix. Since these methods are
time-domain approaches, it is not appropriate for speech
separation of convoluted mixtures.
The combination of a maximize signal-to-noise ratio

beamformer, a voice activity detector and online cluster-
ing achieves BSS and SAD [21]. This method is a cascade

approach. It achieves SAD and the time-difference of
arrival estimation first and then separates signals using
this them. As mentioned above, the weak point of cas-
caded approach is that the separation performance is
limited to the performance of the worst subprocess.

3 ISFA
This section first summarizes conventional methods for
ISFA: Section 3.1 shows the model of ISFA in the time
domain [14], and Section 3.2 explains its expansion into
the frequency domain (FD-ISFA) [5] and its problems.
Then, Section 3.3 describes a model of FD-ISFA without
permutation ambiguity (PF-ISFA).

3.1 ISFA in time domain
ISFA [14] achieves BSS of instantaneous mixtures of time-
domain signals without knowing the number of sources.
It is based on the following instantaneous mixture model,
which expresses that D × T observed data X is composed
of a linear combination of K × T source signals S.

X = A(Z � S) + E, (1)

where A is a D × K mixing matrix, E is a D × T Gaus-
sian noise term, and Z is a binary mask on X. � denotes
element-wise multiplication. Let xdt, adk, zkt, skt, εdt be the
elements of X, A, Z, S, and E, respectively. The genera-
tive model of ISFA is shown in Figure 2. σ 2

A and σ 2
ε are the

variance parameters of the elements of A and E.
The priors of these parameters are as follows:

εt ∼ N (0, σ 2
ε I), σ 2

ε ∼ IG(pε , qε), (2)
skt ∼ N (0, 1), (3)
ak ∼ N (0, σ 2

AI), σ 2
A ∼ IG(pA, qA), and (4)

Z ∼ IBP(α), α ∼ G(pα , qα). (5)

Here, ak is the kth row of A, and pε , qε , pA, qA, pα , and qα

are the hyperparameters. IBP(α) is the Indian buffet pro-
cess (IBP) [22] with concentration parameter α. IBP [22] is
a stochastic process that can deal with a potentially infinite
number of signals. It is used in order to achieve separa-
tion without using prior knowledge about the number of
sources.

xdt adk
pA
qA

zktskt

TD×

Aσ

α
qα

pα

σε

pε

qε

dtε

TK ×

KD×

T
D
K

Figure 2 Graphical model of conventional ISFA.
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In the time domain, each element of X, A, S, and E is a
real-valued variable. Each of these variables has a normal
distribution as a prior. N (μ, σ 2) is a normal distribution
with mean μ and variance σ 2. The probability density
function of this normal distribution is

N (x;μ, σ 2) = 1√
2πσ 2

exp
(

− (x − μ)2

2σ 2

)
. (6)

The IBP concentration parameter has a gamma prior,
and the variance parameters of A and E have inverse
gamma priors. G(b, θ) and IG(b, θ) are gamma distri-
bution and the inverse gamma distribution with shape
parameter b and scale parameter θ , respectively. The
probability density functions of these distributions are

G(x; b, θ) = xb−1

�(b) θb
exp

(
− x

θ

)
, and (7)

IG(x; b, θ) = x−(b+1)

�(b) θb
exp

(
− 1

θx

)
. (8)

A Bayesian hierarchical model aims at explaining the
uncertainty in the model from the observed data by treat-
ing latent variables as a probabilistic variable rather than a
fixed value. In our model, we place a gamma prior on the
concentration parameter of IBP so that the emergence of
sources in Z can be controlled by the data we have.

3.2 ISFA in frequency domain
Since the convoluted mixture is converted into complex
spectra by using STFT, the elements of X, S, A, and E
become complex-valued variables. FD-ISFA is a model for
complex values that arises in frequency-domain process-
ing. It can deal with an instantaneous mixture of complex
spectra.
The generative model is the same as for time-domain

ISFA. However, the priors of these complex-valued ele-
ments are different from those of time-domain ISFA.

