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Abstract
We study vanishing at infinity solutions of a fourth-order nonlinear differential
equation. We state sufficient and/or necessary conditions for the existence of the
positive solution on the half-line [0,∞) which is vanishing at infinity and sufficient
conditions ensuring that all eventually positive solutions are vanishing at infinity. We
also discuss an oscillation problem.

1 Introduction
In this paper we study the fourth-order nonlinear differential equation

x()(t) + q(t)x′′(t) + r(t)
∣∣x(t)∣∣λ sgnx(t) =  (t ∈R+), ()

where λ ≥ , q ∈ C(R+), q(t) >  for large t, r ∈ C(R+) such that r(t) �=  for large t and
R+ = [,∞).
Jointly with (), we consider a more general equation

x()(t) + q(t)x′′(t) + r(t)f
(
x(t)

)
=  (t ∈R+), (′)

where f ∈ C(R) satisfies f (u)u >  for u �= , and the associated linear second-order equa-
tion

h′′(t) + q(t)h(t) = . ()

By a solution of () we mean a function x ∈ C[Tx,∞), Tx ≥ , which satisfies () on
[Tx,∞). A solution is said to be nonoscillatory if x(t) �=  for large t; otherwise, it is said to
be oscillatory. Observe that if λ ≥ , according to [, Theorem .], all nontrivial solutions
of () satisfy sup{|x(t)| : t ≥ T} >  for T ≥ Tx, on the contrary to the case λ < , when
nontrivial solutions satisfying x(t)≡  for large t may exist.
Fourth-order differential equations have been investigated in detail during the last years.

The periodic boundary value problem for the superlinear equation x() = g(x) + e(t) has
been studied in []. In [], the fourth-order linear eigenvalue problem, together with the
nonlinear boundary value problem x() – f (t,x) = , has been investigated. Oscillatory
properties of solutions for self-adjoint linear differential equations can be found in [].
Equation () with q(t) ≡  can be viewed as a prototype of even-order two-term differen-
tial equations, which are the main object of monographs [, , ].
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Equation (′) with q(t) ≡  for t ∈ R+ is a special case of higher-order differential equa-
tions investigated in []. Equation (′) with q near to a nonzero constant as t → ∞ has
been considered in [] as a perturbation of the linear equation y()(t) + q(t)y′′(t) = , and
the existence of oscillatory solutions of (′) has been proved. In [], necessary and suffi-
cient conditions for the existence of asymptotically linear solutions of (′) have been given.
In the recent paper [], the equation

x()(t) + kx′′(t) + f
(
x(t)

)
=  (t ∈ R),

where k ∈ R, f (u)u >  for u �= , and f ∈ Liploc(R) has been investigated and applications
to the biharmonic PDE’s can be found there. In particular, the so called homoclinics solu-
tions, which are defined as nontrivial solutions x such that limt→±∞ x(t) = , are studied.
The goal of this paper is to investigate asymptotic problems associated with () and the

asymptotic boundary condition

x(t) >  for large t, lim
t→∞x(t) = . ()

A solution x of () satisfying () is said to be vanishing at infinity.
We start with the Kneser problem for (). The Kneser problem is a problem concerning

the existence of solutions of () subject to the boundary conditions on the half-line [,∞)

x() = c > , (–)ix(i)(t) >  for t ≥ , i = , , . ()

We establish necessary and/or sufficient conditions for the solvability of the boundary
value problem (), (), (). In the light of these results, as the second problem, we study
when all eventually positive solutions x of () are vanishing at infinity assuming that λ > 
and () is oscillatory. As a consequence, we give a bound for the set of all nonoscillatory
solutions. Finally, we discuss when problem (), () is not solvable and solutions to () are
oscillatory.
A systematic analysis of solutions of () satisfying () is made according to whether ()

is nonoscillatory or oscillatory. If () is nonoscillatory, then the following approach will be
used. Equation () can be rewritten as the two-term equation

(
h(t)

(
x′′(t)
h(t)

)′)′
+ h(t)r(t)

