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Abstract

This paper investigates the blow-up properties of positive solutions to the following
system of evolution p-Laplace equations with nonlocal sources and inner absorptions{

ut − div (|∇u|p−2∇u) =
∫
�
vmdx − αur , x ∈ �, t > 0,

vt − div (|∇v|q−2∇v) =
∫
�
undx − βvs, x ∈ �, t > 0

with homogeneous Dirichlet boundary conditions in a smooth bounded domain Ω
Î RN(N ≥ 1), where p, q > 2, m, n, r, s ≥ 1, a, b > 0. Under appropriate hypotheses,
the authors discuss the global existence and blow-up of positive weak solutions by
using a comparison principle.
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1 Introduction
In this paper, we deal with the blow-up properties of positive solutions to an evolution

p-Laplace system of the form⎧⎪⎪⎨⎪⎪⎩
ut − div(|∇u|p−2∇u) =

∫
�
vmdx − αur , x ∈ �, t > 0,

vt − div(|∇v|q−2∇v) =
∫
�
undx − βvs, x ∈ �, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂�, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ �,

(1:1)

where p, q > 2, m, n, r, s ≥ 1, a, b > 0, Ω is a bounded domain in RN(N ≥ 1) with a

smooth boundary ∂Ω, the initial data u0(x) ∈ C(�) ∩ W1,p
0 (�),

v0(x) ∈ C(�) ∩ W1,q
0 (�) and ∂u0(x)

∂ν
< 0, ∂v0(x)

∂ν
< 0, where v denotes the unit outer nor-

mal vector on ∂Ω.

System (1.1) is the classical reaction-diffusion system of Fujita-type for p = q = 2. If p

≠ 2, q ≠ 2, (1.1) appears in the theory of non-Newtonian fluids [1,2] and in nonlinear

filtration theory [3]. In the non-Newtonian fluids theory, the pair (p, q) is a characteris-

tic quantity of the medium. Media with (p, q) > (2, 2) are called dilatant fluids and

those with (p, q) < (2, 2) are called pseudoplastics. If (p, q) = (2, 2), they are Newtonian

fluids.

System (1.1) has been studied by many authors. For p = q = 2, Escobedo and Herrero

[4] considered the following problem
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⎧⎨⎩
ut = �u + vp, vt = �v + uq, x ∈ �, t > 0,
u(x, t) = v(x, t) = 0, x ∈ ∂�, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ �,

(1:2)

where p, q > 0. Their main results read as follows. (i) If pq ≤ 1, every solution of

(1.2) is global in time. (ii) If pq > 1, some solutions are global while some others blow

up in finite time.

In the last three decades, many authors studied the following degenerate parabolic

problem⎧⎨⎩
ut − div(|∇u|p−2∇u) = f (u), x ∈ �, t > 0,
u(x, t) = 0, x ∈ ∂�, t > 0
u(x, 0) = u0(x), x ∈ �.

(1:3)

under different conditions (see [5,6] for nonlinear boundary conditions; see [7-10] for

local nonlinear reaction terms; see [11] for nonlocal nonlinear reaction terms). In [12],

the existence, uniqueness, and regularity of solutions were obtained. When f(u) = -uq,

q > 0 or f(u) ≡ 0 extinction phenomenon of the solution may appear [13-15]; However,

if f(u) = uq, q > 1 the solution may blow up in finite time [7-10,14].

Especially, in [11], Li and Xie dealt with the following p-Laplace equation⎧⎨⎩
ut − div(|∇u|p−2∇u) =

∫
�
uq(x, t)dx, x ∈ �, t > 0,

u(x, t) = 0, x ∈ ∂�, t > 0
u(x, 0) = u0(x), x ∈ �.

(1:4)

Under appropriate hypotheses, they established the local existence and uniqueness of

its solution. Furthermore, they obtained that the solution u exists globally if q <p - 1; u

blows up in finite time if q >p - 1 and u0(x) is large enough.

Recently, in [16], Li generalized (1.4) to system and studied the following problem⎧⎪⎪⎨⎪⎪⎩
ut − div(|∇u|p−2∇u) = α

∫
�
vmdx, x ∈ �, t > 0,

vt − div(|∇v|q−2∇v) = β
∫
�
undx, x ∈ �, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂�, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ �.

(1:5)

Similar to [11], he proved that whether the solution blows up in finite time depends

on the initial data, constants a, b, and the relations between mn and (p - 1)(q - 1).

For other works on parabolic system like (1.1), we refer readers to [17-30] and the

references therein.