εt ∼ NC(0, σ 2
ε I), (9)

skt ∼ NC(0, 1), and (10)
ak ∼ NC(0, σ 2

AI) (11)

Here, instead of the normal distribution, a univariate com-
plex normal distribution NC is used for complex-valued
parameters. The probability density functions of this dis-
tribution is

NC(x;μ, σ 2) = 1
πσ 2 exp

(
−|x − μ|2

σ 2

)
. (12)

Conjugacy is one of the helpful properties of Bayesian
inference. If we choose a conjugate prior, a closed-form
expression can be given for the posterior. The variances
σ 2

ε and σ 2
A have a conjugate inverse gamma prior, and

the Gaussian conjugate prior can be used for the mixing
matrix A. For simplicity, the univariate complex normal

distribution is introduced as a conjugate prior of source
signal S. It is noted that a super-Gaussian prior, such
as student-t or Laplace distribution, should be used for
speech signals. The complex extension of these distri-
butions is non-trivial. We don’t deal with the complex
super-Gaussian prior in this article and this is one of our
future study.
The processing flow of FD-ISFA is as follows. After

STFT, the complex spectra are whitened in each frequency
bin, and FD-ISFA is applied for each frequency bin of
these complex spectra independently. FD-ISFA is plagued
by two well-known ambiguities of frequency domain BSS:
the scaling ambiguity and permutation ambiguity. The
scaling ambiguity is that the amplitude of the output sig-
nals may not equal that of the original sources. Some
post-processing methods are needed to resolve these two
ambiguities. The projection back method [23] is an effec-
tive solution for the scaling ambiguity. The permutation
ambiguity is solved by using the methods mentioned
above [15,16]. After these problems have been solved, esti-
mated complex spectra are assembled into source signals
by using inverse STFT.

3.3 Newmethod: PF-ISFA
Our new method, permutation-free ISFA (PF-ISFA),
achieves both BSS and SAD without being affected by the
permutation problem. Its key idea for avoiding the per-
mutation problem is unified activity for each time frame.
Conventional ISFA is applied independently to each fre-
quency bin. That is to say, conventional ISFA does not
consider any relations across frequency bins. This is the
main reason for the permutation problem. By contrast, in
the PF-ISFA model, all frequency bins are unified by the
activity matrix. Since this unified activity controls the out-
put order of source signals, PF-ISFA is not affected by the
permutation problem.
The flow of PF-ISFA is depicted in Figure 3, and the gen-

erative process of PF-ISFA is described in Figure 4. Let F
be the number of frequency bins. PF-ISFA is also based
on instantaneousmixture for each frequency bin. PF-ISFA
deals with the F-tuple frequency bins at the same time.
The elements of Z, X, S, E, and A are defined as xfdt, afdk ,
zfkt, sfkt, εfdt, respectively.
The following model is introduced to unify the activities

of all frequency bins.

zfkt = bktφ, φ ∼ Bernoulli(ψkf), (13)

where Bernoulli(x) is the Bernoulli distribution with
parameter x. bkt is the unified source activity of source k
at time t, and � is the probability of the source k becom-
ing active (activation probability) in the f th frequency
bin. B represents the K × T matrix of bkt and � means
the K × F matrix of ψkf. Let β be the hyperparameter.
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Figure 3 Schematic overview for our method.

The prior distributions of the newly introduced variables
are assumed to be as follows:

B ∼ IBP(α), α ∼ G(pα , qα), and (14)

� ∼ Beta
(

β

K
,
β(K − 1)

K

)
. (15)

PF-ISFA estimates the source signals S, their time-
frequency activities Z, the mixing matrixA, unified activi-
ties B, activation probabilities � , and other parameters by
using only the observed signal X.

xfdt afdkfdt
p

q

p

q

pA
qA

zfktsfkt kf

bkt

TDF ××

σ Aσ

ψ

α
α

α

β

ε
ε

ε

ε

TK ×

TKF ××
FK ×

KDF ××

F
T
D
K

Figure 4 Graphical model of PF-ISFA.

One of the main differences between this PF-ISFA
model and conventional ISFA model is the unified activity
matrix for each time frame B and the activation probabil-
ity matrix for each frequency bin � . A graphical model
of conventional ISFA is shown in Figure 2. Whereas each
frequency bin is independently estimated in the conven-
tional ISFAmodel, all frequency bins are bundled together
by the unified activity matrix in the PF-ISFA model.
The likelihood function of PF-ISFA is written as follows.

