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Abstract
Consider the class of planar systems of first-order rational difference equations

xn+1 =
α1+β1xn+γ1yn
A1+B1xn+C1yn

yn+1 =
α2+β2xn+γ2yn
A2+B2xn+C2yn

}
, n = 0, 1, 2, . . . , (x0, y0) ∈ R, (′)

whereR = {(x, y) ∈ [0,∞) 2 : Ai + Bix + Ciy �= 0, i = 1, 2}, and the parameters are
nonnegative and such that both terms in the right-hand side of (1′) are nonlinear. In
this paper, we prove the following discretized Poincaré-Bendixson theorem for the
class of systems (1′).
If the map associated to system (1′) is bounded, then the following statements are

true:
(i) If both equilibrium curves of (1′) are reducible conics, then every solution

converges to one of up to four equilibria.
(ii) If exactly one equilibrium curve of (1′) is a reducible conic, then every solution

converges to one of up to two equilibria.
(iii) If both equilibrium curves of (1′) are irreducible conics, then every solution

converges to one of up to three equilibria or to a unique minimal period-two
solution which occurs as the intersection of two elliptic curves.

In particular, system (1′) cannot exhibit chaos when its associated map is bounded.
Moreover, we show that if both equilibrium curves of (1′) are reducible conics and the
map associated to system (1′) is unbounded, then every solution converges to one of
up to infinitely many equilibria or to (0,∞) or (∞, 0).
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1 Introduction andmain theorem
Consider the system of first-order rational difference equations with nonnegative param-
eters

xn+ = α+βxn+γyn
A+Bxn+Cyn

yn+ = α+βxn+γyn
A+Bxn+Cyn

}
, n = , , , . . . , (x, y) ∈R, ()
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where R = {(x, y) ∈ [,∞)  : Aix + Biy + Ci �= , i = , }, and the parameters are nonnega-
tive and such that both terms in the right-hand side of () are nonlinear. The class of sys-
tems () has beenwidely studied in recent years when the RHS is both linear and nonlinear.
For example, general solutions of planar linear discrete systems with constant coefficients
and weak delays were studied by Diblík andHalfarová in [] and []. Global behavior of so-
lutions and basins of attraction of equilibria for special nonlinear cases of system () called
competitive and anticompetitive systems were studied by authors such as Basu, Merino
and Kulenović in [] and [–]. Patterns of boundedness of nonlinear cases of system ()
were studied by Ladas et al. in [–].More general results for system () as well its lower-
and higher-dimensional counterparts were obtained by, for example, Basu and Merino in
[], by Stević, Diblík et al. in [–], and by Ladas et al. in [].
The class of systems () was proposed in all its generality by Camouzis et al. in [].

A number of open problems regarding () were also mentioned in the latter. Our goal
in this paper is to give a complete qualitative description of the global behavior of solu-
tions to all systems () whose maps are bounded and thus provide answers to many of
the open problems in []. For example, we present the global dynamics of the system la-
beled (, ) in open problem  and the competitive system labeled (, ) in open prob-
lem  in []. We also give the global analysis of the following  systems in open prob-
lem whichmay be competitive in some range of its parameters but nowhere cooperative:
(, l) and (, l) with l ∈ {, , , , , }, (, ), (, ), and (, l), (, l) with
l ∈ {,, , }. The eight systems (, ), (, ), (, ), (, ), (, ), (, ),
(, ) and (, ) from open problem , which may be competitive in a certain region
of parameters, cooperative in another region of parameters and neither competitive nor
cooperative in a third region of parameters, are also analyzed in this paper.
We also look at the four systems (, ), (, ), (, ) and (, ) from open prob-

lem  which may be cooperative in some range of parameters but nowhere competitive.
In addition, we present the global dynamics of a number of cases of system () from open
problem  which are neither competitive nor cooperative in any parameter region along
with many additional cases that were not mentioned in [], namely, cases (k, l) with k > l.
In all, we give the global dynamics of all  cases of nonlinear system () for which both
members of the system are bounded along with  cases for which one or more members
of the system are unbounded. We also show that for all of these cases, for which there
exists a unique nonnegative equilibrium and no minimal period-two solutions, local sta-
bility of the equilibrium implies global attractivity. Thus we provide the answer to open
problem . in [] for the cases mentioned above.
Members of the class of systems () have proven to be very useful for modeling purposes

in biological sciences (see [–]). For example, the Leslie-Gowermodel from theoretical
ecology is the two-species competition model

xn+ = bxn
+cxn+cyn

yn+ = byn
+cxn+cyn

}
, n = , , . . . , (x, y) ∈ [,∞)× [,∞), (LG)

which can be obtained from () by setting α = γ =  and normalizing the other param-
eters. It was studied in detail by Liu and Elaydi [], Cushing et al. [], and Kulenović
and Merino []. This system has the nice property that its equilibria have relatively sim-
ple algebraic formulas. Hence their local stability characters can be analyzed using stan-
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dard linearization techniques. Moreover, this system is competitive (see [–]). So, it is
somewhat easier to analyze global behavior of its solutions.
Unfortunately, most members of class () do not possess either of these two nice proper-

ties of simple formulas for their equilibria and competitiveness. Another challenge faced
in the study of class () is the presence of a large number of parameters (twelve), which
makes algebraic computations involving standard linearization techniques very compli-
cated. One also needs to analyze a large number of individual cases (, cases) of ()
which is neither practical nor efficient. Finally, members of this class tend to possess mul-
tiple equilibria and minimal period-two solutions possibly at the same time. Due to these
difficulties, the global dynamics of members of this class remains largely unanalyzed to
date. In [], Merino and the author introduced a new geometrical technique to analyze
local and global behavior of solutions to a special case of system (E), the modified Leslie-
Gower model

xn+ = bxn
+cxn+cyn

+ h
yn+ = byn

+cxn+cyn
+ h

}
, n = , , . . . , (x, y) ∈ [,∞)× [,∞). (LG-)

The technique is based on the analysis of slopes of equilibrium curves of the system which
are defined as follows. If T(x, y) := (T(x, y),T(x, y)) is a map associated to the system, then
the two equilibrium curves of the system are respectively given by the formulasT(x, y) = x
and T(x, y) = y. Thus these curves are analogous to nullclines in differential equations
and their intersection points are precisely the equilibria of the system. This method was
then used to establish a connection between the number of equilibria of the system and
their local stability. The authors were then able to use this result along with the results
proved by Kulenović and Merino in [] to give a complete qualitative description of the
global dynamics of (LG-). Also in [], Merino and the author introduced another new
method to analyze global behavior of solutions to two classes of second-order rational
difference equationswhich are not competitive. The goal of this paper is to apply these two
new techniques to analyze global behavior of solutions to the more general family of first-
order planar systems of rational difference equations () with nonnegative parameters.
In particular, a geometrical criterion is presented to classify a large number of cases of
system (E) into subclasses exhibiting similar global dynamics. Let P ⊂ R

 be the set of
nonnegative parameters (α,β, . . .) such that the RHS terms in system () are nonlinear.
The main theorem of this paper is as follows.

Theorem  If the map associated to system () is bounded with parameters in P , then the
following is true:

(i) If both equilibrium curves of () are reducible conics, that is, if
i. C(Cα –Aγ) + γ(Cβ – Bγ) = , and
ii. B(Bα –Aβ) + β(Bγ –Cβ) = ,
then system () has at least one and at most four equilibria. Every solution converges
to an equilibrium.

(ii) If exactly one equilibrium curve of () is a reducible conic, that is, if either
i. C(Cα –Aγ) + γ(Cβ – Bγ) = , or
ii. B(Bα –Aβ) + β(Bγ –Cβ) = ,
then system () has at least one and at most two equilibria. Every solution converges
to an equilibrium.
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(iii) If both equilibrium curves of () are irreducible conics, that is, if
i. C(Cα –Aγ) + γ(Cβ – Bγ) �= , and
ii. B(Bα –Aβ) + β(Bγ –Cβ) �= ,
then system () has at least one and at most three equilibria. Every solution
converges to an equilibrium or to a unique minimal period-two solution which
occurs as the intersection of two elliptic curves.

Moreover, if both equilibrium curves of () are reducible conics and the map associated
to system () is unbounded, then every solution converges to one of up to infinitely many
equilibria or to (,∞) or (∞, ).

We treat the three cases of Theorem  as three smaller theorems and devote three sep-
arate sections of the paper to their respective proofs. What makes case (i) of Theorem 
relatively easy to analyze is the fact that the map T associated to system () is coordinate-
wise monotone in this case. Hence the global dynamics of its orbits is relatively easy to
track. In case (ii), the map T is monotone in only one coordinate. Here the global dynam-
ics of its orbits is a bitmore complicated. However, themost complicated dynamics occurs
in case (iii) where the map T is not monotone in any coordinate. In this case, the bounded
set B := [L,U] × [L,U] containing the solutions to system () can be subdivided into
five regions of coordinatewise monotonicity based on the relative positions of a pair of
vertical lines x = K and x = K and a pair of horizontal lines y = L and y = L in the set B
as shown below:
(a) {K,K} ∩ [L,U] = φ and {L,L} ∩ [L,U] = φ,
(b) Either K ∈ [L,U] or L ∈ [L,U], and K /∈ [L,U], L /∈ [L,U],
(c) Either K ∈ [L,U] or L ∈ [L,U], and K /∈ [L,U], L /∈ [L,U],
(d) K,L ∈ [L,U] or K,L ∈ [L,U],
(e) K,K ∈ [L,U] or L,L ∈ [L,U].

Here K and L depend on the parameter values α,β, . . . ,B,C, while K and L depend
on the parameter values α,β, . . . ,B,C. To prove case (iii), we will show that there exists
a nested sequence of invariant attracting boxes {Bi}∞i= with the property that B∗ =

⋂
Bi

satisfies exactly one of the following:
(i) B∗ = (x, y).
(ii) There exist equilibria (x, y) 	se (x, y) 	se (x, y) such that (x, y) and (x, y) lie

at the north-west and south-east corners of B∗, respectively, and (x, y) lies in its
interior.

(iii) There exist minimal period-two solutions (p,q) 	se (x, y) 	se (r, s) such that (p,q)
and (r, s) lie at the north-west and south-east corners of B∗, respectively, and (x, y)
lies in its interior.

In case (i), it is clear that the unique equilibrium (x, y) is globally attracting. In case (ii), we
show that the local stability of the equilibria is determined by the slopes of the equilibrium
curves at these equilibria. In case (iii), we prove that system () has a unique minimal
period-two solution by looking at intersections of certain elliptic curves.We thenuse these
results to give global stability results for the two cases.
This paper is organized as follows. In Section , we look at the admissible parameter re-

gions and initial conditions for system (). In Section , we define the notions of south-east
order, competitive maps and equilibrium curves of system (). In Section , we look at ex-
plicit formulas for the cases of system () for which the associated map T(x, y) is bounded.
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In Section , we look at regions of coordinatewise monotonicity for the map T(x, y). Sec-
tions  and  respectively deal with the case where both equilibrium curves of system
() are reducible conics and the case where exactly one of them is a reducible conic. Sec-
tions .-. respectively deal with the number of nonnegative equilibria, local stability of
equilibria, existence and uniqueness ofminimal period-two solutions, and global behavior
of solutions of system () when both equilibrium curves are irreducible conics.