When p = q, m = n, r = s, a = b, u0(x) = v0(x), system (1.1) is then reduced to a sin-

gle p-Laplace equation

ut − div(|∇u|p−2∇u) =
∫

�

umdx − αur . (1:6)

However, to the authors’ best knowledge, there is little literature on the study of the

global existence and blow-up properties for problems (1.1) and (1.6). Motivated by the

above works, in this paper, we investigate the blow-up properties of solutions of the

problem (1.1) and extend the results of [4,11,16,19] to more generalized cases.

In order to state our results, we introduce some useful symbols. Throughout this

paper, we let �(x), ψ(x) be the unique solution of the following elliptic problem
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−div(|∇ϕ|p−2∇ϕ) = 1, x ∈ �; ϕ(x) = 0, x ∈ ∂� (1:7)

and

−div(|∇ψ|q−2∇ψ) = 1, x ∈ �; ψ(x) = 0, x ∈ ∂�, (1:8)

respectively. For convenience, we denote

m1 = min
�

ϕ(x), M1 = max
�

ϕ(x), m2 = min
�

ψ(x), M2 = max
�

ψ(x).

Before starting the main results, we introduce a pair of parameters (μ, g) solving the

following characteristic algebraic system

(
−μ m
n −γ

)(
τ

θ
) = (

1
1
),

namely,

τ =
m + γ

mn − μγ
, θ =

n + μ

mn − μγ

with

μ = max{p − 1, r}, γ = max{q − 1, s}.

It is obvious that 1/τ and 1/θ share the same signs. We claim that the critical expo-

nent of problem (1.1) should be (1/τ, 1/θ) = (0, 0), described by the following

theorems.

Theorem 1.1. Assume that (1/τ, 1/θ) < (0, 0), then there exist solutions of (1.1) being

globally bounded.

Theorem 1.2. Assume that (1/τ, 1/θ) > (0, 0), then the nonnegative solution of (1.1)

blows up in finite time for sufficiently large initial values and exists globally for suffi-

ciently small initial values.

Theorem 1.3. Assume that (1/τ, 1/θ) = (0, 0), �(x) and ψ(x) are defined in (1.7) and

(1.8), respectively.

(i) Suppose that r >p - 1 and s >q - 1. If anbr ≥ |Ω|n+r, then the solutions are globally

bounded for small initial data; if
∫
�

ψmdx > αϕr,
∫
�

ϕndx > βψ s, then the solutions

blow up in finite time for large data.

(ii) Suppose that p - 1 >r and q - 1 >s. If (
∫
�

ϕndx)
1

q−1 (
∫
�

ψmdx)
1
m ≤ 1, then the

solutions are globally bounded for small initial data; if
∫
�

ψmdx > 1,
∫
�

ϕndx > 1then

the solutions blow up in finite time for large data.

(iii) Suppose that p - 1 >r and s >q - 1. If ∫
�

ϕndx ≤ |�|−
1
m β

1
s , then the solutions are

globally bounded for small initial data; if
∫
�

ψmdx > 1,
∫
�

ϕndx > βψ s, then the solu-

tions blow up in finite time for large data.

(iv) Suppose that r >p - 1 and q - 1 >s. If ∫
�

ψmdx ≤ |�|−
1
nα

1
r , then the solutions are

globally bounded for small initial data; if
∫
�

ϕndx > 1,
∫
�

ψmdx > αϕr, then the solu-

tions blow up in finite time for sufficiently large data.

The rest of this paper is organized as follows. In Section 2, we shall establish the

comparison principle and local existence theorem for problem (1.1). Theorems 1.1 and
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1.2 will be proved in Section 3 and Section 4, respectively. Finally, we will give the

proof of Theorem 1.3 in Section 5.

2 Preliminaries
Since the equations in (1.1) are degenerate at points where ǔu = 0 or ǔv = 0, there is

no classical solution in general, and we therefore consider its weak solutions. Let ΩT =

Ω × (0, T), ST = ∂Ω × (0, T) and �T = � × [0,T). We begin with the precise definition

of a weak solution of problem (1.1).

Definition 2.1 A pair of functions (u(x, t), v(x, t)) is called a weak solution of pro-

blem (1.1) in �T × �T if and only if

(i) (u, v) is in the space (C(0,T; L∞(�))∩ Lp(0,T;W1,p
0 (�)))× (C(0,T; L∞(�))∩ Lq(0,T;W1,q

0 (�)))

and (ut, vt) Î L2(0, T; L2(Ω)) × L2(0, T; L2(Ω)).