P(X|A, S,Z) =
F∏

f=1

T∏
t=1

P(xft|Af , sft, zft)

=
F∏

f=1

T∏
t=1

NC(xft;Af (zft � sft), σ 2
ε I)

=
F∏

f=1

1
(πσ 2

ε )TD
exp

(
−
tr(EH

f Ef )

σ 2
ε

)
, (16)

where

Ef = Xf − Af (Zf � Sf ). (17)

Here, all data points are assumed to be independent and
identically distributed. The smaller the sum of the noise
terms is, the higher the likelihood of PF-ISFA is.
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4 Inference of PF-ISFA
The model parameters of PF-ISFA are estimated by
using an iterative algorithm based on the nonparamet-
ric Bayesian model. Sound source separation and SAD
are achieved by estimating skft and bkt, respectively. The
parameter update algorithm is given as follows.

1. Initialize parameters using their priors.
2. At each time t, carry out the following:

2-1 For each source k, sample bkt from Equation
(26).

2-2 If bkt = 1, sample zkft from Equation (20) and
for each frequency bin f ; otherwise zkft = 0.

2-3 If zkft = 1, sample skft from Equation (18);
otherwise skft = 0.

2-4 Determine the number of new classes κt , and
initialize the parameters.

3. For each source k and frequency bin f, sample the
activation probability ψkf from Equation (28).

4. For each source k and frequency bin f, sample mixing
matrix akf from Equation (29).

5. If there is a source that is always inactive, remove it.
6. Update σ 2

ε , σ 2
A, and α from Equations (30), (31), and

(32), respectively.
7. Go to 2.

This method is based on the Metropolis-Hastings algo-
rithm [24]. The posterior distributions of the latent vari-
ables are derived from Bayes’ theorem by multiplying the
priors by the likelihood function.

4.1 Sound sources
When zfkt is active, sfkt is sampled by using the following
posterior.

P(sfkt|Af , s−fkt, xftzft) ∝ P(xft|Af , sft, zft, σ 2
ε )P(sfkt)

= NC
(
sfkt;μs,f , σ 2

s,f

)
, (18)

where

σ 2
s,f = σ 2

ε

σ 2
ε + aHfkafk

, μs,f = aHfkε−fkt

σ 2
ε + aHfkafk

.

Here, s−fkt means sft except for sfkt, and ε−fkt means
ε|zfkt=0.

4.2 Source activity of each time-frequency frame
If bkt = 1, zfkt is sampled from its posterior distribution.
The posterior of zfkt is calculated as follows.

P(zfkt|bkt,ψkf, z−fkt, xft, sft,Af ) ∝ PpPl (19)

where

Pl = P(xft|Af , sft, zft, σ 2
ε )

is the probability of likelihood, and

Pp = P(zfkt|bkt,ψkf)

is the probability of prior.
Then, the following posterior distribution is derived.

P(zfkt|bkt,ψkf, z−fkt, xft, sft,Af ) = Bernoulli
(

p1
p0 + p1

)
,

(20)

where

log(p1) = log(ψkf) + 2Re(s∗fkta
H
kfε−fkt) + |sfkt|2aHfkafk

σ 2
ε

(21)

log(p0) = log(1 − ψkf). (22)

4.3 Unified activity for each time frame
To calculate the ratio of the probability that bkt becomes
active to the probability that bkt becomes inactive,we use
Equation (23). This ratio r is divided into two parts: the
ratio of prior rp and the ratio of the likelihood of f th
frequency bin rl,f .

r = P(bkt = 1|A, S−kt ,Xt , S−kt)

P(bkt = 0|A, S−kt,Xt ,Z−kt)

= rp
F∏

f=1
rl,f , (23)

where

rp = P(bkt = 1|bkt)
P(bkt = 0|bkt) , and

rl,f = P(xft|Af , s−fkt, xft, z−fkt,b−kt, bkt = 1,ψkf, σ 2
ε )

P(xft|Af , s−fkt, xft, z−fkt,b−kt, bkt = 0,ψkf, σ 2
ε )

.

Here, Xt is x1t , . . . , xFt and S−kt and Z−kt are S and Z
except for s1kt, . . . , sFkt and z1kt, . . . , zFkt, respectively.
The ratio of prior rp is calculated by using:

rp = P(bkt = 1|b−kt)

P(bkt = 0|b−kt)
= mk,−t

T − mk,−t
, (24)

where mk,−t = ∑
t′ �=t bkt′ . This is derived from the priors

of source activity based on IBP [22].
The ratio of likelihood rl,f is calculated by using

Equation (25).

rl,f = P(xft|Af , s−fkt, xft, z−fkt,b−kt, bkt = 1,ψkf, σ 2
ε )

P(xft|Af , s−fkt, xft, z−fkt,b−kt, bkt = 0,ψkf, σ 2
ε )

= ψkfσ
2
s,f exp

(
|μs,f |2
σ 2
s,f

)
+ (1 − ψkf). (25)
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Figure 5Microphone array for measuring impulse response.