2 Parameter regions and initial conditions
In this section, we look at conditions that the parameters α,β, . . . ,B andC of system ()
must satisfy in order to be included in the set P introduced in Theorem  in the previous
section. In particular, note that the parameters inP must satisfy the following inequalities:

Bi +Ci > 
αi + βi + γi > 
Ai + Bi +Ci > 
αi + βi +Ai + Bi > 
αi + γi +Ai +Ci > 
βi + γi + Bi +Ci > 

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
, i = , . ()

The reasons for these inequalities are as follows. If Bi = Ci =  for i ∈ {, }, then at least
one of the members of system () becomes linear. Since we are interested in studying non-
linear rational systems of difference equations belonging to class (), we will ignore these
cases. Next, note that if αi + βi + γi =  for i =  or , then at least one of the members
of system () becomes trivial causing the latter to reduce to a difference equation. Since
we are interested in studying systems of difference equations belonging to class (), we
will ignore these cases as well. Similarly, if Ai = Bi = αi = βi =  or Ai = Ci = αi = γi =  for
i ∈ {, }, then at least one of the members of system () becomes constant, and we have
the same situation as before, which we want to avoid.
The assumption that each of the twelve parameters αi, βi, γi, Ai, Bi and Ci for i ∈ {, }

can be zero or positive and the inequalities in hypotheses () imply that for i =  there are
 –  =  ways to choose the numerator of the first member of system () excluding the
trivial case α = β = γ = . Similarly, there are seven ways to choose the denominator.
Thus there are  ×  =  ways to choose the first member of system (). Out of these,
only –  =  choices satisfy the last two inequalities in hypotheses (). Similarly, there
are  choices for the second member of system (). In all, there are ×  = , ways
to choose systems belonging to class (). Moreover, the initial condition (x, y) ∈Rmust
be chosen according to Table  in order to avoid division by zero.

Table 1 RegionsR of initial conditions

Parameter condition R
A1 > 0, A2 > 0 [0,∞)× [0,∞)
(A1 = B1 = 0, A2 �= 0) or (A2 = B2 = 0, A1 �= 0) [0,∞)× (0,∞)
(A1 = C1 = 0, A2 �= 0) or (A2 = C2 = 0, A1 �= 0) (0,∞)× [0,∞)
A1 = B1 = 0, A2 = B2 = 0 [0,∞)× (0,∞)
A1 = C1 = 0, A2 = C2 = 0 (0,∞)× [0,∞)
A1 = C1 = 0, A2 = B2 = 0 [0,∞)× [0,∞)\(0, 0)
A1 = B1 = 0, A2 = C2 = 0 [0,∞)× [0,∞)
(A1 = 0, B1 �= 0, C1 �= 0) or (A2 = 0, B2 �= 0, C2 �= 0) [0,∞)× [0,∞)\(0, 0)
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3 Important definitions
In this section, we provide some key definitions which we will frequently refer to through-
out this paper. Let T be the map associated with system (), that is,

T(x, y) :=
(

α + βx + γy
A + Bx +Cy

,
α + βx + γy
A + Bx +Cy

)
:=

(
T(x, y),T(x, y)

)
.

Let T and T be the coordinate functions of T , that is,

T(x, y) =
α + βx + γy
A + Bx +Cy

and T(x, y) =
α + βx + γy
A + Bx +Cy

.

Then system () can be written as(
xn+
yn+

)
=

(
T(xn, yn)
T(xn, yn)

)
= T

(
xn
yn

)
. ()

Definition  For a given choice of parameters in P , we say that system () is bounded if
the associated map T is bounded, i.e., if there exist nonnegative constants c, C, c and
C such that

c ≤ T(x, y)≤ C,

c ≤ T(x, y)≤ C.

Definition  The south-east order 	se on R
 is defined as follows:

(x, y) 	se (x, y) ⇐⇒ x < x and y > y.

Definition  A continuous map T : R → R
 is said to be competitive if it is monotone

with respect to the south-east ordering 	se.

Remark One can easily check that the Jacobian of a competitive map satisfies the sign
structure

( + –
– +

)
.

Definition  The equilibrium curves E and E of system () are the sets

E :=
{
(x, y) ∈R

 : x = T(x, y)
}
, E :=

{
(x, y) ∈R

 : y = T(x, y)
}
.

Note that E and E are loci of conic sections:

E : Bx +Cxy + (A – β)x – γy – α = ,

E : Cy + Bxy + (A – γ)y – βx – α = .
()

It follows from analytic geometry that if the discriminants of E and E are respectively
nonzero, that is, if the parameters of E and E respectively satisfy the following two con-
ditions, then the equilibrium curves E and E must respectively be irreducible conics
(parabolas, hyperbolas or ellipses):

http://www.advancesindifferenceequations.com/content/2013/1/292
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i. C(Cα –Aγ) + γ(Cβ – Bγ) �= ,
ii. B(Bα –Aβ) + β(Bγ –Cβ) �= .

Moreover, since C ≥  and B ≥ , E and E cannot be ellipses. In this paper, we con-
sider three separate cases, namely, the cases where (i) both E and E are reducible conics,
(ii) exactly one of E and E is a reducible conic, and (iii) both E and E are irreducible
conics.

4 Bounded cases of system (1)
In this section, we look at bounded cases of system (), that is, special cases of system ()
for which all solutions with nonnegative/positive initial conditions are bounded. These
cases have the property that their associated maps are bounded. They are obtained by
setting one or more of the twelve nonnegative parameters α, β, γ, A, B, C, α, β, γ,
A, B and C to zero in system () and have been studied in great detail by Ladas et al.
in, for example, [, ] and [], to name a few. For a more complete list of important
work done in analyzing the boundedness of a large number of special cases of system () by
Ladas et al., the reader is referred to references [–, , –]. Such systems have been
referred to as having boundedness characterization (B, B) in these papers. In particular,
explicit formulas for many of these systems were given in Appendices  and  of reference
[].
In this section, we show that there are at least  bounded nonlinear cases of system ().

We also give explicit formulas for all of these  cases. This result is important because
it shows that there are enough bounded nonlinear cases of system () (at least  cases!)
to warrant the study conducted in this paper. It is stated next. Denote the expressions on
the RHS of system () by T(xn, yn) and T(xn, yn) respectively as shown below:

xn+ = T(xn, yn),

yn+ = T(xn, yn).
()

Theorem  If the functions T(xn, yn) and T(xn, yn) in the RHS of () have one of the
formulas given below, then system () is bounded:
(a) T(xn, yn) and T(xn, yn) are given by one of the formulas in the right-hand column of

Table .
(b) T(xn, yn) is given by one of the formulas in the right-hand column of Table  and

T(xn, yn) is given by one of the following formulas:

βxn
A

,
α + βxn

A
,

βxn
A +Cyn

,
α + βxn
A +Cyn

,

βxn + γyn
A +Cyn

,
α + βxn + γyn

A +Cyn
.

()

(c) T(xn, yn) is given by one of the formulas in the right-hand column of Table  and
T(xn, yn) is given by one of the following formulas:

γyn
A

,
α + γyn

A
,

γyn
A + Bxn

,
α + γyn
A + Bxn

,

βxn + γyn
A + Bxn

,
α + βxn + γyn

A + Bxn
.

()
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Table 2 Some formulas for T1(xn,yn) and T2(xn,yn) for which system (1) is bounded

Number of terms in the
denominator of Ti(xn,yn),
i = 1,2

Formula for the
denominator of Ti(xn,yn),
i = 1,2

Formula for Ti(xn,yn), i = 1,2, for
which system (1) is bounded

1. Three Ai + Bixn + Ciyn
αi

Ai+Bixn+Ciyn
, βi xn
Ai+Bixn+Ciyn

, γi yn
Ai+Bixn+Ciyn

,
αi+βi xn

Ai+Bixn+Ciyn
, αi+γi yn
Ai+Bixn+Ciyn

, βi xn+γi yn
Ai+Bixn+Ciyn

,
αi+βi xn+γi yn
Ai+Bixn+Ciyn

2. Two Bixn + Ciyn
βi xn+γi yn
Bixn+Ciyn

, βi xn
Bixn+Ciyn

, γi yn
Bixn+Ciyn

Ai + Bixn
αi

Ai+Bixn
, βi xn
Ai+Bixn

, αi+βi xn
Ai+Bixn

Ai + Ciyn
αi

Ai+Ciyn
, γi yn
Ai+Ciyn

, αi+γi yn
Ai+Ciyn

3. One Ai αi/Ai
Bixn βi/Bi
Ciyn γi/Ci

Thus there are at least  bounded cases of system () of which  cases are nonlinear.

Proof To see the proof of part (a) of the theorem, observe that if T(xn, yn) has the first
formula in the RHS of Table  case  with i = , then one can respectively choose lower
and upper bounds L and U for T(xn, yn) as follows:

L :=  <
α

A + Bxn +Cyn
<

α( + xn + yn)
min{A,B,C}( + xn + yn)

=
α

min{A,B,C} =: U.

This idea extends to the other formulas in case  as well. For the last formula in case , one
can do even better with the choice of bounds as shown below:

L :=
min{α,β,γ}
max{A,B,C} <

α + βxn + γyn
A + Bxn +Cyn

<
max{α,β,γ}
min{A,B,C} =: U.

A similar idea can be used to find bounds for the formulas in case  of Table . In case ,
the bounds are trivial since the formulas are constant to begin with. Moreover, if T(xn, yn)
has one of the formulas in Table  with i = , then one can find lower and upper boundsL

and U for it in the same manner as before. In addition, if T(xn, yn) has the first formula
in (), then L and U can be chosen as follows:

L :=
βL

A
<

βxn
A

<
βU

A
=: U.

One can similarly find L and U for the second case in (). In the third case, one can
choose

L :=  <
βxn

A +Cyn
<

βU

A
=: U.

The fourth case in () is similar. In the fifth case, one can choose

L :=
min{βL,γ}
max{A,C} <

βL + γyn
A +Cyn

<
βxn + γyn
A +Cyn

<
βU + γyn
A +Cyn

<
max{βU,γ}
min{A,C} =: U.
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The bounds for the last case in () can be found in a similar manner. The formulas in ()
are almost identical to the formulas in () withA, β and xn respectively replaced byA, γ
and yn. Hence their lower and upper boundsL and U can be found in a similar fashion as
in (). It follows from the previous discussion that there are  +  +  +  +  =  bounded
formulas for T(xn, yn) and another  bounded formulas for T(xn, yn) in cases (i)-(iv) of
Table  of part (a). In all, there are ×  =  bounded cases of system  in part (a) and
× =  bounded cases each in parts (b) and (c). This gives a total of +() = 
bounded cases of system  from parts (a), (b) and (c). Moreover, there are  ×  =  ways
to pair T(xn, yn) and T(xn, yn) so that both of them are constant in the RHS of (): three
choices for T(xn, yn) from Table  case  when i =  combined with three choices for
T(xn, yn) from Table  case  when i = . In addition, the first two formulas in both parts
(b) and (c) of the theorem are linear. They can be combined to give ×  =  cases where
T(xn, yn) and T(xn, yn) are both linear in the RHS of (). Finally, there are ×  =  ways
each to respectively combine the two linear formulas in parts (b) and (c) with those in
Table  case  so that the RHS of () is a combination of a linear formula and a constant
formula. This gives a total of  +  =  cases. To conclude, there are  +  +  =  linear
or constant cases out of the  bounded cases we originally identified above, which leaves
us with  –  =  bounded nonlinear cases of system (). �

The goal of this paper is to give a complete qualitative description of the global behav-
ior of solutions to all bounded nonlinear cases of system () including the  bounded
nonlinear cases mentioned in Theorem  above.

5 Regions of coordinatewisemonotonicity for themap T
When both equilibrium curves are irreducible conics, the map T(x, y) associated to
bounded system () is not coordinatewise monotone throughout its bounded domain of
definition. In this subsection, we will identify regions of coordinatewise monotonicity of
the map T(x, y). These regions will play a crucial role in determining the global behavior
of solutions to system () when both equilibrium curves are irreducible conics.

Lemma  The following statements are true:
(i) If Bγ –Cβ = , then the partial derivatives of the functions T(x, y) are continuous

on (,∞) and have constant sign on the set B.
(ii) If Bγ –Cβ = , then the partial derivatives of the functions T(x, y) are

continuous on (,∞) and have constant sign on the set B.