∣∣x(t)∣∣λ sgnx(t) = , ()

where h is a positive solution of (). According to [], a solution h of () is said to be a prin-
cipal solution if

∫ ∞ h–(t)dt = ∞, and such a solution is determined uniquely up to a mul-
tiple constant. Since q(t) > , every eventually positive solution of () is nondecreasing for
large t. Hence there exists a principal solution h of () such that h(t) >  for t ≥ a≥  and

∫ ∞

a


h(t)

dt = ∞,
∫ ∞

a
h(t)dt = ∞. ()

Therefore, we can use the known results [, ] stated for systems of differential equations
or in [] for fourth order differential equations.
If () is oscillatory, then our approach is based on the choice of a suitable transformation.

The main idea is based on a transformation of () to the fourth-order quasilinear equa-
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tion and the use of the estimates for positive solutions of such an equation on a compact
interval stated in []. This, together with an energy function associated with (), enables
us to state an oscillation theorem. In the final section, some extensions of our results to
(′) are given.

2 The Kneser problem
In this section we present necessary and/or sufficient conditions for solvability of bound-
ary value problem (), (), ().

2.1 Case r(t) < 0
Proposition  Let λ ≥ , () be disconjugate on [,∞), and r(t) <  for t ∈R+.Then bound-
ary value problem (), () is solvable for any c > .

To prove this theorem, we use Chanturia’s result [, Theorem ] for the system of dif-
ferential equations

dy
dt

= f (t, y), ()

where we restrict to the case that f = (f, f, f, f) :R+×R
 →R

 are continuous functions,
n = ,m = , l = , a =  and r = c. Then this result reads as follows.

Theorem A ([]) Let there exist c >  such that

fi(t, y, y, y, y)≤  (i = , . . . , )

for t ∈R+, y ∈ [, c), yi ∈R+ (i = , , ). Suppose

–fi(t, y, y, y, y) ≥ ϕi(t, yi+) (i = , , )

–
∑
i=

fi(t, y, y, y, y) ≤ ψ(t)ω

( ∑
i=

yi

)

for t ∈ [, ], y ∈ [, c], yi ∈R+ (i = , , ), where functions ϕi : [, ]×R+ →R+ (i = , , )
are continuous and nondecreasing in the second argument such that

lim inf
x→∞

∫ 


ϕ(t,x)dt > c,

lim
x→∞

∫ 


ϕi(t,x)dt = ∞ (i = , ),

ψ : [, ] →R+ is a continuous function andω :R+ → (,∞) is a continuous nondecreasing
function such that

∫ ∞



du
ω(u)

= ∞.

Then, for any x ∈ [, c], system () has a solution satisfying

y() = x, yi(t) ≥ , y′
i(t) ≤  for t ∈ R+ (i = , , , ). ()
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Proof of Proposition  Assume r(t) <  for t ∈R+. Since () is disconjugate, it has a positive
solution h on R+, and () can be written as () where h(t)r(t) <  onR+. Let x be a solution
of () and denote

y(t) = x(t), y(t) = –y′
(t), y(t) = –


h(t)

y′
(t), y(t) = –h(t)y′

(t). ()

Then () is equivalent to the system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

y′
(t) = –y(t),

y′
(t) = –h(t)y(t),

y′
(t) = – 

h(t)y(t),

y′
(t) = –h(t)|r(t)||y(t)|λ(t) sgn y(t) (t ∈ R+).

()

Let c >  be from (). We apply Theorem A choosing

ϕ(t,x) = x, ϕi(t,x) = kix, i = , , ψ(t) = k, ω(u) = cλ + u,

where k =mint∈[,] h(t), k =mint∈[,] /h(t) and k =maxt∈[,][h(t) + /h(t) + h(t)r(t)].
By this result, system () has a solution such that

y() = c > , yi(t) ≥ , y′
i(t)≤  for t ≥ , i = , , , .