(ii) the following equalities∫ ∫
�T

utφ1dxdt +
∫ ∫

�T

|∇u|p−2∇u · ∇φ1dxdt =
∫ ∫

�T

φ1(
∫

�

vmdx − αur)dxdt

and ∫ ∫
�T

vtφ2dxdt +
∫ ∫

�T

|∇v|q−2∇v · ∇φ2dxdt =
∫ ∫

�T

φ2(
∫

�

undx − βvs)dxdt

hold for all j1, j2, which belong to the class of test functions

�1 ≡ {
� ∈ C1,1(�T);�(x,T) = 0;�(x, t) = 0on ST

}
.

(iii) u(x, t)|t = 0 = u0(x), v(x, t)|t = 0 = v0(x) for all x ∈ �.

In a natural way, the notion of a weak subsolution for (1.1) is given as follows.

Definition 2.2 A pair of functions (u(x, t), v(x, t)) is called a weak subsolution of

problem (1.1) in �T × �T if and only if

(i) (u, v) is in the space (C(0,T; L∞(�))∩ Lp(0,T;W1,p
0 (�)))× (C(0,T; L∞(�))∩ Lq(0,T;W1,q

0 (�)))

and (ut, vt) Î L2(0, T; L2(Ω)) × L2(0, T; L2(Ω)).

(ii) the following inequalities∫ ∫
�T

utφ1dxdt +
∫ ∫

�T

∣∣∇u
∣∣p−2∇u · ∇φ1dxdt ≤

∫ ∫
�T

φ1(
∫

�

vmdx − αur)dxdt

and ∫ ∫
�T

vtφ2dxdt +
∫ ∫

�T

∣∣∇v
∣∣q−2∇v · ∇φ2dxdt ≤

∫ ∫
�T

φ2(
∫

�

undx − βvs)dxdt

hold for any j1, j2, which belong to the class of test functions

�2 ≡ {� ∈ C1,1(�T);�(x, t) ≥ 0;�(x,T) = 0;�(x, t) = 0 on ST}.

(iii) u(x, t)|t = 0 ≤ u0(x), v(x, t)|t = 0 ≤ v0(x) for all x ∈ �.

Similarly, a pair of functions (u(x, t), v(x, t)) is a weak supersolution of (1.1) if the

reversed inequalities hold in Definition 2.2. A weak solution of (1.1) is both a weak

subsolution and a weak supersolution of (1.1).

We shall use the following comparison principle to prove our global and nonglobal

existence results.
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Proposition 2.3 Let (u, v) and (u, v) be a nonnegative subsolution and supersolution

of (1.1), respectively, with (u(x, 0), v(x, 0)) ≤ (u(x, 0), v(x, 0)) for all x ∈ �. Then,

(u, v) ≤ (u, v) a.e. in �T × �T.

Proof. From the definitions of weak subsolution and supersolution, for any j1, j2 Î
Θ2, we could obtain that∫ ∫

�T

(ut − ut)φ1dxdt +
∫ ∫

�T

(
∣∣∇u

∣∣p−2∇u − |∇u|p−2∇u) · ∇φ1dxdt

≤
∫ ∫

�T

φ1

[∫
�

(vm − vm)dx − α(ur − ur)
]
dxdt,

(2:1)

and ∫ ∫
�T

(vt − vt)φ2dxdt +
∫ ∫

�T

(
∣∣∇v

∣∣q−2∇v − |∇v|q−2∇v) · ∇φ2dxdt

≤
∫ ∫

�T

φ2

[∫
�

(un − un)dx − β(vs − vs)
]
dxdt.

(2:2)

In addition, inequalities (2.1) and (2.2) remain true for any subcylinder of the form

Ωτ = Ω × (0, τ) ⊂ ΩT and corresponding lateral boundary Sτ = ∂Ω × (0, τ) ⊂ ST. Tak-

ing a special test function φ1 = χ[0,τ ](u − u)+ in (2.1), where c[0, τ] is the characteristic

function defined on [0, τ] and s+ = max{s, 0}, we find that∫ ∫
�τ

(ut − ut)(u − u)+dxdt +
∫ ∫

�τ

(
∣∣∇u

∣∣p−2∇u − |∇u|p−2∇u) · ∇(u − u)+dxdt

≤ m |�| M̂m−1
∫ ∫

�τ

(v − v)
+
(u − u)+dxdt + αrM̂r−1

∫ ∫
�τ

(u − u)2+dxdt,
(2:3)

where |Ω| denotes the Lebesgue measure of Ω and

M̂ = max
{∥∥u∥∥L∞(�T)

, ‖u‖L∞(�T),
∥∥v∥∥L∞(�T)

, ‖v‖L∞(�T)

}
.