Proof We give the proof of part (i). The proof of part (ii) is similar and we skip it. Note
that by hypotheses (), B + C > . First, suppose B �=  and C �= . Solving for γ

in Bγ – Cβ =  and substituting in ∂
∂xT(x, y) and ∂

∂yT(x, y), we get that ∂
∂xT(x, y) =

– Bα–Aβ
(A+Bx+Cy)

and ∂
∂yT(x, y) = – C(Bα–Aβ)

B(A+Bx+Cy)
. When B =  and C �= , the hypothe-

sis implies that β = . In this case, DT(x, y) =  and DT(x, y) = –C(Bα–Aβ)
B(A+Cy)

. Finally,
when B �=  and C = , one must have γ =  and hence DT(x, y) = –Bα–Aβ

(A+Bx)
and

DT(x, y) = . Clearly, in all three cases the partial derivatives of T(x, y) have constant
sign on the set B. �

We will need the following elementary result, which is given here without a proof.
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Lemma Suppose Biγi–Ciβi �=  for i = , .The functions Ti(x, y), i = , , have continuous
partial derivatives on (,∞), and

i. DTi(x, y) =  if and only if y = –Biαi–Aiβi
Biγi–Ciβi

, and DTi(x, y) >  if and only if
(Ciβi – Biγi)y > Biαi –Aiβi.

ii. DTi(x, y) =  if and only if x = Ciαi–Aiγi
Biγi–Ciβi

, and DTi(x, y) >  if and only if
(Biγi –Ciβi)x > Ciαi –Aiγi.

For the rest of this paper, we will need to refer to the relative positions of Ki and Li where
the partial derivatives of Ti(x, y) change sign for i = , . The explicit formulas for Ki and
Li for i = ,  are given in the following definition. Their relative positions according to
different parameter regions are shown in the Appendix for convenience.

Definition  If Bγ –Cβ �=  and Bγ –Cβ �= , set

K :=
Cα –Aγ

Bγ –Cβ
, L := –

Bα –Aβ

Bγ –Cβ
,

K :=
Cα –Aγ

Bγ –Cβ
, L := –

Bα –Aβ

Bγ –Cβ
.

Lemma  The following statements are true:
(i) K ∈ [,∞)  if and only if L /∈ [,∞) ;
(ii) K ∈ [,∞)  if and only if L /∈ [,∞) .

Proof We give the proof of part (i). The proof of part (ii) is similar and we skip it. Suppose
K ∈ [,∞)  and L ∈ [,∞) . Then the parameters α, β, γ, A, B, C, α, β, γ, A,
B and C must satisfy one of the following:
(a) Bγ –Cβ > , Bα –Aβ < , Cα –Aγ ≥ ;
(b) Bγ –Cβ < , Bα –Aβ ≥ , Cα –Aγ < .

Note thatA, B andC must be strictly positive in this case in order to avoid contradicting
the inequalities in (a) and (b). Hence one can respectively rewrite the inequalities in (a)
and (b) as

α

A
≥ γ

C
>

β

B
>

α

A
and

α

A
≥ β

B
>

γ

C
>

α

A
,

giving a contradiction. �

6 When both E1 and E2 are reducible conics
In this section, we discuss global behavior of solutions when both equilibrium curves E

and E are reducible conics, that is, both E and E are pairs of parallel, perpendicular or
transversal (non-perpendicular) lines. In order for this to be true, both E and E must
have one of the forms given below:

E :

⎧⎪⎨⎪⎩
(a) Bx + (A – β)x – α = , where B > ,C = γ = ,
(b) x(Cy +A – β) = , where C > ,α = γ = ,B = ,
(c) x(Bx +Cy +A – β) = , where C > ,α = γ = ,B > ,

E :

⎧⎪⎨⎪⎩
(a) Cy + (A – γ)y – α = , where C > ,B = β = ,
(b) y(Bx +A – γ) = , where B > ,α = β = ,C = ,
(c) y(Cy + Bx +A – γ) = , where B > ,α = β = ,C > .

()
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Remark The missing parameters in the equations in () are assumed to be nonnegative.
Also note that:

(i) In cases (a), E and E each belong to a pair of parallel lines. The corresponding
members of system () have the forms

xn+ =
α + βxn
A + Bxn

, yn+ =
α + γyn
A +Cyn

, where
C = γ = 
B = β = 

}
.

(ii) In cases (b), E and E each belong to a pair of perpendicular lines. The
corresponding members of system () look like

xn+ =
βxn

A +Cyn
, yn+ =

γyn
A + Bxn

, where
C > ,α = γ = ,B = 
B > ,α = β = ,C = 

}
.

(iii) In cases (c), E and E belong to a pair of non-perpendicular transversal lines each.
The corresponding members of system () have the forms

xn+ =
βxn

A + Bxn +Cyn
, yn+ =

γyn
A + Bxn +Cyn

,

where
C > ,α = γ = ,B > 
B > ,α = β = ,C > 

}
.

Note that the first equation in (i) involving xn+ actually consists of six separate equations
corresponding to three cases each for Ai �=  and Ai = . These three cases are: (a) α = ,
β �= , (b) α �= , β =  and (c) α �= , β �= . The same is true for the second equation in
(i) involving yn+. Similarly, the two equations in (ii) each consist of two separate equations,
namely, the one with Ai �=  and the one with Ai =  for i = , . The same is true of (iii).
Thus this section establishes global behavior of solutions of system () when itsmembers

are combinations of any of the  +  +  =  forms for xn+ with any of the ten forms for
yn+ given in (i)-(iii) of the last remark. This gives rise to  explicit planar systems of first-
order rational difference equations with positive parameters. It is a direct consequence of
Table  in Theorem  that the equations in (i) and (iii) are bounded while the equations
in (ii) are unbounded. Thus there are a total of ( + ) × ( + ) =  bounded systems
out of the  systems. Moreover, if both members of () have the forms given in (iii) and,
in addition, A >  and A > , then the resulting system is the well-known Leslie-Gower
model from theoretical ecology whose global dynamics was analyzed by Cushing et al. in
[]. The main theorem of this section is the following.

Theorem  If system () is bounded and if both its equilibrium curves E and E are re-
ducible conics, that is, if

i. C(Cα –Aγ) + γ(Cβ – Bγ) = , and
ii. B(Bα –Aβ) + β(Bγ –Cβ) = ,

then it has at least one and at most four equilibria. Every solution converges to an equilib-
rium.

We discuss the proof of Theorem  in Section .. But first we establish the number of
nonnegative equilibria of system () when both its equilibrium curves are reducible conics.
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6.1 Number of nonnegative equilibria
The main theorem of this subsection is the following.

Theorem  If system () is bounded and satisfies the hypotheses of Theorem , then it has
at least one and at most four equilibria in [,∞) .Moreover,
(a) If there exists one equilibrium, then it must be (, ) or an interior equilibrium.
(b) If there exist two equilibria, then they must include an axis equilibrium.
(c) If there exist three equilibria, then they must consist of (, ) and an equilibrium on

each axis.
(d) If there exist four equilibria, then they must consist of (, ), an equilibrium on each

axis and an interior equilibrium.

Proof It follows from the discussion preceding this subsection that E must have one of
the following forms:
(a) Bx + (A – β)x – α = , where C = γ = ,
(b) x(Cy +A – β) = , where C > , α = γ = , B = ,
(c) x(Bx +Cy +A – β) = , where C > , α = γ = , B > .

Case (a) represents a pair of vertical lines. Case (b) represents a pair of perpendicular
lines with x =  as one of them. This case is unbounded by the discussion in the previous
section. Case (c) represents a pair consisting of the vertical line x =  and a line with a
negative slope in the xy-plane. Similarly, the reducible conic E must consist of a pair of
horizontal lines, a pair of perpendicular lines with x =  or y =  as a member or a pair
consisting of the horizontal line y =  and a line with a negative slope in the xy-plane.
If none of the four lines coincide, then clearly they must intersect in at least one and at
most four points in [,∞) . Some possibilities are shown in Figure . If one or more lines
representing E coincide with one or more lines representing E, then E and E must
intersect in infinitely many points in [,∞) . �

Next we discuss the global behavior of solutions to system () when it satisfies the hy-
potheses of Theorem .

6.2 Global behavior of solutions
In this section, we present the proof of Theorem . In order to do so in a manageable way,
we break up the statement of Theorem into six smaller theorems based uponwhether the
equilibrium curves of system () consist of two parallel lines, two perpendicular lines, two
transversal lines or some mix of the three (refer to cases (i)-(iii) at the start of Section ).

Figure 1 The dots represent equilibria when both E1 and E2 are reducible conics. In the third case, it is
possible to have infinitely many equilibria (when the transversal lines coincide).
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In particular, we give the explicit proof for the case where both equilibrium curves are
parallel lines and state the remaining five theorems, Theorems -, in the Appendix at
the end of this paper to avoid unnecessary repetition.
First, we present a definition and a lemma which will be required for the proof of the

theorem mentioned above.

Definition  Recall the definition of equilibrium curves from Section :

E =
{
(x, y) ∈R

 : x = f(x, y)
}
,

E =
{
(x, y) ∈ R

 : y = f(x, y)
}
.

Consider the map T = (f, f) associated to system () restricted to the set (,∞). Set

R(–,–) :=
{
(x, y) ∈ (,∞) : f(x, y) < x, f(x, y) < y

}
,

R(–,+) :=
{
(x, y) ∈ (,∞) : f(x, y) < x, f(x, y) > y

}
,

R(+,–) :=
{
(x, y) ∈ (,∞) : f(x, y) > x, f(x, y) < y

}
,

R(+,+) :=
{
(x, y) ∈ (,∞) : f(x, y) > x, f(x, y) > y

}
.

Let (x, y) be an equilibrium of system (). Denote by Q�, � = , , ,  the four regions

Q(x, y) :=
{
(x, y) ∈ (,∞) : x < x, y < y

}
,

Q(x, y) :=
{
(x, y) ∈ (,∞) : x > x, y < y

}
,

Q(x, y) :=
{
(x, y) ∈ (,∞) : x > x, y > y

}
,

Q(x, y) :=
{
(x, y) ∈ (,∞) : x < x, y > y

}
.

Lemma  If the map T : [,∞)  → [,∞) is competitive and possesses an interior equi-
librium (x, y) which satisfies

Q(x, y) = R(–,–), Q(x, y) = R(+,–),

Q(x, y) = R(+,+), Q(x, y) = R(–,+),
()

then (x, y) is globally asymptotically stable.

Proof By the hypotheses and the fact that any competitivemapT(x, y) preserves the south-
east order 	se, we have

(x, y) ∈Q(x, y) �⇒ (x, y)	se T(x, y) 	se T(x, y) 	se · · · 	se Tn(x, y)

	se · · · 	se (x, y),

(x, y) ∈Q(x, y) �⇒ (x, y) 	se · · · 	se Tn(x, y) 	se · · · 	se T(x, y)

	se T(x, y)	se (x, y).
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In both cases, it follows that Tn(x, y) → (x, y). Also, note that since T is competitive in
(,∞), and hence in Q(x, y) = [x,U]× [y,U], one has

min
(x,y)∈Q(x,y)

f(x, y) = f(x,U) and min
(x,y)∈Q(x,y)

f(x, y) = f(U, y). ()

Since the point (x,U) lies on the line f(x, y) = x, one has f(x,U) = x. Similarly, the point
(U, y) lies on the line f(x, y) = y and hence f(U, y) = y. It follows from this and () that
Q(x, y) is invariant. By a similar reasoning, one can show that Q(x, y) is invariant. This
and hypotheses () imply that

(x, y) ∈Q(x, y) �⇒ (x, y) < · · · < Tn(x, y) < · · · < T(x, y) < T(x, y) < (x, y),

(x, y) ∈Q(x, y) �⇒ (x, y) < T(x, y) < T(x, y) < · · · < Tn(x, y) < · · · < (x, y).

Hence we have Tn(x, y) → (x, y) in both these cases. �

Our next theorem gives the global behavior of solutions when both equilibrium curves
E and E of system () are pairs of parallel lines. It is as follows.