Since λ ≥ , system () has no solutions such that yi ≡  for some i = , , ,  and large t;
see [] or [, Lemma , Theorem ]. Thus, for any c > , equation () has a solution x
such that x() = c, x(t) = y(t) > , x′(t) = –y(t) <  and x′′(t) = h(t)y(t) >  for t ≥ . �

Now we state conditions for the existence of a solution for problem (), (), ().

Theorem  Let λ ≥ , r(t) <  and

q(t)(t + ) ≤ 


()

on R+. If

∫ ∞


t

∣∣r(t)∣∣dt = ∞, ()

then problem (), (), () is solvable for any c > .
In addition, if

∫ ∞


tq(t)dt < ∞, ()

then the condition∫ ∞


t

∣∣r(t)∣∣dt = ∞ ()

is necessary and sufficient for the solvability of problem (), (), ().
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For the proof, the following lemma will be needed.

Lemma  Consider system () on [a,∞) (a≥ ),where h(t) >  for t ≥ a and h is a princi-
pal solution of (). Let y = (y, y, y, y) be a solution of () such that yi(t)≥  and y′

i(t) ≤ 
for i = , , , , and t ≥ a. Then limt→∞ yi(t) =  for i = , , , and if

∫ ∞

a
h(t)

∣∣r(t)∣∣ ∫ t

a


h(s)

∫ s

a
h(τ )τ dτ dsdt = ∞, ()

then limt→∞ y(t) = , too. Vice versa, if λ ≥  and limt→∞ y(t) = , then () holds.

Proof In view of the monotonicity of yi, there exist limt→∞ yi(t) = yi(∞) ≥ , i = , , , .
Since h is the principal solution, () holds, and integrating the first three equations in ()
from a to t, we get yi(∞) =  for i = , , . Now integrating () from t to ∞, we have

y(t) =
∫ ∞

t
h(s)y(s)ds,

y(t) =
∫ ∞

t


h(t)

y(s)ds,

y(t) =
∫ ∞

t
h(s)

∣∣r(s)∣∣yλ
 (s)ds.

Let () hold and assume, by contradiction, that y(∞) > . Then

y(a) – y(t) ≥ yλ
 (∞)

∫ t

a

∫ ∞

s
h(u)

∫ ∞

u


h(v)

∫ ∞

v
h(τ )

∣∣r(τ )∣∣dτ dvduds. ()

Letting t → ∞ and using the change of the order of integration, we get a contradiction
with the boundedness of y. This proves that y(∞) = .
Let the integral in () be convergent and assume, by contradiction, that y(∞) = . Then

we have

y(t) =
∫ ∞

t

∫ ∞

s
h(u)

∫ ∞

u


h(v)

∫ ∞

v
h(τ )

∣∣r(τ )∣∣yλ
 (τ )dτ dvduds,

so

y(t) ≤ yλ
 (t)

∫ ∞

t

∫ ∞

s
h(u)

∫ ∞

u


h(v)

∫ ∞

v
h(τ )

∣∣r(τ )∣∣dτ dvduds.

Since λ ≥ , then using the change of the order of integration, we get a contradiction for
large t. This proves that y(∞) > . �

Proof of Theorem  In view of (), () is disconjugate on R+. By Proposition , equation
() has a solution x satisfying (). Therefore, system () has a solution such that yi(t) > 
and y′

i(t) <  for t ∈R+. Choose h in () as a principal solution of (). The Euler equation

h̃′′ +


(t + )
h̃ =  (t ∈R+) ()

http://www.boundaryvalueproblems.com/content/2013/1/89


Bartušek and Došlá Boundary Value Problems 2013, 2013:89 Page 6 of 15
http://www.boundaryvalueproblems.com/content/2013/1/89

is themajorant of () onR+ and has the principal solution h̃(t) =
√
t + . By the comparison

theorem, for the minimal solution of the Riccati equation related to () and (), we have

 <
h′(t)
h(t)

≤ h̃′(t)
h̃(t)

for large t; see, e.g., []. Thus there exists � >  such that � ≤ h(t) ≤ �
√
t +  for t ≥ .