The posterior probability of zkt = 1 is calculated using
ratio r.

P(bkt = 1|A, S−kt,Xt ,Z−kt,b−kt) = r
1 + r

(26)

To decide whether or not bkt is active, we sample u from
Uniform(0,1) and compare it with r/(1 + r). If u ≤
r/(1 + r), then bkt becomes active; otherwise, it remains
dormant.

4.4 Number of new sources
Some source signals that were not active at the beginning
are active at time t for the first time. Let κt be the number
of these sources. This κt is sampled with the Metropolis-
Hastings algorithm.
First, the prior distribution of κt is P(κt|α) =

Poisson
(

α
T

)
. After sampling κt , we initialize the new

sources and their activities. Next, we decide whether this
update is acceptable or not. Let ξ and ξ∗ be the current
state (i.e., the condition before transition) and the next
state candidate (the condition after transition), respec-
tively. The acceptance probability of the transition is
min(1, rξ→ξ∗). According toMeeds [25] and Knowles [14],
rξ→ξ∗ becomes the ratio of the likelihood of the current
state to that of the next state. This ratio can be calculated
as follows.

rξ→ξ∗ =
F∏

f=1
(det
ξ ,f )

−1 exp
(
μH

ξ ,f 
ξ ,f μξ ,f
)
, (27)

where


ξ ,f = I +
A∗H
f A∗

f

σ 2
ε

,
ξ ,f μξ ,f = 1
σ 2

ε

A∗H
f εft.

Here,A∗
f is theD×κt matrix of the additional part ofAf .

When new κt sources appear, the mixing matrix should be
expanded fromD×K toD×(K+κt).A∗

f means themixing
matrix for these new sources.

4.5 Activation probability for each frequency bin
ψkf is sampled by the following posterior.

P(ψkf|zkf,�−kf,B−kt) ∝ P(ψkf|β)

T∏
t=1

P(zkft|ψkf, bkt)

= Beta
(

β

K
+ nkf,

β(K − 1)
K

+ mk − nkf
)
,(28)

where nkf = ∑T
t=1 zkft is the number of active time-

frequency frames of source k in the f th frequency bin, and
mk = ∑T

t=1 bkt is the number of active time frames of
source k.

4.6 Mixing matrix
The mixing matrix is estimated in each column. The
posterior distribution is

P(afk|Af ,−k , Sf ,Xf ,Zf ) ∝ P(Xf |Af , Sf ,Zf , σ 2
ε )P(afk|σ 2

A)

= NC(afk;μA,
−1
A ), (29)

where


A =
(
sHfksfk
σ 2

ε

+ 1
σ 2
A

)
ID,μA = σ 2

A
sHfksfkσ

2
A + σ 2

ε

Ef |akf=0sfk.

4.7 Variance of noise andmixing matrix
The variance of noise corresponds to the noise level of the
estimated signals, and the variance of the mixing matrix
affects the scale of the estimated signals. Their posteriors
are as follows.

P(σ 2
ε |E) ∝ P(E|σ 2

ε )P(σ 2
ε |pε , qε)

= IG
(

σ 2
ε ; pε + FTD,

qε

(1 + qε

∑F
f=1 tr(EH

f Ef ))

)
.

(30)
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Table 1 Experimental conditions

No. of sources K 2

Sampling rate 16 [kHz]

STFT window length 64 [ms]

STFT shift length 32 [ms]

Iterations 300 [times]

Hyperparameters (pε , qε) = (10000, 1.0)

(pA , qA) = (1.1, 0.1)

(pα , qα) = (3.2, 0.21)

β = 0.5

P(σ 2
A|A) ∝ P(A|σ 2

A)P(σ 2
A|pA, qbfA)

= IG
(

σ 2
A; pA + FDK,

qA
1 + qA

∑F
f=1 tr(AH

f Af )

)

(31)

4.8 Concentration parameter of IBP
The posterior distribution of concentration parameter α is

p(α|B) ∝ P(B|α)P(α|pα , qα)

= G
(

α;K+ + pα ,
qα

1 + qαHT

)
, (32)

where K+ is the active number of sources, and Hn =∑n
j=1

1
j is the nth harmonic number.