Next, our task is to estimate the first term on the right-side of (2.3). In view of Cau-

chy’s inequality, we see that

m |�| M̂m−1
∫ ∫

�τ

(v − v)
+
(u − u)+dxdt

≤ 1
2
m |�| M̂m−1

(∫ ∫
�τ

(v − v)2+dxdt +
∫ ∫

�τ

(u − u)2+dxdt
)
.

(2:4)

Furthermore, by Lemma 1.4.4 in [12], we know that there exists δ > 0 such that

(
∣∣∇u

∣∣p−2∇u − |∇u|p−2∇u) · ∇χ[0,τ ](u − u) ≥ min
{
0, δ

∣∣∇(u − u)+
∣∣p} . (2:5)

Combining now (2.3)-(2.5), we deduce that∫
�

(u − u)2+dx ≤ C1

∫ ∫
�τ

(u − u)2+dxdt + C2

∫ ∫
�τ

(v − v)2+dxdt, (2:6)

here C1 = 1
2m |�| M̂m−1 + αrM̂r−1, C2 = 1

2m |�| M̂m−1.
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Likewise, taking test function φ2 = χ[0,τ ](v − v)+ in (2.2), we have that∫
�

(v − v)2+dx ≤ C3

∫ ∫
�τ

(u − u)2+dxdt + C4

∫ ∫
�τ

(v − v)2+dxdt, (2:7)

where C3, C4 denote some positive constants. Moreover, there exists a large enough

constant C, such that∫
�

[
(u − u)2+ + (v − v)2+

]
dx ≤ C

∫ ∫
�τ

[
(u − u)2+ + (v − v)2+

]
dxdt. (2:8)

Now, we write

y(τ ) = (u − u)2+ + (v − v)2+,

then, (2.8) implies that

y(τ ) ≤ C
∫ τ

0
y(t)dt for a.e. 0 ≤ τ ≤ T. (2:9)

By Gronwall’s inequality, we know that y(τ) = 0, for any τ Î [0, T]. Thus,

(u − u)+ = (v − v)+ = 0, this means that u ≤ u, v ≤ v in �T as desired. The proof of

Proposition 2.3 is complete. □
With the above established comparison principle in hand, we are able to show the

basic existence theorem of weak solutions. Here, we only state the local existence theo-

rem, and its proof is standard [12, 16, for more details].

Theorem 2.1 Given (0, 0) ≤ (u0, v0) ∈ (C(�) ∩ W1,p
0 ) × (C(�) ∩ W1,q

0 ), there is some

T0 > 0 such that the problem (1.1) admits a nonnegative unique weak solution (u, v)

for each t <T0, and (u, v) ∈ (C(0,T0; L∞(�))∩Lp(0,T;W1,p
0 (�)))×(C(0,T; L∞(�))∩Lq(0,T0;W1,q

0 (�))).

Furthermore, either T0 = ∞ or

lim
t→T−

0

sup(‖ u(x, t)||∞+ ‖ v(x, t)||∞) = ∞.

3 Proof of Theorem 1.1
Proof of Theorem 1.1. Notice that (1/τ, 1/θ) < (0, 0) implies

mn < μγ = max{p − 1, r}max{q − 1, s}.

We will prove Theorem 1.1 in four subcases.

(a) For μ = r, g = s, we then have mn <rs. Let (u, v) = (A,B), where A ≥ max
x∈�

u0(x),

B ≥ max
x∈�

v0(x) will be determined later. After a simple computation, we have

ut − div(|∇u|p−2∇u) −
∫

�

vmdx + αur = αAr − |�|Bm,

and

vt − div(|∇v|p−2∇v) −
∫

�

undx + βvs = βBs − |�|An.

So, (u, v) is a time-independent supersolution of problem (1.1) if

αAr ≥ |�|Bm and βBs ≥ |�| An,
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i.e.,

B
m
r (

|�|
α

)
1
r ≤ A ≤ B

s
n (

|�|
β

)
1
n . (3:1)

(b) For μ = p - 1, g = q - 1, we then have mn < (p - 1)(q - 1). Let

(u, v) = (A(ϕ + 1),B(ψ + 1)),

where �, ψ satisfying (1.7) and (1.8), respectively. Taking

A ≥ max

{
max

�

u0(x), ((m1 + 1)
mn
q−1 (M2 + 1)m|�|

m+q−1
q−1 )

q−1
(p−1)(q−1)−mn

}
,

and

B ≥ max

{
max

�

v0(x), ((m1 + 1)n(M2 + 1)
mn
p−1 |�|

n+p−1
q−1 )

p−1
(p−1)(q−1)−mn

}
,

then it is easy to verify that (u, v) is a global supersolution for system (1.1).