Assume (). Then () holds, and by Lemma  a solution x satisfies ().
Assume (). Then the principal solution h of () satisfies h(t) ∼ � for large t (see, e.g.,

[]). Hence, condition () reads as (), and by Lemma  this condition is equivalent to
the property (). �

As a consequence of Lemma , we get the following result.

Corollary  Let () be disconjugate on [,∞), and r(t) <  for t ∈ R+. Then any solution x
of () satisfying

x() = c > , x(t) > , t ≥ , lim
t→∞x(t) =  ()

is a solution of the Kneser problem, i.e., (–)ix(i)(t) >  for t ≥  and i = , .

Proof Let h be a positive solution on R+ satisfying (), and let x be a solution of () satis-
fying (). Then y = (y, y, y, y), where y are defined by (), is a solution of system ().
Since y(t) >  for t ≥  and () holds, we have by the Kiguradze lemma (see, e.g., []) that
either y′

i(t) >  or y′
i(t) <  for i = , ,  and large t, say for t ≥ a≥ . Since x is positive and

tends to zero, we have y′
 ≤  for t ≥ a, so also y′

i ≤  (i = , ) for t ≥ a. By Lemma , we
get y′

i(∞) =  (i = , ) for t ≥ a. Since x(t) >  for t ≥ , we have y′
(t) <  for t ≥  and y

is positive and decreasing on R+. Hence, proceeding by the same argument, yi (i = , ) is
positive and decreasing on R+. Now the conclusion follows from (). �

2.2 Case r(t) > 0
First we show that the sign condition posed on r is necessary for the solvability of problem
(), ().
A function g , defined in a neighborhood of infinity, is said to change sign if there exists

a sequence {tk} → ∞ such that g(tk)g(tk+) < .

Theorem  Let r(t) >  for large t. Then problem (), () has no solution and the following
hold:
(a) If () is nonoscillatory, then every nonoscillatory solution x of () satisfies

x(t)x′(t) >  and x′′ is of one sign for large t.
(b) If () is oscillatory, then every nonoscillatory solution x of () satisfies either

x(t)x′′(t) ≤ , or x′′(t) changes sign. In addition, if a solution x satisfies (), then x′′

changes sign.

Proof Claim (a). Let x be a positive solution of () on [a,∞), or, equivalently, of () on
[a,∞), where h satisfies (). Denote

y(t) = x(t), y(t) = y′
(t), y(t) =


h(t)

y′
(t), y(t) = h(t)y′

(t). ()

http://www.boundaryvalueproblems.com/content/2013/1/89
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Then () is equivalent to the system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

y′
(t) = y(t),

y′
(t) = h(t)y(t),

y′
(t) =


h(t)y(t),

y′
(t) = –h(t)r(t)yλ

 (t) sgn y(t) (t ≥ a).

()

We have y(t) >  for t ≥ a. Assume by contradiction that y(t) <  for t ≥ a. Let y(t) > 
and y(t) < . Since y is nonincreasing, y(t) ≤ y(a) <  and

y(t) – y(a)≤ y(a)
∫ t

a
/h(s)ds.

Letting t → ∞, we get a contradiction with the positiveness of y. The remaining case
y(t) <  can be eliminated in a similar way using (). Observe that system () is a special
case of the Emden-Fowler system investigated in [], and the proof follows also from [,
Lemma .].
Claim (b). Without loss of generality, suppose that r(t) >  for t ≥ T and there exists a

solution x of () such that x(t) >  and x′′(t) ≥  on [T ,∞), T ≥ . Borůvka [] proved
that if () is oscillatory, then there exists a function α ∈ C[T ,∞), called a phase function,
such that α′(t) >  and

(α′′(t))

(α′(t))
–

α′′′(t)
(α′(t))

+
q(t)

α′(t)
= . ()

Using this result, we can consider the change of variables

s = α(t), x′′(t) =
√
α′(t)

X(s)
(
˙ = d

ds

)
()

for t ∈ [T ,∞), s ∈ [T∗,∞), T∗ = α(T). Thus, t = α–(s) and

x′′′(t) = –


(
α′(t)

)– 
 α′′(t)X(s) +

(
α′(t)

)/Ẋ(s),
x()(t) = –



(
α′(t)

)– 
 α′′′(t)X(s) +




(
α′(t)

)– 

(
α′′(t)

)X(s) + (
α′(t)

) 
 Ẍ(s).