Theorem  If the graphs of E and E are the pairs of parallel lines

E =
{
(x, y) ∈ R

 : Bx + (A – β)x – α = 
}
,

E =
{
(x, y) ∈R

 : Cy + (A – γ)y – α = 
}
,

()

then the nonnegative equilibria of system () and their basins of attraction must satisfy the
following:

(i) If α �=  and α �= , then the unique equilibrium E is globally asymptotically stable.
(ii) If α =  and α �= , then

• If β –A ≤ , then the unique equilibrium E is globally asymptotically stable.
• If β –A > , then E is a saddle point with the nonnegative y-axis as its stable
manifold. E is LAS and attracts all solutions with initial conditions in (,∞)

or on the positive x-axis.
(iii) If α �=  and α = , then

• If γ –A ≤ , then the unique equilibrium E is globally asymptotically stable.
• If γ –A > , then E is a saddle point with the nonnegative x-axis as its stable
manifold. E is LAS and attracts all solutions with initial conditions in (,∞)

or on the positive y-axis.
(iv) If α =  and α = , then the nonnegative equilibria of system () and their basins of

attraction must satisfy Table .

Proof First, suppose α �=  and α �=  in (). Then E and E are given by the lines

x =
β –A +

√
(β –A) + αB

B
and

y =
γ –A +

√
(γ –A) + αC

C
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Table 3 Global dynamics for α1 = 0 and α2 = 0 when E1 and E2 are pairs of parallel lines

Parameter region E0 E1 E2 E3

β1 – A1 < 0
γ2 – A2 < 0

G.A.S.
Basin of attraction:
[0,∞) 2

– – –

β1 – A1 > 0
γ2 – A2 ≤ 0

Saddle
Its stable manifold:
Positive y-axis

L.A.S.
Basin of attraction:
(0,∞)2 and positive
x-axis

– –

β1 – A1 ≤ 0
γ2 – A2 > 0

Saddle
Its stable manifold:
Positive x-axis

– L.A.S.
Basin of attraction:
(0,∞)2 and positive
y-axis

–

β1 – A1 > 0
γ2 – A2 > 0

Repeller Saddle
Its stable manifold:
Positive x-axis

Saddle
Its stable manifold:
Positive y-axis

L.A.S.
Basin of attraction:
(0,∞)2

in [,∞) . Clearly, they intersect at the unique equilibrium

(x, y) =
(

β –A +
√
(β –A) + αB

B
,
γ –A +

√
(γ –A) + αC

C

)

of system () which lies in (,∞). In this case, it is easy to check that the map T(x, y)
is competitive and hence the unique equilibrium (x, y) is a global attractor by a result of
Kulenović andMerino in []. Next, suppose α =  and α �=  in (). Then E and E are
given by the lines

E : � : x = , � : x =
β –A

B
,

E : y =
γ –A +

√
(γ –A) + αC

C
.

It is once again easy to check that themap T(x, y) is competitive in this case. If β –A > ,

then �̂, �̂ ∈ [,∞)  and there exist two equilibria E = (, γ–A+
√

(γ–A)+αC
C

) and E =

( β–A
B

, γ–A+
√

(γ–A)+αC
C

). By Lemma , E attracts every solutionwith initial condition
in (,∞) or on the positive x-axis. Moreover, since T(x, y) is competitive, it is easy to
check that

(, )	se T(, )	se · · · 	se Tn(, )	se Tn(, y) 	se E,

E 	se Tn(, y) 	se Tn(,U) 	se · · · 	se T(,U)	se (,U).

Hence we have Tn(, )→ E and Tn(,U)→ E. As a result, Tn(, y) → E for  < y <
U. Thus E is a saddle equilibrium with the nonnegative y-axis as its stable manifold.
If β – A ≤ , then �̂ /∈ (,∞) and hence E is the only equilibrium in [,∞) . Note

that in this case, Q(E) =R(–,–) and Q(E) =R(–,+). Hence, by Lemma , E attracts
all solutions with initial conditions in (,∞). The proof of global attractivity of E for all
solutions with initial conditions on the nonnegative y-axis is similar to the previous case.
Finally, note that all solutions with initial conditions on the positive x-axis enter the region
(,∞) under a single application of the map T .
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The proof of the case α �=  and α =  in () is similar to the previous case and we skip
it. Finally, suppose α =  and α =  in (). In this case, E and E are given by the lines

E : � : x = , � : x =
β –A

B
,

E : �̂ : y = , �̂ : y =
γ –A

C
.

If β –A ≤  and γ –A ≤ , then �, �̂ �⊂ (,∞) and the unique equilibrium E = (, )
is globally asymptotically stable by Lemma .
If β – A ≤  and γ – A > , then � �⊂ (,∞) and �̂ ⊂ (,∞). Hence E and

E = (, γ–A
C

) are the only equilibria present. Note that in this case, Q(E) =R(–,–) and
Q(E) =R(–,+). Also, the dynamics of solutions with initial conditions along the positive
x- and y-axes can be determined in the same way as in the proof of the case α =  and
α �= . The result follows from this and Lemma .
If β –A >  and γ –A ≤ , then � ⊂ (,∞) and �̂ �⊂ (,∞). Hence the only equi-

libria present are E and E = ( β–A
B

, ). This case is symmetric to the previous case and
has an almost identical proof.
Finally, if β –A >  and γ –A > , then �, �̂ ⊂ (,∞) and hence all four equilibria

E, E, E and E = ( β–A
B

, γ–A
C

) are present. In this case, global attractivity of E in (,∞)

is guaranteed by Lemma . The proofs of the facts that E, E are saddle equilibria with the
x- and y-axes as their stablemanifolds, respectively, and that E is a repeller follow directly
from analyzing the dynamics of solutions with initial conditions along the positive x- and
y-axes as shown in the proof of the case α =  and α �= . The four cases are shown in
Figure . �

Figure 2 The figures represent attractivity of the equilibria of system (1) when (clockwise):
(a) β1 – A1 ≤ 0 and γ2 – A2 ≤ 0, (b) β1 – A1 ≤ 0 and γ2 – A2 > 0, (c) β1 – A1 > 0 and γ2 – A2 ≤ 0, and
(d) β1 – A1 > 0 and γ2 – A2 > 0. The dark and light lines respectively represent equilibrium curves E1 and E2.
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7 When exactly one of E1 and E2 is an irreducible conic
In this section, we look at the case where exactly one of the equilibrium curves E and E

of system () is an irreducible conic and the map T associated to system () is bounded.
Note that this case corresponds to E and E being combinations of pairs of parallel lines,
pairs of transversal non-perpendicular lines, parabolas and hyperbolas. The cases where
E or E is a pair of perpendicular lines are unbounded and hence not of interest to us in
this paper. Thus there are × ( + )× ( – ) =  bounded members and the rest are
unbounded. The next theorem is the main theorem of this section and is as follows.

Theorem  If system () is bounded and if exactly one of its equilibrium curves E and E

is a reducible conic, that is, if either
i. C(Cα –Aγ) + γ(Cβ – Bγ) = , or
ii. B(Bα –Aβ) + β(Bγ –Cβ) = ,

then system () has at least one and at most two equilibria. Every solution converges to an
equilibrium.

The proof of the number of equilibria is given in the next theorem. To see that every
solution converges to an equilibrium, observe that in this case, exactly one member of
system () has one of the formulas given in (i)-(iii) of the previous section. Hence ex-
actly one of the coordinates of the map T(x, y) is monotone. Thus one can use a mix of
the techniques already introduced in the previous section for reducible conics along with
some new techniques that will be introduced in the next section for irreducible conics to
prove global convergence results for this case. We skip the proofs to avoid unnecessary
repetition.

Theorem  If system () is bounded and satisfies the hypotheses of Theorem , then it has
at least one and at most two equilibria in [,∞) .Moreover,
(a) If there exists one equilibrium, then it may be an axis equilibrium or an interior

equilibrium.
(b) If there exist two equilibria, then they must include an axis equilibrium and an

interior equilibrium.
(c) The set of equilibrium points must be linearly ordered by 	ne.

Proof First, suppose that E is an irreducible conic and E is a reducible conic. Then our
discussion at the start of this section implies that E must have one of the following forms:
(a) Bx + (A – β)x – γy – α = , where C = , γ > ;
(b) Bx +Cxy + (A – β)x – γy – α = , where C > , α + γ > .

In the first case, E represents a parabola that opens upwards and has x-intercepts of op-
posite signs if α > , and a zero x-intercept if α = . In the second case, E represents
a hyperbola which has x-intercepts of opposite signs if α > , and a zero x-intercept if
α = . This and the asymptotes of E guarantee that its branch in [,∞)  is monotone.
Clearly, the pair of horizontal lines representing E must intersect E in at least one and at
most two points in [,∞) . Some possibilities are shown in Figure . The monotonicity
of the graph of E guarantees that the set of equilibria is linearly ordered by	ne. The proof
for the case where E is reducible and E is nonreducible is similar and we skip it. �
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Figure 3 The dots represent equilibria when E1 is an irreducible conic and E2 is a reducible conic.

8 When both E1 and E2 are irreducible conics
The main theorem of this section is the following.

Theorem  If system () is bounded and if both its equilibrium curves E and E are irre-
ducible conics, that is, if

i. C(Cα –Aγ) + γ(Cβ – Bγ) �= , and
ii. B(Bα –Aβ) + β(Bγ –Cβ) �= ,

then system () has at least one and at most three equilibria. Every solution converges to an
equilibrium or to a unique minimal period-two solution which occurs as the intersection of
two elliptic curves.

We present the proof of Theorem  at the end of Section .. But first we present the
number of nonnegative equilibria, local stability of equilibria, existence and uniqueness
of minimal period-two solutions, and the global behavior of solutions to system () in
Sections .-., respectively.

8.1 Number of nonnegative equilibria
We start this section by presenting a lemma which will help us establish bounds on the
number of nonnegative equilibria of system () when both its equilibrium curves are irre-
ducible conics.

Lemma  If the equilibrium curves E and E are irreducible conics, then all branches of
the sets

E =
{
(x, y) ∈ R

 : Bx +Cxy + (A – β)x – γy – α = 
}
,

E =
{
(x, y) ∈R

 : Cy + Bxy + (A – γ)y – βx – α = 
}

are the graphs of monotone functions of one variable on an invariant attracting set B :=
[m,M]× [m,M] for system (). In particular,

(i) If C =  and B = , then the graphs of E and E are parabolas with positive slopes
in B.

(ii) If C >  or B > , then the graphs of E and E are respectively hyperbolas whose
slopes in B have signs as given in the last two columns of Table . The expression ‘+
or –’ implies an exclusive or.

Proof First, we look at the proof of part (i). It is easy to see that whenC =  and B = , the
equilibrium curves E and E are parabolas opening upwards and to the right, respectively.
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Table 4 Signs of slopes of E1 and E2 inB when C1 > 0 or B2 > 0

Biγi – Ciβi , i = 1,2 Biαi – Aiβi , i = 1,2 Ciαi – Aiγi , i = 1,2 Slope of E1 Slope of E2
(i) = 0 > 0 > 0 – +
(ii) = 0 < 0 < 0 + –
(iii) > 0 ≥ 0 ≥ 0 + or – –
(iv) > 0 ≥ 0 < 0 + –
(v) > 0 < 0 < 0 + + or –
(vi) < 0 ≥ 0 ≥ 0 – + or –
(vii) < 0 < 0 ≥ 0 – +
(viii) < 0 < 0 < 0 + or – +

Moreover, E must have x-intercepts of opposite signs if α >  and a zero x-intercept if
α = . Similarly,E must have y-intercepts of opposite signs if α >  and a zero y-intercept
if α = . Thus E and E must have positive slopes in [,∞)  and hence in the setB. Next,
we look at the proof of part (ii) where C >  or B > . We give the proof for the slopes
of E. The proof for the slopes of E is similar and we skip it. Note that E can be given
explicitly as a function of x:

E : y(x) =
–Bx + (β –A)x + α

Cx – γ
, x �= γ

C
.