5 Experimental results
In this section, we evaluate the separation performance
and the accuracy of the source activity. Section 5.1
presents the results of separation performance and SAD
performance compared with FD-ISFA [5]. Section 5.2
shows the separation results compared with PF-ICA [18]
using two or four microphones (D = 2, 4) and various
source locations.

Figure 6 Locations of microphones and sources of Section 5.1.

Figure 7 Spectrogram of source signal.

5.1 Compared with FD-ISFA
The experiments used simulated mixtures in four rooms
with reverberation times of 20, 150, 400, and 600 [ms]. The
simulated mixtures were generated by convoluting the
impulse responses measured in the rooms. These impulse
responses were recorded by using the microphone array
depicted in Figure 5. We use two microphones in these
experiments (D = 2). The microphone and source loca-
tions are shown in Figure 6, and experimental conditions
are listed in Table 1. For each condition, 200 mixtures
using JNAS phoneme-balanced sentences were tested.
The values of these hyperparameters are empirically-

selected. The small σ 2
ε means the smaller the noise term

becomes. Therefore, pε and qε is set to 10000 and 1.0
in order to get smaller variance. In contrast, σ 2

A should
have a certain amount because σ 2

A affects the amplitudes

Figure 8 Spectrogram of PF-ISFA separated signal.



Nagira et al. EURASIP Journal on Audio, Speech, andMusic Processing 2013, 2013:4 Page 10 of 14
http://asmp.eurasipjournals.com/content/2013/1/4

Figure 9 Spectrogram of FD-ISFA separated signal.

of output signals. If σ 2
A is too large, the power of esti-

mated signals become small, and then these signals are
considered to be inactive.

5.1.1 Separation performance
First, an example of the experimental results obtained
from the separation experiment using mixed signals (D =
2) in a room with reverberation time of 20 [ms] is shown.
Spectrograms of a source signal, a signal separated using
PF-ISFA, a signal separated using conventional FD-ISFA,
and a permutation-aligned signal separated using FD-
ISFA are shown in Figures 7, 8, 9, and 10, respectively.
When FD-ISFA is used, the results, shown in Figure 9,

contained many horizontal lines; however, there are fewer
of these lines in Figure 10. These lines are the spectrogram

Figure 10 Spectrogram of permutation-aligned FD-ISFA
separated signal.

Table 2 Separation result of Section 5.1 [dB]

RT20 = 20ms

PF-ISFA FD-ISFA

Perm Non-perm Perm Solver

SDR 10.07 8.21 12.95 7.94

ISR 17.44 14.71 19.28 13.22

SIR 19.86 16.81 20.30 13.99

SAR 11.70 11.13 15.40 14.48

RT20 = 150ms

PF-ISFA FD-ISFA

Perm Non-perm Perm Solver

SDR 6.85 4.71 6.68 4.21

ISR 11.62 9.30 11.33 8.35

SIR 11.16 8.15 10.84 7.24

SAR 11.38 10.15 11.32 10.62

RT20 = 400ms

PF-ISFA FD-ISFA

Perm Non-perm Perm Solver

SDR 5.22 3.14 6.53 3.00

ISR 9.97 7.70 10.95 7.26

SIR 9.81 6.93 10.73 6.53

SAR 9.49 8.68 11.77 10.77

RT20 = 600ms

PF-ISFA FD-ISFA

Perm Non-perm Perm Solver

SDR 3.57 1.56 4.26 1.16

ISR 8.07 5.89 8.67 5.37

SIR 7.01 4.07 7.72 3.37

SAR 8.21 7.73 9.19 8.41

Figure 11 Locations of microphones and sources of Section 5.2.
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Table 3 Average SAD performance: precision, recall, and F-measure

Precision (%) Recall (%) F-measure (%)