Substituting into (), we obtain the second-order equation

Ẍ(s) +X(s)
(



(
α′(t)

)–(
α′′(t)

) – 

(
α′(t)

)–
α′′′(t) + q(t)

(
α′(t)

)–)

+
(
α′(t)

)– 
 r(t)xλ(t) = .

From here and (), we obtain

Ẍ(s) +X(s) = –
(
α′(t)

)– 
 r(t)xλ(t) < . ()

Since x′′(t) ≥ , () yields X(s)≥  and so Ẍ(s) < , that is, Ẋ is decreasing. If there exists
s ≥ T such that Ẋ(s) < , X becomes eventually negative, which is a contradiction. Then

http://www.boundaryvalueproblems.com/content/2013/1/89
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Ẋ(s) ≥  and X(s) is nondecreasing. Let T ≥ T∗ be such that X(s) >  on [T,∞). Thus,
using () we obtain

Ẋ(s) – Ẋ(T) =
∫ s

T
Ẍ(u)du≤ –

∫ s

T
X(u)du≤ –X(T)(s – T).

Hence, lims→∞ Ẋ(s) = –∞, which contradicts the nonnegativity of Ẋ(s). Finally, the case
X(s)≡  on [T∗,∞) cannot occur, because if x′′(t)≡  on [T ,∞), then from () and r(t) > ,
we have x≡  on [T ,∞), which is a contradiction.
Finally, let x be a positive solution of () satisfying (). Then x′′ is either oscillatory or

x′′(t) <  for large t. Assume x′′(t) <  on some J = [T ,∞), then x′ is decreasing and either
x′(t)≥  or x′(t) <  for large t. If x′(t) ≥  for large t, then we get a contradiction with ().
If x′(t) < , then x′(t)≤ x′(T) <  for t ≥ T ≥ T and x becomes negative for large t. Hence
x′′ must be oscillatory. �

For λ > , the analogous result to Theorem  is the following oscillation result.

Proposition  Let λ > , r(t) >  for large t.Assume either () for large t, (), or (), ().
Then all the solutions of () are oscillatory.

Proof Let x be a solution of () and h be the principal solution of (). Then y = (y, y, y, y),
where yi are given by (), is a solution of system (). Proceeding by the similar way
as in the proof of Theorem , we have that () holds. Using the change of the order of
integration in (), we can check that conditions of Theorem . in [] applied to system
() are verified. Hence by this result all the solutions of () are oscillatory, which gives
the conclusion. �

The following result follows from [, Theorem .] and completes Proposition  in the
case when () is oscillatory.

Proposition  Let λ > , q(t) ≡  and r(t) >  for t ∈ R+. Then the condition
∫ ∞ tr(t)dt =

∞ is necessary and sufficient for every solution of () to be oscillatory.

In the light of these results, in the sequel, we study asymptotic and oscillation problems
to () when () is oscillatory.

3 Vanishing at infinity solutions
In this section we study when all nonoscillatory solutions of () are vanishing at infinity.

Theorem  Let λ >  and () be oscillatory. Assume that q(t) ≥ Kt– for large t and some
K > , the functions

q′

q/
,

q′′

q
,

q′′′

q/
are bounded on R+, ()

and

|r(t)|
q(t)

↑ ∞ as t → ∞. ()

Then any eventually positive solution of () is vanishing at infinity.

http://www.boundaryvalueproblems.com/content/2013/1/89
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The proof of Theorem  is based on the following auxiliary results.
Consider the fourth-order quasi-linear differential equation

y()(s) +
∑
i=

Qi(s)y(i)(s) + R(s)|y|λ(s) sgn y(s) = , ()

where Qi and R are continuous functions on [,∞). In [, Theorem .], the following
uniform estimate for positive solutions of () with a common domain was proved.