Clearly, E has a vertical asymptote x = γ
C

and an oblique asymptote y = – B
C
x –

AC+Bγ–Cβ
C


with a negative slope. It also has x-intercepts of opposite signs when α > ,
and a zero x-intercept when α = . It follows from this that the branch of E which lies in
[,∞)  must either lie in the region x < γ

C
or in the region x > γ

C
but not both. Moreover,

it must be increasing in x for x < γ
C

and decreasing in x for x > γ
C
. The Appendix gives

that ∂T
∂y has constant sign which is opposite to that of ∂T

∂x in all cases except for cases (iii)
and (viii). In all such cases, observe that

∂T

∂y
>  �⇒ max

(x,y)∈B
T(x, y) = lim

y→∞
α + βx + γy
A + Bx +Cy

=
γ

C
,

∂T

∂y
<  �⇒ min

(x,y)∈B
T(x, y) = lim

y→∞
α + βx + γy
A + Bx +Cy

=
γ

C
.

Note that if (x, y) is an equilibrium of system (), then it satisfies x = T(x, y) and hence lies
on the curve E. Also,

min
(x,y)∈B

T(x, y) < x < max
(x,y)∈B

T(x, y).

It follows from this and the previous paragraph that if max(x,y)∈B T(x, y) = γ
C
, then x <

γ
C
. Hence E lies in the region x < γ

C
and is an increasing function of x. Similarly, if

min(x,y)∈B T(x, y) = γ
C
, then x > γ

C
. Hence E lies in the region x > γ

C
and is a decreas-

ing function of x. Next consider cases (iii) and (viii) which respectively correspond to the
parameter regions
(a) Bγ –Cβ > , Bα –Aβ ≥ , Cα –Aγ ≥ ,
(b) Bγ –Cβ < , Bα –Aβ < , Cα –Aγ < .

In case (iii), the signs of ∂T
∂x and ∂T

∂y are as shown in Figure .

http://www.advancesindifferenceequations.com/content/2013/1/292


Basu Advances in Difference Equations 2013, 2013:292 Page 20 of 39
http://www.advancesindifferenceequations.com/content/2013/1/292

Figure 4 The arrows indicate types of coordinatewise
monotonicity of T1(x,y) in case (iii).

First, suppose K < γ
C
. For all points (x, y) ∈ B with x < K,

minT(x, y) = lim
x→Ky→∞

α + βx + γy
A + Bx +Cy

=
γ

C
.

Moreover, for all points (x, y) ∈ B with x > K,

maxT(x, y) = lim
x→Ky→∞

α + βx + γy
A + Bx +Cy

=
γ

C
.

Since an equilibrium (x, y) of system () is a fixed point that lies on the curve E, it fol-
lows that x must satisfy K < x < γ

C
. Hence E must lie in the region x < γ

C
and must be

an increasing function of x. One can similarly argue that if K > γ
C
, then E must be a de-

creasing function of x. Note that the case K = γ
C

cannot exist. Indeed, if it did, then the
previous analysis would imply that the equilibrium (x, y) must lie on the line x = K = γ

C
.

But this is impossible since this line is a vertical asymptote for the curve E which contains
the point (x, y). In case (viii), one can use a similar proof to show that if K < γ

C
, then E is

a decreasing function of x and if K > γ
C
, then E is an increasing function of x. �

Corollary  The following statements are true.
i. The graph of E is a decreasing function of a single variable in B if and only if

∂
∂yT(x, y) < .

ii. The graph of E is a decreasing function of a single variable in B if and only if
∂
∂xT(x, y) < .

The next theorem establishes bounds on the number of nonnegative equilibria of sys-
tem ().

Theorem  If both E and E are irreducible conics, then system () has at least one and
at most three equilibria in [,∞) . In particular,
(a) If E or E is a parabola, then either there exists a unique interior equilibrium or

there exist two equilibria, namely, (, ) and an interior equilibrium which are
linearly ordered by 	ne.

(b) If both E and E are hyperbolas, then there exist between one and three equilibria all
of which are interior equilibria linearly ordered by 	se.

Proof From the proof of part (i) of Lemma , it follows that when E and E are parabolas,
their branches in [,∞)  must be increasing curves of opposite concavity, which guaran-
tees that theymust intersect at least once in [,∞) . In particular, if α = α = , then their
branches must intersect in (, ) and at an interior point of [,∞) . If E is a hyperbola,
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then note that E can be given explicitly as a function of x:

E : y(x) =
–Bx + (β –A)x + α

Cx – γ
, x �= γ

C
.

Clearly, E has a vertical asymptote x = γ
C

and an oblique asymptote y = – B
C
x –

AC+Bγ–Cβ
C


with a negative slope. It also has x-intercepts of opposite signs when α > 
and a zero x-intercept when α = . It follows from this that the branch of E which lies in
[,∞)  must lie either in the region x < γ

C
or in the region x > γ

C
but not both. Clearly, it

must be increasing in the former case and decreasing in the latter case. Similarly, if E is
a parabola, then one can show that it must lie either in the region y < β

B
or in the region

y > β
B

but not both. Also, it must be increasing in the former case and decreasing in the
latter case. It follows from this that if E is a parabola and E is a hyperbola or vice versa,
then the two must intersect in at most two points in [,∞)  including (, ) and an inte-
rior point. Moreover, if both E and E are hyperbolas such that one or both of them are
increasing in [,∞) , then the opposite signs of their slopes/concavities guarantee that
they must intersect in at most two points in [,∞)  including (, ) and an interior point.
Now suppose both E and E are hyperbolas with decreasing branches in [,∞) . It is

a consequence of Bézout’s theorem (Theorem ., Chapter III in []) that the hyperbolas
E and E given in () must intersect in at most four points. Thus system () must have at
most four equilibrium points. We claim that up to three of these four equilibrium points
must lie in B. To see this, denote with Q�(a,b), � = , , ,  the four regions Q(a,b) :=
{(x, y) ∈ R : a ≤ x,b ≤ y}, Q(a,b) := {(x, y) ∈ R : x ≤ a,b ≤ y}, Q(a,b) := {(x, y) ∈ R : x ≤
a, y≤ b},Q(a,b) := {(x, y) ∈ R : a ≤ x, y≤ b}. To prove the claim, it is enough to show that
Q( γ

C
, β
B
) contains at least one equilibrium of system (). Note that for C �= , E and E

can be given explicitly as functions of x:

E : y(x) =
–Bx –Ax + βx + α

Cx – γ
, x �= γ

C
,

E :

⎧⎨⎩y+(x) =
–A–Bx+γ+

√
(–A–Bx+γ)+C(α+xβ)

C
,

y–(x) =
–A–Bx+γ–

√
(–A–Bx+γ)+C(α+xβ)

C
.

Then

lim
x→–∞

(
y(x) – y–(x)

)
=∞ and lim

x→ γ
C

(
y(x) – y–(x)

)
= –∞. ()

One can conclude from () and the continuity of y(x), y–(x) that there exists c < γ
C

such
that y(c) = y–(c). Since x = γ

C
and y = β

B
is a horizontal asymptote of E, it follows from

the decreasing characters of y(x) and y–(x) that (c, y(c)) must lie in Q( γ
C
, β
B
). When

C = , one can show that the equalities in () are still true and the conclusion follows
from this. Some possible scenarios are shown in Figure . �

8.2 Local stability of equilibria
In this section, we establish local stability results for the nonnegative equilibria of system
() when both of its equilibrium curves E and E are irreducible conics. In particular,
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Figure 5 The dots represent equilibria when both E1 and E2 are irreducible conics.

we show that the local stability of the equilibria is determined by the slopes of E and E

at these equilibria. In Theorem , we present local stability results when both E and E

have negative slopes, and in Theorem , we do the same when at least one of them has a
positive slope. We start out by giving a preliminary result on the equilibrium curves (sets)
of system (). It is a generalization of Theorem  in [] and has weaker hypotheses than the
latter. It also extends the latter to include the complex eigenvalues case and will be useful
for proving Theorems  and .

Theorem  Let R be a subset ofR with a nonempty interior, and let T = (f , g) : R→ R be
a map of class Cp for some p≥ . Suppose that T has a fixed point (x, y) ∈ intR such that

a := fx(x, y), b := fy(x, y), c := gx(x, y), d := gy(x, y)

satisfy |a| <  and |d| < . Let E, E be the equilibrium sets

E :=
{
(x, y) : x = f (x, y)

}
and E :=

{
(x, y) : y = g(x, y)

}
. ()

Then
i. There exists a neighborhood I ⊂R of x and J ⊂R of y such that the sets E ∩ (I × J)
and E ∩ (I × J) are the graphs of class Cp functions y(x) and y(x) for x ∈ I .

ii. The eigenvalues λ and λ of the Jacobian matrix of T at (x, y) satisfy:
(a) If λ, λ are real and equal, then – < λ,λ < .
(b) If λ, λ are real and distinct with λ < λ, then – < λ and λ < . Furthermore,

b �=  and

sign( + λ) = sign( + a + d + ad – bc) ()

and

sign( – λ) =

{
– sign(y′

(x) – y′
(x)) if b < ,

sign(y′
(x) – y′

(x)) if b > .
()

(c) If λ and λ are complex numbers, then

λ = λ and –  < |λ| = |λ| < . ()
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Proof
i. The existence of I and J and of smooth functions y(x) and y(x) defined in I as in the
statement of the theorem is guaranteed by the hypotheses and the implicit function
theorem. Moreover, when fy(x, y) �= , one has

y′
(x) =

 – fx(x, y)
fy(x, y)

and y′
(x) =

gx(x, y)
 – gy(x, y)

, x ∈ I. ()

Note that fy(x, y) �=  since otherwise one would have fx(x, y) =  in () upon
rewriting the first expression as fy(x, y)y′

(x) =  – fx(x, y) and thus a := fx(x, y) = ,
contradicting one of the hypotheses of the theorem.

ii. The characteristic polynomial of the Jacobian of T ,

p(λ) = λ – (a + d)λ + (ad – bc), ()

has λ and λ as its roots. If λ = λ = λ, then the hypotheses – < a <  and – < d < 
and the sum-of-roots relation for quadratic functions applied to () imply

– < λ = a + d <  �⇒ – < λ < ,

which proves (a). Now, suppose λ, λ are real and distinct with λ < λ. Since
– < a + d = λ + λ < , the larger root λ must satisfy – < λ and the smaller root λ

must satisfy λ < . Moreover, the remark following () in part i gives that
b := fy(x, y) �= . To see the proof of (), note that in (), we have
p(–) =  + (a + d) + ad – bc = (– – λ)(– – λ). Since – < λ from above, it follows
that p(–) >  if and only if – – λ < , that is, if and only if  + λ > . Next note that
from (), we have

y′
(x) – y′

(x) =
 – a
b

–
c

 – d
=
 – (a + d) + ad – bc

b( – d)

=
p()

b( – d)
=
( – λ)( – λ)

b( – d)
. ()

The proof of () is a direct consequence of (), the inequality λ <  and the
hypothesis |d| < . Next suppose that λ, λ are complex numbers. Clearly, λ = λ in
this case. From (), we have

λ,λ =
a + d ± i

√
(a + d) – (ad – bc)


. ()

Note that a necessary condition for the discriminant to be negative is bc <  since it
can be rewritten as (a – d) + bc. It follows from this and the hypotheses |a| <  and
|d| <  that

|λ| = |λ| = a + d + bc


<
a + d


< . �

Corollary  If (y′
(x)–y′

(x))b > , then system () cannot possess any repelling fixed points.
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This is a direct consequence of Theorem part ii.(b) since it is clear from () that under
the given hypothesis,  > λ. Next, we give a complete description of the local behavior of
the equilibria of system (). Recall that the map T(x, y) = (T(x, y),T(x, y)) associated with
system () is

T(x, y) =
(

α + βx + γy
A + Bx +Cy

,
α + βx + γy
A + Bx +Cy

)
, (x, y) ∈ [,∞)× [,∞).