(c) For μ = r, g = q - 1, we then have mn <r(q - 1). Choose A ≥ max
x∈�

u0(x) and

B ≥ max
x∈�

v0(x) satisfy

(|�|An)
1

q−1 ≤ B ≤ (
α

|�|A
r(M2 + 1)−m)

1
m .

Let (u, v) = (A,B(ψ + 1)) with ψ defined by (1.8). By direct Computation, we arrive at

ut − div(|∇u|p−2∇u) −
∫

�

vmdx + αur ≥ 0, (3:2)

and

vt − div(|∇v|p−2∇v) −
∫

�

undx + βvs ≥ 0. (3:3)

(d) For μ = p - 1, g = s, we then have mn <r(q - 1). Let (u, v) = (A(ϕ + 1),B) with �

defined by (1.7), where A ≥ max
x∈�

u0(x) and B ≥ max
x∈�

v0(x). Then, (3.2) and (3.3) hold if

(|�|Bm)
1

p−1 ≤ A ≤ (
β

|�|B
s(M1 + 1)−n)

1
n .

The proof of Theorem 1.1 is complete. □

4 Proof of Theorem 1.2
Proof of Theorem 1.2. Observe that 1/τ, 1/θ > 0 implies

pq > μγ = max{p − 1, r}max{q − 1, s}.

For μ = r, g = s. Choosing

B =
(

αnβ r

|�|n+r
) 1

mn−rs
and A =

1
2

⎡⎣( |�|
α

) 1
r
B
m
r +

(
β

|�|
) 1

n
B

s
n

⎤⎦ ,
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then (u, v) = (A,B) is a global supersolution for problem (1.1) provided that

A ≥ max
x∈�

u0(x) and B ≥ max
x∈�

v0(x).

For μ = p - 1, g = q - 1. Let (u, v) = (A(ϕ + 1),B(ψ + 1)), where � and ψ satisfying

(1.7) and (1.8), respectively. Choosing

A =
1
2
(|�|

1
p−1 (M2 + 1)

m
p−1 B

m
p−1 +

1
m1 + 1

|�|−
1
n B

q−1
n ),

and

B = (|�|n+p−1(m1 + 1)n(p−1)(M2 + 1)mn)
− 1
mn−(p−1)(q−1) ,

therefore, (u, v) is a global supersolution for system (1.1) if A ≥ max
x∈�

u0(x) and

B ≥ max
x∈�

v0(x).

For other cases, the solutions of (1.1) should be global due to the above discussion.

Next, we begin to prove our blow-up conclusion under large enough initial data. Due

to the requirement of the comparison principle, we will construct blow-up subsolu-

tions in some subdomain of Ω in which u, v > 0. We use an idea from Souplet [31]

and apply it to degenerate equations. Since problem (1.1) does not make sense for

negative values of (u, v), we actually consider the following problem⎧⎪⎪⎨⎪⎪⎩
Pu(x, t) ≡ ut − div(|∇u|p−2∇u) − ∫

�
vm+ dx + αur+ = 0, x ∈ �, t > 0,

Qv(x, t) ≡ vt − div(|∇v|q−2∇v) − ∫
�
un+dx + βvs+ = 0, x ∈ �, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂�, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ �,

(4:1)

where u+ = max{0, u}, v+ = max{0, v}. Let ϖ(x) be a nontrivial nonnegative continu-

ous function and vanish on ∂Ω. Without loss of generality, we may assume that 0 Î Ω

and ϖ(0) > 0. We shall construct a self-similar blow-up subsolution to complete our

proof.

Set

u(x, t) =
W(y1)

(T − t)l1
, v(x, t) =

W(y2)

(T − t)l2
, (4:2)

here

yi =
|x|

(T − t)σi
≥ 0, W(yi) = 1 − yi2, i = 1, 2,

and li, si > 0(i = 1, 2), 0 <T < 1 are to be determined later. Notice the fact that

suppu(x, t)+ = B(0, (T − t)σ1) ⊂ B(0,Tσ1 ) ⊂ �,
suppv(x, t)+ = B(0, (T − t)σ2 ) ⊂ B(0,Tσ2 ) ⊂ �

(4:3)

for sufficiently small T > 0.