Proposition  ([, Theorem ., Corollary .]) Assume λ > . Let y be a positive solution
of () defined on [,b] and

∣∣R(s)∣∣ ≥ r∗,
∣∣Qi(s)

∣∣ ≤ Q–i, i = , , , ()

on [,b] for some constants r∗ >  andQ > .Then there exists a positive constantM =M(λ)
such that

y(s) ≤ Mr–


λ–∗ δ–


λ– (s) for s ∈ [,b], ()

where

δ(s) =min{s,α,b – s}, α = –Q–.

Remark  In [, Theorem .] the constantM is explicitly calculated.

Lemma  Let λ > . Assume that () holds on [,∞). Then any positive solution of ()
defined on [,∞) satisfies

y(s) ≤ Mr–


λ–∗ α– 
λ– for s ∈ [α,∞), ()

where α and M are constants from Proposition .

Proof Let b≥ α. By Proposition , applied on [,b], we have δ = δ(s)≡ α for s ∈ [α,b – α]
and

y(s) ≤ Mr–


λ–∗ α– 
λ– for s ∈ [α,b – α].

Letting b → ∞, we get (). �

The next lemma describes the transformation between solutions of () and a certain
quasi-linear equation.

Lemma  Let q(t) >  on [a,∞) be such that

∫ ∞

a

√
q(t)dt = ∞

http://www.boundaryvalueproblems.com/content/2013/1/89
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and consider the transformation

s =
∫ t

a

√
q(t)dt, x(t) = y(s), ˙ = d

ds
.

Then x = x(t) is a solution of equation () on [a,∞) if and only if y = y(s) is a solution of the
equation

dy
ds

+ 
q′(t)
q/(t)

dy
ds

+
[

q′′(t)
q(t)

–
(q′(t))

q(t)
+ 

]
ÿ

+
[

q′′′(t)
q/(t)

–


q′(t)q′′(t)
q/(t)

+


(q′(t))

q/(t)
+

q′(t)
q/(t)

]
ẏ

+
r(t)
q(t)

|y|λ sgn y =  on [,∞), ()

where t = t(s) is the inverse function to s = s(t).

Proof We have

x′(t) = ẏ(s)
√
q(t), x′′(t) = ÿ(s)q(t) +

ẏ(s)q′(t)

√
q(t)

,

x′′′(t) =
dy(s)
ds

q/(t) +


ÿ(s)q′(t) + ẏ(s)

[
q′′(t)

√
q(t)

–
(q′(t))

q/(t)

]
,

x()(t) =
dy(s)
ds

q(t) + 
dy
ds

q′(t)
√
q(t) + ÿ(s)

[
q′′(t) –

(q′(t))

q(t)

]

+ ẏ(s)
[

q′′′(t)
q/(t)

–


q′(t)q′′(t)
q/(t)

+


(q′(t))

q/(t)

]
.

Substituting into (), we get the conclusion. �

Proof of Theorem  Let x be a positive solution of () on I = [a,∞) (a > ). Suppose, for
simplicity, that q(t) ≥ Kt– for t ≥ a. Let

∣∣q′(t)
∣∣q– 

 (t)≤ C,
∣∣q′′(t)

∣∣q–(t) ≤ C,
∣∣q′′′(t)

∣∣q– 
 (t) ≤ C ()

on [,∞) for some positive constants C, C, C and

Q =max

{
C,

(
C +



C
 + 

)/

,
(
C


+


CC +



C
 +

C



)/}
. ()

Denote

α = –Q–, ā = exp(α/K). ()

Define the function t∗ = t∗(t) such that

∫ t

t∗

√
q(s)ds = α ()

http://www.boundaryvalueproblems.com/content/2013/1/89
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for t ≥ ā. Then, according to q(t) ≥ Kt–, we have

t∗ ≥ t exp(–α/K)≥ . ()