For future reference, we give the Jacobian matrix of T at (x, y):

JT (x, y) =

(
fx (x, y) fy (x, y)
fx (x, y) fy (x, y)

)

=

⎛⎝ –Bα+Aβ+Cβy–Bγy
(A+Bx+Cy)

–Cα+Aγ–Cβx+Bγx
(A+Bx+Cy)

–Bα+Aβ+Cβy–Bγy
(A+Bx+Cy)

–Cα+Aγ–Cβx+Bγx
(A+Bx+Cy)

⎞⎠ . ()

The next lemma gives a connection between the slopes of equilibrium curves E, E in
the invariant attracting box B and the signs of entries of the Jacobian in () evaluated at
an equilibrium point of ().

Lemma  The map T satisfies the hypotheses of Theorem .

Proof Set a := fx (x, y), b := fy (x, y), c := fx (x, y), d := fy (x, y). Implicit differentiation of the
equations defining E and E in () at (x, y) gives

y′
(x) =

 – a
b

and y′
(x) =

c
 – d

. ()

It is a direct consequence of Lemma  andCorollary  that a <  and d <  in (). Next note
that the fixed point (x, y) must satisfy T(x, y) = (x, y). Taking the difference in this equality
and solving for α and α in the numerators, we get

α = Bx +Ax +Cxy – βx – γy and α = Cy +Ay + Bxy – βx – γy. ()

Replacing α and α in the expressions for  + a and  + d by their equivalent expressions
from (), we get

 + a =
A +Cy + β

A + Bx +Cy
and  + d =

A + Bx + γ

A + Bx +Cy
,

which are clearly positive. It follows that – < a <  and – < d < . �

Theorem  If the graphs of both E and E are decreasing functions of a single variable
in the invariant attracting set B, then the following statements are true.

(i) System () has at least one and at most three equilibria in (,∞). The set of
equilibrium points is linearly ordered by 	se.

(ii) If system () has exactly one equilibrium in (,∞), then it is locally asymptotically
stable. If (, ) is an equilibrium, then it is a repeller.
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(iii) If system () has three distinct equilibria in (,∞), say (x�, y�), l = , . . . , , with
(x, y) 	se (x, y) 	se (x, y), then (x, y) and (x, y) are locally asymptotically
stable, while (x, y) is a saddle point.

(iv) If there exist exactly two equilibria in (,∞), then one is locally asymptotically
stable and the other is a nonhyperbolic equilibrium.

Proof First, observe that the eigenvalues λ, λ of T are roots of characteristic equation
() of the Jacobian matrix of T . A sufficient condition for the discriminant of () to be
positive is bc > , which is guaranteed by Corollary  and the hypothesis of the theorem.
It follows that λ, λ are real and distinct. Next, note that by () we have

 + (a + d) + ad – bc

=
(
AA +CAy + βA +ABx + Bβx +Cβx

+ γ(By – β) +Aγ +Cyγ + βγ
)

/
(
(A + Bx +Cy)(A + Bx +Cy)

)
,

which is positive by the inequality y > β
B

since (x, y) lies on the decreasing curve E with
a horizontal asymptote at y = β

B
. Hence, in (), λ > –. It follows from Theorem 

part ii.(b) that – < λ < .
The proofs of parts (i)-(iv) are given below.
(i) This is direct consequence of Theorem .
(ii) Solving for y and x respectively in the equations defining E and E in () gives that

the vertical asymptote of E is x = γ
C

and the horizontal asymptote of E is y = β
B
.

The asymptotes guarantee that in order to have exactly one intersection point (x, y)
in [,∞) , the slopes of the functions y(x) and y(x) of E and E, respectively,
must satisfy the relation y′

(x) < y′
(x). Theorem  part ii.(b) then gives that (x, y)

must be locally asymptotically stable.
(iii) The asymptotes guarantee that in order to have three intersection points in

[,∞) , the slopes of the functions y(x) and y(x) of E and E, respectively, must
satisfy the relations y′

(x) < y′
(x), y′

(x) > y′
(x) and y′

(x) < y′
(x). It then follows

from Theorem  part ii.(b) that (x, y) and (x, y)must be locally asymptotically
stable, while (x, y)must be a saddle point.

(iv) The asymptotes guarantee that in order to have two intersection points in [,∞) ,
the graphs of E and E must have exactly one transversal intersection point (x, y)
with y′

(x) < y′
(x). It follows that the remaining intersection point (x, y)must be

tangential in nature, with y′
(x) = y′

(x). Theorem  part ii.(b) then gives that
(x, y)must be locally asymptotically stable and (x, y)must be a nonhyperbolic
equilibrium. �

Theorem  If the graph of at least one of E and E is an increasing function of a single
variable in the invariant attracting set B, then the following statements are true.

(i) System () has a unique interior equilibrium (x, y) in [,∞) .
(ii) If the graph of exactly one of E and E is an increasing function of a single variable

in B, then (x, y) is locally asymptotically stable.
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(iii) If the graphs of both E and E are increasing functions of a single variable in B, then
(x, y) is either locally asymptotically stable or nonhyperbolic or a saddle point
equilibrium. In particular,
. If  + (a + d) + ad – bc > , then (x, y) is locally asymptotically stable.
. If  + (a + d) + ad – bc = , then (x, y) is a nonhyperbolic equilibrium.
. If  + (a + d) + ad – bc < , then (x, y) is a saddle point equilibrium.

Proof
(i) This follows directly from Theorem .
(ii) From the hypothesis and Corollary , it follows that bc <  in () and hence the

latter possesses real distinct roots. Theorem  part ii.(b) then gives that (x, y)must
be locally asymptotically stable.

(iii) From the hypothesis and Corollary , one must have b > , c >  and hence bc >  in
(). If the discriminant of the latter is negative or zero, then part ii.(a) and part ii.(c)
of Theorem  give that (x, y) is locally asymptotically stable. If the discriminant of
() is positive, then the hypothesis and the asymptotes of E and E guarantee that
y′
(x) > y′

(x) and hence  > λ in the second part of (). The rest of the proof
follows from Theorem  part ii.(b). �

8.3 Existence and uniqueness of minimal period-two solutions
Here we look at minimal period-two solutions of system (). In particular, we show that
if system () possesses a minimal period-two solution in the nonnegative quadrant, then
this minimal period-two solution must be unique. The main theorem of this section is as
follows.

Theorem System () possesses a uniqueminimal period-two solution inR
+ which exists

if and only if there are nomultiple equilibria.When theminimal period-two solution exists,
the unique equilibrium is a saddle point.

The proof of the theorem follows from the statements of Propositions  and  given
below. But first we present a lemma that gives important geometrical properties of the
minimal period-two solutions of system ().

Lemma Theminimal period-two points of system () are intersection points of decreasing
branches of elliptic curves in R


+. Moreover, each branch has at most one inflection point

in R

+.

Proof Note that period-two solutions of () must satisfy the equation T(x, y) = (x, y),
where (x, y) ∈ [,∞) . The latter on simplification gives rise to a system of equations hav-
ing the general form shown belowwhere the coefficients in the first equation are functions
of the parameters α, β, γ, A, B and C, and the coefficients in the second equation are
functions of the parameters α, β, γ, A, B and C.

E : Ax + Bxy +Cxy + Ex + Fxy +Gy +Hx + Iy + J = ,

E : B̃xy + C̃xy + D̃y + Ẽx + F̃xy + G̃y + H̃x + Ĩy + J̃ = .
()

The solution set of each equation in () belongs to an elliptic curve defined over the field
of reals R. To see that the branches of E and E are decreasing in R


+, observe that the
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Figure 6 Shapes of the elliptic curves E1 and E2.

two equations in () are respectively quadratic equations in y and x. Solving for y and
x respectively in these two equations, we get that the positive branches of the curves E
and E are graphs of injective functions of x and y, respectively. Hence they are either
increasing or decreasing in R


+. The proof of the first part of the lemma follows from this,

the observation that minimal period-two solutions are precisely the intersection points of
E and E and the fact from the last subsection that minimal period-two points of system
() are always ordered by the south-east ordering 	se. To see the proof of the second part,
note that a well-known property of elliptic curves says that any straight line joining two
inflection points on an elliptic curvemust contain a third one (see [–]). This property,
the decreasing natures of the two elliptic curves E and E and their respective vertical and
horizontal asymptotes guarantee the existence of at most one inflection point for each in
R


+. The shapes of E and E are shown in Figure . �

Proposition  System () has a unique minimal period-two solution in R

+. The minimal

period-two solution cannot coexist with multiple equilibria.

Proof From the statement of the previous lemma, it follows that one of two cases is pos-
sible: (i) at least one of the two elliptic curves E and E has an inflection point in R


+, or

(ii) none of the two elliptic curves E and E has inflection points in R

+. One can easily

see that in the first case, the two curves must intersect in at most three points in R

+. In

the second case, it is not hard to see that the existence of the fourth intersection point
either requires E to increase at some point or requires E to have an inflection point in
R


+. The first requirement contradicts the statement of the previous lemma and the second

requirement goes against the hypothesis of case (ii). The three possibilities are shown in
Figure . To see that minimal period-two solutions and multiple equilibria cannot coexist
in R


+, recall that a necessary condition for multiple equilibria to exist is that both equi-

librium curves of system () must be decreasing in nature. One can easily check that in
all parameter regions from the last subsection where minimal period-two solutions may
exist, one or both equilibrium curves are increasing in nature. �

Proposition  If system () possesses a minimal period-two solution inR

+, then its unique

equilibrium must be a saddle point.
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Figure 7 The dots represent minimal period-two solutions when (a) E2 has an inflection point,
(b) both E1 and E2 have inflection points, and (c) neither E1 nor E2 has an inflection point.

Proof We saw in Lemma  that the minimal period-two points of system () are intersec-
tion points of decreasing branches of the elliptic curves E and E in R


+. We also saw in

the last subsection that the two minimal period-two points, say P and P, and the unique
equilibrium (x, y) are ordered by the south-east ordering as follows: P 	se (x, y) 	se P.
Consider the open region enclosed by P, (x, y) and the decreasing elliptic curves E and
E. Let T(x, y) := (τ(x, y), τ(x, y)). Since E and E respectively have formulas τ(x, y) = x
and τ(x, y) = y, one must have τ(x, y) < x and τ(x, y) > y for (x, y) in this region. It follows
that T(x, y)	se (x, y) 	se (x, y) here. If T(x, y) escapes this region, then the proof is com-
plete. Otherwise, one can always keep iterating until either Tn(x, y)→ P or Tn(x, y) lies
outside the region for some n. �

8.4 Global behavior of solutions
In this section, we discuss global behavior of solutions to system () when both its equilib-
rium curves E and E are irreducible conics. Before presenting the main theorem of this
section, we define a nested invariant attracting set for system () which will be key to the
proof of this theorem.

Definition  Suppose that the bounded map T(x, y) = (T(x, y),T(x, y)) satisfies m ≤
T(x, y)≤M and m ≤ T(x, y)≤M. Define

Li :=min{Ti(x, y) : (x, y) ∈ [m,M]× [m,M]}
Ui :=max{Ti(x, y) : (x, y) ∈ [m,M]× [m,M]}

}
, i = , .

Remark Note that T([m,M]× [m,M]) ⊆ [L,U]× [L,U]⊆ [m,M]× [m,M].

The next lemma gives explicit formulas for L, U, L and U for different parameter
regions of system ().

Lemma  The formulas for L, U, L and U for different parameter regions are as shown
in Table .