Calculating directly, we obtain

ut =
l1W(y1) + σ1y1W ′(y1)

(T − t)l1+1
, −�u =

2N

(T − t)l1+2σ1
,

vt =
l2W(y2) + σ2y2W ′(y2)

(T − t)l2+1
, −�v =

2N

(T − t)l2+2σ2
,
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and ∫
�

vm+ dx =
1

(T − t)ml2

∫
B(0,(T−t)σ2 )

Wm(
|x|

(T − t)σ2
)dx ≥ S1

(T − t)ml2−Nσ2
,∫

�

un+dx =
1

(T − t)nl1

∫
B(0,(T−t)σ1 )

Wn(
|x|

(T − t)σ1
)dx ≥ S2

(T − t)nl1−Nσ1
,

where

S1 =
∫
B(0,1)

Wm(|ξ |)dξ , S2 =
∫
B(0,1)

Wn(|ξ |)dξ .

On the other hand, we know

div(
∣∣∇u

∣∣p−2∇u) =
∣∣∇u

∣∣p−2
�u + (p − 2)

∣∣∇u
∣∣p−4(∇u)′(Hx(u))∇u

=
∣∣∇u

∣∣p−2
�u + (p − 2)

∣∣∇u
∣∣p−4

N∑
j=1

N∑
i=1

∂u
∂xi

∂2u
∂xi∂xj

∂u
∂xj

,
(4:4)

div(
∣∣∇v

∣∣q−2∇v) =
∣∣∇v

∣∣q−2
�v + (q − 2)

∣∣∇v
∣∣q−4(∇v)′(Hx(v))∇v

=
∣∣∇v

∣∣q−2
�v + (q − 2)

∣∣∇v
∣∣q−4

N∑
j=1

N∑
i=1

∂v
∂xi

∂2v
∂xi∂xj

∂v
∂xj

,
(4:5)

here Hx(u), Hx(v) denotes the Hessian matrix of u(x, t), v(x, t) respect to x, respec-

tively. Use the notation d(Ω) = diam(Ω), then from (4.4) and (4.5), it follows that∣∣∣div(∣∣∇u
∣∣p−2∇u)

∣∣∣ ≤ 2N

(T − t)l1+2σ1
(

d(�)

(T − t)l1+2σ1
)p−2

+
2N(p − 2)

(T − t)l1+2σ1
(

d(�)

(T − t)l1+2σ1
)p−4(

d(�)

(T − t)l1+2σ1
)2

=
2N(p − 1)d(�)p−2

(T − t)(l1+2σ1)(p−1)
,∣∣∣div(∣∣∇v

∣∣q−2∇v)
∣∣∣ ≤ 2N

(T − t)l2+2σ2
(

d(�)

(T − t)l2+2σ2
)q−2

+
2N(q − 2)

(T − t)l2+2σ2
(

d(�)

(T − t)l2+2σ2
)q−4(

d(�)

(T − t)l2+2σ2
)2

=
2N(q − 1)d(�)q−2

(T − t)l2+2σ2(q−1)
.

Further, we have

Pu(x, t) ≤ l1

(T − t)l1+1
+
2N(p − 1)d(�)p−2

(T − t)(l1+2σ1)(p−1)
+

α

(T − t)rl1

− S1

(T − t)ml2−Nσ2
,

(4:6)
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and

Qv(x, t) ≤ l2

(T − t)l2+1
+
2N(q − 1)d(�)q−2

(T − t)(l2+2σ2)(q−1)
+

β

(T − t)sl2

− S2

(T − t)nl1−Nσ1
.

(4:7)

Since 1/τ, 1/θ < 0, we see that μg <mn. In addition, it is clear that

μ

m
<

n + 1
m + 1

or
γ

n
<

m + 1
n + 1

. (4:8)

For μ

m < n+1
m+1, we choose l1 and l2 such that

μ

m
<

l2
l1

< min
{
n + 1
m + 1

,
n
γ

}
and μ <

1 + l1
l1

<
ml2
l1

. (4:9)

Recall that μ = max{p - 1, r} and g = max{q - 1, s}, then (4.9) implies

ml2 > rl1, ml2 > l1(p − 1), ml2 > l1 + 1,

and

nl1 > sl2, nl1 > l2(q − 1), nl1 > l2 + 1.