RT20 FD-ISFA PF-ISFA FD-ISFA PF-ISFA FD-ISFA PF-ISFA

20 [ms] 64.9 77.6 88.8 84.6 74.1 80.0

150 [ms] 67.6 69.2 93.5 92.9 77.5 78.4

400 [ms] 68.7 75.1 89.5 84.3 76.9 78.6

600 [ms] 71.7 75.2 90.7 87.1 79.3 79.8

of the other separated signal. This means that the output
orders of the FD-ISFA results are not aligned for all fre-
quency bins. However, there are no horizontal lines in the
spectrogram of PF-ISFA (Figure 8). This shows that the
output order is aligned; in other words, the permutation
problem has been solved by using PF-ISFA.
The spectrogram shown in Figure 8 has vivid time

structure. This indicates that the constraint on the uni-
fied activity is too strong and the activation probability
for each frequency bin becomes almost one. In order to
improve this phenomenon, we might introduce a hyper-
parameter which can control the activation probability
appropriate to observed signals.
We also evaluated our method in terms of the signal-

to-distortion ratio (SDR), the image-to-spatial distortion
ratio (ISR), the source-to-interference ratio (SIR), and the
source-to-artifacts ratio (SAR) [26]. SDR is an overall
measure of the separation performance; ISR is a measure
of the correctness of the inter-channel information; SIR is

a measure of the suppression of the interference signals;
and SAR is a measure of the naturalness of the separated
signals.
The results are summarized in Table 2. Larger value

means better separation. “Non-Perm” was calculated from
the output signals themselves; in other words, their per-
mutations were not aligned. “Solver” means that the per-
mutations were aligned using inter-frequency correlation
of signal envelope. “Perm” means that the output signals
permutations are aligned using the correlation between
the outputs and the original sources; in other words, the
permutations were aligned by using the original source
signals for reference.
Our method (PF-ISFA) outperformed FD-ISFA with

permutation solver for all criteria except for SAR under all
conditions. In particular, it improved the SIR by 2.82 dB
under the condition RT20 = 30 [ms], 0.91 dB under
RT20 = 150 [ms], 0.41 dB under RT20 = 400 [ms], and
0.70 dB under RT20 = 600 [ms].
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Figure 12 Separation results of Section 5.2 for each interval whenD = 2 (upper: SDR, lower: SIR).



Nagira et al. EURASIP Journal on Audio, Speech, andMusic Processing 2013, 2013:4 Page 12 of 14
http://asmp.eurasipjournals.com/content/2013/1/4

One of the reasons of the poor performance of FD-ISFA
is due to the cascade approach. The results show that
FD-ISFA achieves better performance if the permutation
problem is perfectly solved. Therefore, this poor perfor-
mance comes from the permutation solver. This indi-
cates that the overall performance of cascade approach is
severely affected by the performance of worst subprocess.
These results show that the performance in rooms with

reverberation times of 150, 400, and 600 [ms] is worse
than for RT20 = 30 [ms] reverberation. This is because
the reverberation time of these rooms are longer than the
STFT window length (64 [ms]). If the reverberation time
is longer than the STFT window length, the reverbera-
tion affects multiple time frames, and this degrades the
performance.
The result of PF-ISFA (Perm) and that of PF-ISFA (Non-

Perm) is different. If the source activity results are poor,
the activities of two separated signals become similar.
In this case, the permutation ambiguity is likely to arise
because the unified activity matrix becomes meaningless.
In other words, PF-ISFA marks better result when each
source signal has different activity.

5.1.2 SAD performance
Next, we evaluated our method in SAD accuracy. The
SAD result of PF-ISFA was estimated as unified source
activities, that is the parameter bft in Section 3.3. Since
FD-ISFA estimated the sound activity for each frequency
bin independently, we calculated the number of active

bins for each time frame and determined the source activ-
ity of each time frame by using threshold processing.
The precision rate, recall rate, and F-measure of the

source activity accuracy are listed in Table 3. PF-ISFA
results are indicated by bold type. PF-ISFA outperformed
FD-ISFA in precision rate and F-measure in all reverber-
ant conditions. In particular, it improved the F-measure
by 5.9 points, 0.9 points, 1.7 points, and 0.5 points under
the conditions RT20 = 30 [ms], 150 [ms], 400 [ms], and
600 [ms], respectively.
Our method achieved a better precision rate and lower

recall rate than FD-ISFA, and the results show that PF-
ISFA achieved robust SAD performance under reverber-
ant condition. This is because PF-ISFA estimates the
source activities using a unified parameter for all fre-
quency bins. PF-ISFA is less likely to determine that the
time frame is active, even if some frequency bins have a
certain power level.