Proof In case , it is easy to check that for i = , ∂T
∂x <  and ∂T

∂y <  for (x, y) ∈ B.
Since T(x, y) is nonincreasing in x and y on B, hence T(M,M) ≤ T(x, y) ≤ T(m,m).
Choose L = T(M,M) and U = T(m,m). One can similarly show that for i = ,
L = T(M,M) and U = T(m,m). The proof of case  is similar and we skip it. In
case , Definition  and Lemma  give that the signs of the partial derivatives of T(x, y)
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Table 5 Table of formulas forL1, U1,L2 and U2

Biγi – Ciβi , i = 1,2 Biαi – Aiβi , i = 1,2 Ciαi – Aiγi , i = 1,2 Li , i = 1,2 Ui , i = 1,2

1. = 0 > 0 > 0 Ti(M1,M2) Ti(m1,m2)
2. = 0 < 0 < 0 Ti(m1,m2) Ti(M1,M2)
3. > 0 ≥ 0 ≥ 0 Ti(M1,m2) Ti(m1,m2)
4. > 0 > 0 < 0 Ti(M1,m2) Ti(m1,M2)
5. > 0 < 0 < 0 Ti(m1,m2) Ti(m1,M2)
6. < 0 ≥ 0 ≥ 0 Ti(m1,M2) Ti(m1,m2)
7. < 0 < 0 ≥ 0 Ti(m1,M2) Ti(M1,m2)
8. < 0 < 0 < 0 Ti(m1,m2) Ti(M1,m2)

Figure 8 The arrows indicate types of coordinatewise
monotonicity of T1(x,y) in case 3.

are constant on the interior of each of the sets [m,K]× [m,M] and [K,M]× [m,M].
This is illustrated in Figure .
Then T(M,m) ≤ T(x, y) ≤ T(K,M). Similarly, T(x, y) is nonincreasing in both x

and y on [m,K]× [m,M] and hence T(K,M) ≤ T(x, y)≤ T(m,m). It follows from
these two observations that for (x, y) ∈ [m,M] × [m,M], one must have T(M,m) ≤
T(x, y) ≤ T(m,m). Choose L = T(M,m) and U = T(m,m). The proofs for the
remaining cases are similar and we skip them to avoid repetition. �

The next lemmawill be useful later on in this section for showing that a certain sequence
of nested invariant attracting rectangular sets cannot intersect in a vertical or a horizontal
line. They must either intersect in a point or in a limiting rectangular set.

Lemma  Suppose Biγi –Ciβi �=  for i = , . Consider the system of equations

m =L, M = U, m =L, M = U, ()

where L, U, L and U are given by Table  of Lemma . Then m = M if and only if
m =M.

Proof Suppose m =M in (). Using the formulas for L and U given in cases  and 
of Table , one gets upon subtracting and eliminating the denominators in (), then sub-
tracting the numerators that m =M. In case  of Table , clearly, m =M is a solution
of (). If m �=M, then subtracting and eliminating the denominators in () gives that
m andM are solutions of the quadratic

Ct + (A + BM – γ)t – α –Mβ

whose roots have opposite signs, giving a contradiction. Moreover, under the assumption
m =M, cases ,  and  of Table  reduce to cases ,  and , respectively, for i = . The
proof form =M is similar and we skip it. �
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Table 6 Positions of Ki and Li in the setB for various parameter regions

Case Biγi – Ciβi ,
i = 1,2

Biαi – Aiβi ,
i = 1,2

Ciαi – Aiγi ,
i = 1,2

Slope of E1 Slope of E2 The setB

(i) = 0 > 0 > 0 – +

(ii) = 0 < 0 < 0 + –

(iii) > 0 ≥ 0 ≥ 0 + or – –

(iv) > 0 ≥ 0 < 0 + –

(v) > 0 < 0 < 0 + + or –

(vi) < 0 ≥ 0 ≥ 0 – + or –

(vii) < 0 < 0 ≥ 0 – +

(viii) < 0 < 0 < 0 + or – +

Proof of Theorem  We consider five separate cases based on the relative positions of the
lines x = K, x = K, y = L and y = L in the invariant attracting box B. We saw in Section 
that these lines determine regions of coordinatewise monotonicity for the map T(x, y).
Also, note that by Lemma , K and L cannot lie in [,∞)  at the same time. Similarly,
K and L cannot lie in [,∞)  at the same time. The five cases are as follows.
(a) {K,K} ∩ [L,U] = φ and {L,L} ∩ [L,U] = φ.
(b) Either K ∈ [L,U] or L ∈ [L,U], and K /∈ [L,U], L /∈ [L,U].
(c) Either K ∈ [L,U] or L ∈ [L,U], and K /∈ [L,U], L /∈ [L,U].
(d) K,L ∈ [L,U] or K,L ∈ [L,U].
(e) K,K ∈ [L,U] or L,L ∈ [L,U].
Case (a): A direct inspection of Table  shows that there are four regions of coordinate-

wise monotonicities of system () which satisfy case (a), namely,
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Figure 9 The dots indicate corners of a nested
sequence of boxes in case (c).

In the first case, the map T is competitive and in the second case, the map T is compet-
itive. Hence one can use the theory of competitive maps in [] and the methodology in
[] to show that every orbit converges to one of three equilibria or to the unique minimal
period-two solution discussed in Section .. In the third case, we consider a specific ex-
ample of a parameter region fromTable  which corresponds to this type of monotonicity,
namely,

Bγ –Cβ < , Bα –Aβ < , Cα –Aγ ≥ ,

Bγ –Cβ < , Bα –Aβ < , Cα –Aγ ≥ .

In this case, the coordinatewise monotonicities of T(x, y) and T(x, y) give

(x, y) 	se (x, y) �⇒ T(x, y) < T(x, y). ()

Set m := L, M := U, m̃ := L and M̃ := U, where L, U, L and U are as given in
Table  of Lemma . For n = , , , . . . , define

mn+ = T(mn, M̃n), Mn+ = T(Mn, m̃n),

m̃n+ = T(mn, M̃n), M̃n+ = T(Mn, m̃n)
()

as shown in Figure .
Since the slopes of the equilibrium curves E and E have opposite signs in the invariant

attracting set [L,U] × [L,U], the curves must intersect exactly once there. Thus sys-
tem () must have a unique equilibrium in [L,U] × [L,U] which must be an interior
equilibrium. As a result, (L,U) and (U,L) cannot be fixed points of the map T . This
and () imply that for (x, y) ∈ [L,U]× [L,U],

(m, M̃)	se T(m, M̃) < T(x, y) < T(M, m̃) 	se (M, m̃). ()

Equations () and () give: (m, M̃) 	se (m, M̃) 	se T(x, y) 	se (M, m̃)	se (M, m̃).
Hence, by (), T(m, M̃) < T(m, M̃) < T(x, y) < T(M, m̃) < T(M, m̃).
Continuing in this manner, one has for (x, y) ∈ [L,U]× [L,U],

T(mn, M̃n) < T(mn+, M̃n+) < Tn+(x, y) < T(Mn+, m̃n+)

< T(Mn, m̃n), n = , , , . . . . ()

Since T(mn, M̃n) < (x, y) < T(Mn, m̃n) for all integers n ≥ , it follows from () that
limn→∞ Tn+(x, y) = (x, y). Thus every solution of system () converges to the unique equi-
librium (x, y). In the last case, the coordinatewise monotonicities of T(x, y) and T(x, y)
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Figure 10 The dots indicate corners of a nested
sequence of boxes in case (b).

give (x, y) 	se (x, y), which implies T(x, y) < T(x, y). The rest of the proof is similar
to the proof of the previous case and we skip it to avoid repetition.
Case (b) Example : Once again we give the proof for a specific example of a parameter

region from Table  which corresponds to this type of monotonicity, namely,

Bγ –Cβ > , Bα –Aβ < , Cα –Aγ < ,

Bγ –Cβ > , Bα –Aβ ≥ , Cα –Aγ < .

In this case, the horizontal line y = L ⊂ B. Table  of Lemma  gives that the equilibrium
curve E is decreasing for the parameter region in case (a). Moreover, in this case, T(x, y)
is nonincreasing in x and nondecreasing in y on [L,U]× [L,U] and hence

min
(x,y)∈[L,U]×[L,U]

T(x, y) = lim
x→∞
y→

α + βx + γy
A + Bx +Cy

=
β

B
.

Setm :=m :=L, m̃ := β
B

and M̃ := M̃ := M̃ := U. For n = , , , . . . , define

mn+ := T(mn+, m̃n+), m̃n+ := T(U, m̃n), M̃n+ := T(m, M̃n+) ()

as given in Figure .
Note that y = β

B
is a horizontal asymptote of E := {(x, y)|y = T(x, y)} and hence the

point (U, m̃) lies in the region below E. Since the point (, ), which also lies in this
region, satisfies  < T(, ), one must have m̃ < T(U, m̃) = m̃. Also note that T(x, y)
is nondecreasing in both x and y on [L,U] × [L,L], and it is nonincreasing in x and
nondecreasing in y on [L,U]× [L,U]. This gives

m ≤m and m̃ < m̃ �⇒ m = T(m, m̃) < T(m, m̃) =m

�⇒ M̃ = T(m,U) < T(m,U) = M̃. ()

Moreover, the coordinatewise monotonicities of T(x, y) and T(x, y) imply

m̃n < m̃n+ �⇒ T(U, m̃n) < T(U, m̃n+) �⇒ m̃n+ < m̃n+

M̃n+ < M̃n �⇒ T(U, M̃n) < T(U, M̃n+) �⇒ M̃n+ < M̃n+

}
,

n = , , , . . . . ()
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From () and (), we have

m̃n < m̃n+ < y < M̃n+ < M̃n, n = , , , . . .

�⇒ [m,U]× [m̃n+, M̃n+] ⊂ [m,U]× [m̃n, M̃n], n = , , , . . . .

So, either L < m̃N or M̃N < L for some N , or L = lim m̃n = lim M̃n = y. In the first two
cases, the proof of global convergence to the unique equilibrium (x, y) is similar to case (a)
and we skip it. In the last case, recall that ∂

∂xT(x, y)|y=L = . Since the equilibrium (x, y)
lies on the line y = L, it follows that L = U = x giving global convergence to (x, y).
Case (b) Example : In some parameter regions, it is possible to get multiple equilibria

or a unique minimal period-two solution but not both (see Proposition  in Section .).
For example, consider the parameter region

Bγ –Cβ < , Bα –Aβ ≥ , Cα –Aγ ≥ ,

Bγ –Cβ > , Bα –Aβ ≥ , Cα –Aγ < .

In this case, setm :=L, m̃ :=L,M := U and M̃ := U and define

mn+ := T(mn, M̃n), Mn+ := T(Mn, m̃n),

m̃n+ := T(Mn, m̃n), M̃n+ := T(mn, M̃n).
()

Let limn→∞ mn =m∗
 , limn→∞ Mn =M∗

 , limn→∞ m̃n =m∗
 and limn→∞ M̃n =M∗

. Consider
the equations

⎧⎪⎪⎪⎨⎪⎪⎪⎩
T(m∗

 ,M∗
) =m∗

 ,
T(m∗

 ,m∗
) =M∗

 ,
T(M∗

 ,m∗
) =m∗

,
T(m∗

 ,M∗
) =M∗

.

()

From (), we have

T
(
m∗

 ,M
∗

)
=

(
T

(
m∗

 ,M
∗

)
,T

(
m∗

 ,M
∗

))

=
(
m∗

 ,M
∗

)
,

T
(
M∗

 ,m
∗

)
=

(
T

(
M∗

 ,m
∗

)
,T

(
M∗

 ,m
∗

))

=
(
M∗

 ,m
∗

)
.

Thus (m∗
 ,M∗

) and (M∗
 ,m∗

) are additional equilibria of system () alongside (x, y). The
three equilibria are ordered by the south-east partial ordering 	se as follows:

(
m∗

 ,M
∗

) 	se (x, y) 	se

(
M∗

 ,m
∗

)
.