Next, we can choose positive constants s1, s2 sufficiently small such that

σ1 = σ2 < min
{
ml2 − (l1 + 1)

N
,
ml2 − rl1

N
,
ml2 − l1(p − 1)
N + 2(p − 1)

,
nl1 − (l2 + 1)

N
,

nl1 − sl2
N

,
nl1 − l2(q − 1)
N + 2(q − 1)

}
,

consequently, we have

ml2 − Nσ2 > max
{
l1 + 1, (l1 + 2σ1)(p − 1), rl1

}
,

nl1 − Nσ1 > max
{
l2 + 1, (l2 + 2σ2)(q − 1), sl2

}
.

(4:10)

For γ

n < m+1
n+1 , we fix l1 and l2 to satisfy

γ

n
<

l1
l2

< min
{
m + 1
n + 1

,
m
μ

}
and γ <

1 + l2
l2

<
nl1
l2

, (4:11)

then we can also select s1, s2 small enough such that (4.10) holds.

From (4.6), (4.7) and (4.10), for sufficiently small T > 0, it follows that

Pu(x, t) ≤ 0, Qv(x, t) ≤ 0 in �T . (4:12)

Since ϖ(0) > 0 and ϖ(x) are continuous, there exist two positive constants r and ε

such that ϖ(x) ≥ ε for all x Î B(0, r) ⊂ Ω. Choose T small enough to insure

B(0,Tσ1 ) ⊂ B(0,ρ), hence u≤ 0, v≤ 0 on ST. From (4.1) and (4.2), it follows that

v(x, 0) ≤ M� (x), v(x, 0) ≤ M� (x) for sufficiently large M. By comparison principle,

we have (u, v) ≤ (u, v) provided that u0(x) ≥ M� (x) and v0(x) ≥ M� (x). It shows that

(u, v) blows up in finite time. The proof of Theorem 1.2 is complete. □

5 Proof of Theorem 1.3
Proof of Theorem 1.3. In the critical case of (1/τ, 1/θ) = (0, 0), we have mn = μg.
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(i) For r >p - 1, s >q - 1, we know mn = rs. Thanks to anbr ≥ |Ω|n+r, we can choose

A and B sufficiently large such that A ≥ max
x∈�

u0(x), B ≥ max
x∈�

v0(x) and

B
m
r (

|�|
α

)
1
r ≤ A ≤ B

s
n (

|�|
β

)
1
n .

Clearly, (u, v) = (A,B) is a supersolution of problem (1.1), then by comparison princi-

ple, the solution of (1.1) should be global.

Next, we begin to prove our blow-up conclusion. Since mn = rs, we can choose con-

stants l1, l2 > 1 such that

q − 2
r − 1

<
s
n
=
l1
l2

=
m
r

<
s − 1
p − 2

. (5:1)

According to Proposition 2.3, we only need to construct a suitable blow-up subsolu-

tion of problem (1.1) on �T × �T. Let y(t) be the solution of the following ordinary

differential equation{
y′(t) = c1yδ1 − c2yδ2 , t > 0,
y(0) = y0 > 0,

where

c1 = min
{∫

�
ψmdx − αϕr

l1ϕ
,

∫
�

ϕndx − βψ s

l2ψ

}
, c2 = max

{
1
l1ϕ

,
1
l2ψ

}
,

δ1 = min
{
(r − 1)l1 + 1, (s − 1)l2 + 1

}
, δ2 = max

{
(p − 2)l1 + 1, (q − 2)l2 + 1

}
.

Since
∫
�

ψmdx > αϕr and
∫
�

ϕndx > βψ s, we have c1 > 0. On the other hand, by vir-

tue of (5.1), it is easy to see that δ1 >δ2. Then, it is obvious that there exists a constant

0 <T’ < +∞ such that

lim
t→T′ y(t) = +∞.

Construct

(u(x, t), v(x, t)) = (yl1(t)ϕ(x), yl2 (t)ψ(x)),

where �, ψ satisfying (1.7) and (1.8), respectively. Moreover, by the assumptions on

initial data, we can take small enough constant y0 such that

u0(x) ≥ yl10M1 and v0(x) ≥ yl20M2 for all x ∈ �. (5:2)

Now, we begin to verify that (u(x, t), v(x, t)) is a blow-up subsolution of the problem

(1.1) on �T × �T, T <T’. In fact, ∀(x, t) Î ΩT × (0, T), a series of computations show

Pu(x, t) ≡ ut − div(
∣∣∇u

∣∣p−2∇u) −
∫

�

vmdx + αur

= l1ϕy
l1−1y′(t) + yl1(p−1) − yml2

∫
�

ψmdx + αyrl1ϕr

= l1ϕy
l1−1(y′(t) +

1
l1ϕ

y(p−2)l1+1 −
∫
�

ψmdx − αϕr

l1ϕ
yl1(r−1)+1)

≤ 0.