5.2 Compared with PF-ICA
In second experiment, we used two or four microphones
(D = 2, 4) to observe the two sound source mixture with
interval θ = 60, 120, and180[deg]. For each interval, 20
mixtures were tested using JNAS phoneme-balanced sen-
tences. The microphone and source locations is shown in
Figure 11. We use red microphones when D = 2. In order
to calculate SDR, ISR, SIR, and SAR, two signals which
maximize SDR score are chosen from estimated signals
when using four microphones.

0

0.5

1

1.5

2

2.5

3

3.5

180 120 60 180 120 60 180 120 60 180 120 60

Signal-to-distortion ratio (D=4) [dB]
PFISFA

PFICA

RT=30[ms] RT=150[ms] RT=400[ms] RT=600[ms]
Interval

0

2

4

6

8

10

12

14

180 120 60 180 120 60 180 120 60 180 120 60

Signal-to-interference ratio (D=4) [dB]
PFISFA

PFICA

RT=30[ms] RT=150[ms] RT=400[ms] RT=600[ms]

Interval

Figure 13 Separation results of Section 5.2 for each interval whenD = 4 (upper: SDR, lower: SIR).
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Table 4 Separation result of Section 5.2 [dB]

RT20 = 20ms

D=2 D=4

PF-ISFA PF-ICA PF-ISFA PF-ICA

SDR 2.76 2.32 1.95 2.51

ISR 3.53 3.54 2.36 3.27

SIR 6.87 6.48 9.90 6.87

SAR 7.39 9.96 5.61 11.28

RT20 = 150ms

D=2 D=4

PF-ISFA PF-ICA PF-ISFA PF-ICA

SDR 1.82 2.15 1.28 3.01

ISR 2.71 3.02 1.64 3.34

SIR 2.64 3.19 5.50 11.45

SAR 6.37 7.67 3.58 9.55

RT20 = 400ms

D=2 D=4

PF-ISFA PF-ICA PF-ISFA PF-ICA

SDR 1.79 1.71 1.57 1.95

ISR 2.80 2.93 1.96 2.69

SIR 2.84 2.35 6.31 4.60

SAR 6.56 9.37 4.46 9.62

RT20 = 600ms

D=2 D=4

PF-ISFA PF-ICA PF-ISFA PF-ICA

SDR 1.36 1.40 1.19 1.51

ISR 2.38 2.52 1.59 2.22

SIR 1.36 0.79 4.40 3.50

SAR 5.81 9.41 3.69 8.55

The average SDR and SIR of separated signals are shown
in Figures 12 and 13 for each interval when D = 2 and 4,
respectively. Table 4 summarizes average SDR, ISR, SIR,
and SAR of all intervals.
Table 4 indicates that PF-ISFA marks better average SIR

except for the condition RT20 = 150 [ms]. This means
that PF-ISFA can suppress the interference signal better
than PFICA. PF-ISFA and PF-ICA marks similar results
by the average SDR when D = 2, and The SDR score of
PF-ISFA is lower than that of PF-ICA when D = 4. This is
because these SDR scores are affected by the SAR scores.
The output signals of PF-ICA are created by multiplying
separation matrix by observed signals. Then, the artificial
noise is not likely to emerge. In contrast, PF-ISFA esti-
mates the source signals by sampling, and PF-ISFA output
is based on the best one sample of all samples created
during estimation.

6 Conclusion and future study
This article presented a joint estimation method of BSS
and SAD in the frequency domain that also solves the
permutation problem. It was designed by using a non-
parametric Bayesian approach. Unified source activity was
introduced to automatically align the permutations of the
output order for all frequency bins.
Our method improves the average SIR by 2.82–0.41 dB

compared with the baseline method based on FD-
ISFA when separating convoluted mixtures of RT20 =
30 [ms]–600 [ms] room environments. It also outper-
forms FD-ISFA under reverberant conditions (RT20 =
150, 400, 600ms). For SAD performance, our method out-
performs the conventional method by 5.9–0.5% in F-
measure under the condition RT20 = 20–600 [ms],
respectively.
In the future, we will evaluate the separation perfor-

mance of a mixture of signals from three or more talkers.
We will attempt to develop a method that can separate
mixtures with longer reverberations (i.e., longer than the
STFT window length) robustly. Last but not least, the
method should be sped up to achieve real-time processing
so that it can be applied to robot applications.
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