Note that in this case, L ∈ [m∗
 ,M∗

 ] × [m∗
,M∗

]. We consider two possibilities for the
y-coordinate of (x, y): (i) y ≥ L and (ii) y < L. In the first case, one can use methods in-
troduced earlier in the proof to show that the points in the region [m∗

 ,x]× [m∗
,L] upon

repeated iteration enter the region above the line y = L, that is, the region [m∗
 ,M∗

 ] ×
[L,M∗

]. Note that the map T(x, y) is competitive in this region. It follows from the theory
of competitive maps (see []) that every solution converges to an equilibrium.
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Figure 11 Regions of coordinatewise monotonicity
when (left) both K2 and L1 lie in the invariant
attracting setB and (right) both K1 and K2 lie inB.

Next we show that the case y < L cannot exist. Suppose, for the sake of contradiction,
that it did. In particular, look at the region [m∗

 ,x] × [m∗
, y]. Since the first coordinate of

the map T(x, y) := (T(x, y),T(x, y)) satisfies ∂T
∂x < , ∂T

∂y < , one must have

(
m∗

 ,m
∗

) ≤ (x, y)≤ (x, y) �⇒ x = T(x, y) ≤ T(x, y) ≤ T

(
m∗

 ,m
∗

)
.

Thus T([m∗
 ,x] × [m∗

, y]) ⊂ [x,M∗
 ] × [m∗

,M∗
]. Similarly, one can show that T([x,M∗

 ] ×
[m∗

, y]) ⊂ ([m∗
 ,x] × [m∗

,M∗
]). This indicates that solutions spiral about the saddle equi-

librium (x, y), which implies that the Jacobian of T(x, y) must have complex eigenvalues.
But we know that the eigenvalues of the latter satisfy |λ| <  and |λ| > . Hence they must
be real by Theorem , giving a contradiction.
The proof for the case where minimal period-two solutions exist is similar with the map

T(x, y) replaced by T(x, y). The proof of case (c) is similar to that of case (b) and we skip it.
In cases (d) and (e), the regions of coordinatewise monotonicity are as shown in Figure .
It is straightforward to verify that in these two cases, repeated iteration of the map T(x, y)
causes the shrinking sequence of invariant attracting boxes {[mn,Mn] × [m̃n, M̃n]}∞n= to
enter one of the regions given in cases (a), (b) and (c). The proof is a direct consequence
of this. �

Appendix: Theorems on global dynamics of system (1) when both equilibrium
curves are reducible conics
Theorem  If the graphs of E and E are each pairs of perpendicular lines

E =
{
(x, y) ∈ R

 : x(Cy +A – β) = 
}
,

E =
{
(x, y) ∈R

 : y(Bx +A – γ) = 
}
,

then system () must have infinitely many equilibria or at most two finite equilibria in
[,∞) , namely E and E. E is always an equilibrium. In addition, there exist unbounded
solutions. The equilibria and their basins of attraction must satisfy Table .

Theorem  If the graphs of E and E are respectively pairs of parallel and transversal
lines with formulas

E =
{
(x, y) ∈ R

 : x + (A – β)x – α = 
}
,

E =
{
(x, y) ∈R

 : Cy + Bxy + (A – γ)y – βx – α = 
}
,

then E is always an equilibrium of system (). In addition,
(a) If β –A <  and γ –A ≤ , then the unique equilibrium E is globally

asymptotically stable.
(b) If β –A = , then there exist infinitely many equilibria along the nonnegative x-axis.
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Table 7 Global behavior of solutions when E1 and E2 are pairs of perpendicular lines

Parameter region E0 E3 Global dynamics

β1 – A1 < 0
γ2 – A2 < 0

G.A.S.
Basin of attraction:
[0,∞) 2

– Every soln. converges to E0.

β1 – A1 < 0
γ2 – A2 > 0

Repeller – Every soln. except (0, 0) tends
to (0,∞).

β1 – A1 > 0
γ2 – A2 < 0

Repeller – Every soln. except (0, 0) tends
to (∞, 0).

β1 – A1 > 0
γ2 – A2 > 0

Repeller Saddle
Stable manifold:
An increasing curve C

Every soln. not on C except (0, 0)
tends to (0,∞) or (∞, 0).

β1 – A1 = 0, or
γ2 – A2 = 0

There exist infinitely many
equilibria along the x- or y-axis.

Table 8 Global behavior of solutions when β1 – A1 > 0 and γ2 – A2 > 0 when E1 and E2 are
respectively pairs of parallel and transversal lines

Parameter region E0 E1 E2 E3

B2(β1 – A1)≥ B1(γ2 – A2) Repeller L.A.S.
Basin of attraction:
(0,∞)2 and
positive x-axis

Saddle
Its stable manifold:
Positive y-axis

–

B2(β1 – A1) < B1(γ2 – A2) Repeller Saddle
Its stable manifold:
Positive x-axis

Saddle
Its stable manifold:
Positive y-axis

L.A.S.
Basin of attraction:
(0,∞)2

(c) If β –A >  and γ –A ≤ , then there exist two equilibria, namely E and E. E is
a saddle point with the positive y-axis as its stable manifold. E is LAS and attracts
all solutions with initial conditions in (,∞) or on the positive x-axis.

(d) If β –A >  and γ –A > , then the nonnegative equilibria of system ()must
satisfy Table .

Theorem  If the graphs of E and E are respectively pairs of perpendicular and
transversal lines with formulas

E =
{
(x, y) ∈ R

 : x(Cy +A – β) = 
}
,

E =
{
(x, y) ∈R

 : Cy + Bxy + (A – γ)y – βx – α = 
}
,

then the nonnegative equilibria of system ()must satisfy:
(a) If β –A ≤  and γ –A ≤ , then the unique equilibrium E is globally

asymptotically stable.
(b) If β –A =  and γ –A ≤ , then there exist infinitely many equilibria along the

nonnegative x-axis.
(c) If β –A >  and γ –A ≤ , then E is a saddle point with the positive y-axis as its

stable manifold. All solutions with initial conditions in (,∞) or on the positive
x-axis are unbounded and tend to (∞, ).

(d) If β –A >  and γ –A > , then the nonnegative equilibria of system ()must
satisfy Table .
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Table 9 Global behavior of solutions when β1 – A1 > 0 and γ2 – A2 > 0 when E1 and E2 are
respectively pairs of perpendicular and transversal lines

Parameter region E0 E2 E3

C2(β1 – A1) > C1(γ2 – A2) Repeller Saddle
Its stable manifold:
Positive y-axis

–

C2(β1 – A1) = C1(γ2 – A2) Repeller Saddle
Its stable manifold:
Positive y-axis
Basin of attraction:
(0,∞)× (b,∞), where E2 = (0,b)
Note: Solns. in (0,∞)× (0,b) −→ (∞, 0)

–

C2(β1 – A1) < C1(γ2 – A2) Repeller L.A.S.
Basin of attraction:
Region above an increasing curve C

Saddle
Its stable manifold:
The increasing curve C
Note: Solns. in the region
below C −→ (∞, 0)

Table 10 Global behavior of solutions when β1 – A1 > 0 and γ2 – A2 > 0 when E1 and E2 are
respectively pairs of perpendicular and parallel lines

Parameter region E0 E2 Global dynamics

C2(β1 – A1) < C1(γ2 – A2) Repeller L.A.S.
Basin of attraction:
(0,∞)2 and
positive y-axis

Every soln. on the positive x-axis is
unbounded and tends to (∞, 0).

C2(β1 – A1) > C1(γ2 – A2) Repeller Saddle
Its stable manifold:
Positive y-axis

Every soln. in (0,∞)2 or on the
positive x-axis is unbounded and
tends to (∞, 0) or (∞, c), c > 0.

C2(β1 – A1) = C1(γ2 – A2) There exist infinitely many equilibria

along the horizontal line y = β1–A1
C1

.

Theorem  If the graphs of E and E are respectively pairs of perpendicular and parallel
lines with formulas

E =
{
(x, y) ∈ R

 : x(Cy +A – β) = 
}
,

E =
{
(x, y) ∈R

 : Cy + (A – γ)y – α = 
}
,

then the nonnegative equilibria of system ()must satisfy:
(a) If β –A <  and γ –A ≤ , then the unique equilibrium E is globally

asymptotically stable.
(b) If β –A =  and γ –A ≤ , then there exist infinitely many equilibria along the

nonnegative x-axis.
(c) If β –A >  and γ –A ≤ , then E is a saddle point with the positive y-axis as its

stable manifold. All solutions with initial conditions in (,∞) or on the positive
x-axis are unbounded and tend to (∞, ).

(d) If β –A >  and γ –A > , then the nonnegative equilibria of system ()must
satisfy Table .
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Table 11 Global dynamics for β1 – A1 > 0 and γ2 – A2 > 0 when E1 and E2 are pairs of
transversal lines

Parameter region E0 E1 E2 E3

(a) B2(β1 – A1)≤ B1(γ2 – A2)
C2(β1 – A1) < C1(γ2 – A2)

Repeller Saddle
Its stable manifold:
Positive x-axis

L.A.S.
Basin of attraction:
(0,∞)2 and positive
y-axis

–

(b) B2(β1 – A1) < B1(γ2 – A2)
C2(β1 – A1) = C1(γ2 – A2)

Repeller Saddle
Its stable manifold:
An increasing curve C
Basin of attraction:
Region below C

L.A.S.
Basin of attraction:
Region above C

–

(c) B2(β1 – A1)≥ B1(γ2 – A2)
C2(β1 – A1) > C1(γ2 – A2)

Repeller L.A.S.
Basin of attraction:
(0,∞)2 and positive
x-axis

Saddle
Its stable manifold:
Positive y-axis

–

(d) B2(β1 – A1) > B1(γ2 – A2)
C2(β1 – A1) = C1(γ2 – A2)

Repeller L.A.S.
Basin of attraction:
Region below an
increasing curve C

Saddle
Its stable manifold:
The increasing curve C
Basin of attraction:
Region above C

–

(e) B2(β1 – A1) < B1(γ2 – A2)
C2(β1 – A1) > C1(γ2 – A2)

Repeller Saddle
Its stable manifold:
Positive x-axis

Saddle
Its stable manifold:
Positive y-axis

L.A.S.
Basin of attraction:
(0,∞)2

(f ) B2(β1 – A1) > B1(γ2 – A2)
C2(β1 – A1) < C1(γ2 – A2)

Repeller L.A.S.
Basin of attraction:
Region below an
increasing curve C

L.A.S.
Basin of attraction:
Region above C

Saddle
Its stable manifold:
The increasing curve C

(g) B2(β1 – A1) = B1(γ2 – A2)
C2(β1 – A1) = C1(γ2 – A2)

−→ Infinitely Many Equilibria

Theorem  If the graphs of E and E are each pairs of transversal lines with formulas

E =
{
(x, y) ∈ R

 : x(Bx +Cy +A – β) = 
}
,

E =
{
(x, y) ∈R

 : y(Cy + Bx +A – γ) = 
}
,

then E is always an equilibrium of system (). In addition,
(a) If β –A ≤  and γ –A ≤ , then the unique equilibrium E is globally

asymptotically stable.
(b) If β –A >  and γ –A ≤ , then there exist two equilibria, namely E and E. E

is a saddle point with the positive y-axis as its stable manifold. E is LAS and attracts
all solutions with initial conditions in (,∞) or on the positive x-axis.

(c) If β –A ≤  and γ –A > , then there exist two equilibria, namely E and E. E
is a saddle point with the positive x-axis as its stable manifold. E is LAS and attracts
all solutions with initial conditions in (,∞) or on the positive y-axis.

(d) If β –A >  and γ –A > , then the nonnegative equilibria of system () and their
basins of attraction must satisfy Table .
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5. Kulenović, MRS, Nurkanović, M: Basins of attraction of an anti-competitive system of difference equations in the

plane. Commun. Appl. Nonlinear Anal. 19(2), 41-53 (2012)
6. Kalabusić, S, Kulenović, MRS, Pilav, E: Multiple attractors for a competitive system of rational difference equations in

the plane. Abstr. Appl. Anal. 2011, Article ID 295308 (2011)
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