(5:3)
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Similarly, we also have

Qv(x, t) ≡ vt − div
(

∣∣∇v
∣∣q−2∇v) −

∫
�

undx + βvs

= l2ψyl2−1y′(t) + yl2(q−1) − ynl1
∫

�

ϕndx + βysl2ψ s

= l2ψyl2−1(y′(t) +
1
l2ψ

y(q−2)l2+1 −
∫
�

ϕndx − βψ s

l2ψ
yl2(s−1)+1)

≤ 0.

(5:4)

On the other hand, ∀t Î [0, T], we have

u(x, t)|x∈∂� = yl1(t)ϕ(x)|x∈∂� = 0, (5:5)

and

v(x, t)|x∈∂� = yl2(t)ψ(x)|x∈∂� = 0. (5:6)

Combining now (5.2)-(5.6), we see that (u, v) is a subsolution of (1.1) and (u, v) < (u,

v) on �T × �T by comparison principle, thus (u, v) must blow up in finite time since

(u, v) does.

(ii) For p - 1 >r, q - 1 >s, we know mn = (p - 1)(q - 1). Under the assumption

(
∫
�

ϕndx)
1

q−1 (
∫
�

ψmdx)
1
m ≤ 1, we can choose A, B such that

A
n

q−1

(∫
�

ϕndx
) 1

q−1 ≤ B ≤ A
p−1
m

(∫
�

ψmdx
)− 1

m
.

Then, (u, v) = (Aϕ,Bψ) is a global supersolution of (1.1).

Since mn = (p - 1)(q - 1), we can choose constants l1, l2 > 1 such that

s − 1
p − 2

<
q − 1
n

=
l1
l2

=
m

p − 1
<

q − 2
r − 1

. (5:7)

Next, we consider the following ordinary differential equation{
y′(t) = c1yδ1 − c2yδ2 , t > 0,
y(0) = y0 > 0,

where

c1 = min
{∫

�

ψmdx − 1,
∫

�

ϕndx − 1
}
, c2 = max

{
αϕr−1

l1
,
βψ s−1

l2

}
,

δ1 = min
{
(p − 2)l1 + 1, (q − 2)l2 + 1

}
, δ2 = max

{
(r − 1)l1 + 1, (s − 1)l2 + 1

}
.

Since
∫
�

ψmdx > 1,
∫
�

ϕndx > 1, we have c1 > 0. On the other hand, in light of (5.7),

it is easy to show that δ1 >δ2. Then, it is clear that y(t) will become infinite in a finite

time T’ < +∞.

Let

(u(x, t), v(x, t)) = (yl1(t)ϕ(x), yl2 (t)ψ(x)),

where �(x), ψ(x) satisfies (1.7) and (1.8), respectively. Similar to the arguments for

the case r >p - 1, s >q - 1, we can prove that (u(x, t), v(x, t)) is a blow-up subsolution
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of the problem (1.1) on �T × �T, T <T’. Then, the solution (u, v) of (1.1) blows up in

finite time.

(iii) For p - 1>r, s >q - 1, we know mn = s(p - 1). Since ∫
�

ϕndx ≤ |�|−
1
m β

1
s , we can

choose A, B such that

β
−1

s A
n
s

∫
�

ϕndx ≤ B ≤ |�|−
1
mA

p−1
m .

We can check (u, v) = (Aϕ,B) is a global supersolution of (1.1).

Thanks to mn = s(p - 1), we can choose constants l1, l2 > 1 such that

q − 1
n

<
s
n
=
l1
l2

=
m

p − 1
<

m
r
. (5:8)

Let

(u(x, t), v(x, t)) = (yl1(t)ϕ(x), yl2 (t)ψ(x)),

where �(x), ψ(x) are defined in (1.7) and (1.8), respectively, and y(t) satisfies the fol-

lowing Cauchy problem{
y′(t) = c1yδ1 − c2yδ2 , t > 0,
y(0) = y0 > 0,

where

c1 = min
{∫

�

ψmdx − 1,

∫
�

ϕndx − βψ s

l2ψ

}
, c2 = max

{
αϕr−1

l1
,

1
l2ψ

}
,

δ1 = min
{
(p − 2)l1 + 1, (s − 1)l2 + 1

}
, δ2 = max

{
(r − 1)l1 + 1, (q − 2)l2 + 1

}
.

Then, the left arguments are the same as those for the case r >p - 1, s >q - 1, so we

omit them.

(iv) The proof of this case is parallel to (iii). The proof of Theorem 1.3 is complete. □
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