Let r/q be nondecreasing on [ã,∞) and put T ≥ max{a, ā, ã}. Choose t ∈ [T ,∞) ar-
bitrarily fixed. Since q(t)≥ Kt–, we can consider the transformation from Lemma  with
a = t∗(t), i.e.,

s =
∫ t

t∗(t)

√
q(τ )dτ , x(t) = y(s), ˙ = d

ds
. ()

Then equation () is transformed into equation () which is a quasilinear equation of the
form (), where

∣∣Q(s)
∣∣ ≤ Q,

∣∣Q(s)
∣∣ ≤ Q,

∣∣Q(s)
∣∣ ≤ Q, R(s) =

r(t(s))
q(t(s))

andQ is defined by () and (). Choose t ≥ T arbitrarily.We apply Lemma  to equation
() with

r∗ =min
s≥

|r(t(s))|
q(t(s))

=
|r(t∗(t))|
q(t∗(t))

.

Hence estimate () with s = α reads as

x(t) = y(α)≤ C
(
q(t∗(t))
|r(t∗(t))|

) 
λ–

, ()

where C =Mα– 
λ– . Letting t → ∞, we have by () that t∗(t) → ∞ and the conclusion

follows from () and (). �

From the proof of Theorem , we get the estimate for the set of all nonoscillatory solu-
tions of () which will be used in the next section.

Corollary  Let λ > , limt→∞ q(t) = ∞, () and () hold.Then, for any ε > , there exists
a positive constant C = C(λ,q(t), ε) and T ≥  such that every nonoscillatory solution x of
() satisfies

∣∣x(t)∣∣ ≤ C
(
q(t – ε)
|r(t – ε)|

) 
λ–

for t ≥ T . ()

Proof Let ε >  be fixed and let T ≥  be such that

q(t) ≥ α

ε
for t ≥ T ,

where α is given by (). Let t ≥ T be fixed. Using estimate () with t = t ≥ T , we have

x(t)≤ C
(
q(t∗(t))
|r(t∗(t))|

) 
λ–

(t ≥ T), ()

http://www.boundaryvalueproblems.com/content/2013/1/89
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where t∗ is given by (), i.e.,

α =
∫ t

t∗(t)

√
q(τ )dτ ≥ α

ε

(
t – t∗(t)

)
.

Therefore t∗(t) ≥ t – ε and estimate () follows from () and (). �

Example  Consider the equation

x()(t) + (t + )x′′(t) –
(
(t + ) + (t + )

)
x(t) =  (t ∈R+). ()

Then r/q → ∞ and by Theorem  all eventually positive solutions are vanishing at infin-
ity. One can check that x = 

t+ is such a solution of ().

Open problem It is an open problem to find conditions for the solvability of boundary
value problem (), (), () in case r(t) <  and () is oscillatory.
In view of Theorem , Corollary  and Proposition , it is a question whether () can

have vanishing at infinity solutions in case r(t) >  and () is oscillatory.

In the next section, we show that under certain additional assumptions the answer is
negative.

4 Oscillation
Here we consider () in case r(t) >  for large t. When () is nonoscillatory, we have es-
tablished the oscillation criterion in Proposition . When () is oscillatory, the following
oscillation theorem holds.

Theorem  Let λ > , r(t) >  and assumptions (), () hold. Assume

lim
t→∞q(t) = ∞, q′(t)≥ , q′′(t)≥  for large t ()

and

lim sup
t→∞

q+σ (t)
(
q(t – ε)
r(t – ε)

) 
λ–

< ∞ ()

for some ε >  and σ > . Then problem (), () is not solvable and all the solutions of ()
are oscillatory.

Proof Suppose that () holds on [a,∞). First, observe that the assumption () implies
that

∫ ∞


q′(t)

(
q(t – ε)
r(t – ε)

) 
λ–

dt < ∞. ()

Indeed, putting H(t) = (q(t)/r(t))


λ– , we have

∫ t

a
q′(s)H(s)ds <H(a)q+σ (t)

∫ t

a

q′(s)
q+σ (s)

dt,

http://www.boundaryvalueproblems.com/content/2013/1/89
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and thus, in view of (), we get (). Consider a solution x of () such that x(t) >  for
t ≥ t ≥ . According to Corollary , there exists t̄ such that

 < x(t)≤ C
(
q(t – ε)
r(t – ε)

) 
λ–

for t ≥ t̄ ≥ t, ()

and in view of () we get limt→∞ x(t) = . Consider the function

F(t) = –x′′′(t) – q(t)x′(t) + q′(t)x(t).

Then

F ′(t) = r(t)xλ(t) + q′′(t)x(t),

and in view of () the function F is increasing for large t. Hence, there exists t ≥ t such
that either

F(t) <  for t ≥ t, ()

or

F(t)≥ F(t) >  for t ≥ t. ()

According to Theorem(b), x′′ oscillates. Define by {τk}∞k= an increasing sequence of zeros
of x′′ tending to ∞ with τ ≥ t.
Define

Z(t) = –x′′(t) – q(t)x(t) – 
∫ ∞

t
q′(s)x(s)ds. ()

In view of () and () the function Z is well defined and

Z′(t) = –x′′′(t) – q(t)x′(t) + q′(t)x(t) = F(t) ()

on [t,∞). Moreover, we have from (), () and ()

lim
k→∞

Z(τk) = . ()

If () holds, then Z′(t) <  and because

Z(τ) = –q(τ)x(τ) – 
∫ ∞

τ

q′(s)x(s)ds < ,

we get Z(t)≤ Z(τ) <  for t ≥ τ. This is a contradiction with (), so () is impossible.
If () holds, thenZ′(t) >  and limt→∞ Z(t) = ∞. This is again a contradictionwith (),

so also this case is impossible. �

http://www.boundaryvalueproblems.com/content/2013/1/89
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Example  Consider the equation

x()(t) +
c
t
x′′(t) + σ |x|(t) sgnx(t) =  (t ∈R+),

where σ = ±. If σ = – and c ∈ (, /), then by Theorem  this equation has a solution
satisfying () and (). If σ = ± and c > /, then by Theorem  any nonoscillatory solution
(if any) satisfies ().

5 Extensions
As it was mentioned in [], a certain nonlinear PDE leads to the fourth-order equation
with the exponential nonlinearity. In the sequel, we show that the results of this paper can
be extended to the nonlinear equation

x()(t) + q(t)x′′(t) + r(t)f
(
x(t)

)
=  (t ∈ R+), (′)

where q, r are as for () and f (u)u >  for u �=  such that

f (u) ≥ kuλ for u ∈R+ ()

for some λ ≥  and k > . The prototype of such an extension is the function f (u) = eu – 
for u≥ .
Theorems - read for (′) as follows.

Theorem ′ Let λ ≥ , r(t) <  and () hold for t ∈ R+. Assume that either (i) (), or (ii)
() and () hold. Then problem (′), (), () has a solution for any c > .

Proof of Theorem ′ It is analogous to the proofs of Proposition  and Theorem  replacing
the nonlinearity |y(t)|λ(t) sgn y(t) in system () by f (y(t)). Lemma  remains to hold as
a sufficient condition for (). �

Theorem ′ Theorem  remains to hold for (′) without assuming ().

Proof of Theorem ′ In the proof of claim (a) of Theorem , we consider system () where
the nonlinearity |y(t)|λ(t) sgn y(t) is replaced by f (y(t)). The proof of claim (b) of Theo-
rem  is the same for the nonlinearity f . �

Theorem ′ Theorem  remains to hold for (′).

Proof of Theorem ′ Let x be a positive solution of (′) on [a,∞). Then v = x is a solution
of the equation

v()(t) + q(t)v()(t) + R(t)vλ(t) = , ()

where

R(t) =
r(t)f (x(t))

xλ(t)
≥ kr(t) for t ≥ a. ()

Now we apply Theorem  to (). �
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Theorem ′ Let the assumptions of Theorem  hold. Then (′) has no eventually positive
solutions.

Proof of Theorem ′ It is similar to the one of Theorem . In view of (), the estimate
() holds and the energy function F is the same. �
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