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*Correspondence:
diblik.j@fce.vutbr.cz
3Department of Mathematics and
Descriptive Geometry, Faculty of
Civil Engineering and Department
of Mathematics, Faculty of Electrical
Engineering and Communication,
Brno University of Technology, Brno,
Czech Republic
Full list of author information is
available at the end of the article

Abstract
A nonlinear delay differential equation with quadratic nonlinearity,

ẋ(t) = r(t)
[ m∑

k=1

αkx(hk(t)) – βx2(t)
]
, t ≥ 0,

is considered, where αk and β are positive constants, hk : [0,∞) → R are continuous
functions such that t – τ ≤ hk(t)≤ t, τ = const, τ > 0, for any t > 0 the inequality
hk(t) < t holds for at least one k, and r : [0,∞) → (0,∞) is a continuous function
satisfying the inequality r(t)≥ r0 = const for an r0 > 0. It is proved that the positive
equilibrium is globally asymptotically stable without any further limitations on the
parameters of this equation.

Introduction
To include oscillation in population model systems, Hutchinson [, ] suggested the
following delay logistic equation:

dN(t)
dt

= rN(t)
[
 –

N(t – τ )
K

]
,

where N(t) is the population size at time t, r >  is the intrinsic growth rate of the popu-
lation, τ >  and K >  is the carrying capacity of the population.
There are many generalizations and modifications of Hutchinson’s equation [–]. In

particular, a delay logistic equation with several delays,

ẋ(t) = x(t)

[
α –

m∑
k=

βkx(t – τk)

]
, ()

where α, βk and τk >  are positive constants, is considered in [, p.]. Equation () can
be viewed as one with quadratic nonlinearities of the unknown function x. For more work
on the stability and boundedness of equations and systems related to (), one can refer to
[–].
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In the monograph [, p.], the author considers the following populationmodel with
quadratic nonlinearity:

ẋ(t) =
m∑
k=

αkx(t – τk) – βx(t), t ≥ , ()

where αk > , β > , τk > , and with the initial condition

x(t) = ϕ(t), t ∈ [
–τ *, 

]
, ()

where ϕ : [–τ *, ] → R is a continuous function, τ * = maxk=,...,m τk and ϕ(t) >  if t ∈
[–τ *, ].
As can simply be verified, equation () has a unique positive equilibrium x(t) = K , t ∈

[–τ *,∞), where

K =
α

β
, α :=

m∑
k=

αk . ()

Theorem  [, Corollary .., p.] The positive equilibrium K is a global attractor of
problem (), ().

This result is different from almost all known results on the stability for nonlinear delay
differential equations since there are no limitations on the parameters of equation (). The
proof of Theorem  is based on the method of Lyapunov-Krasovskii functionals.
Consider the nonautonomous equation with quadratic nonlinearity

ẋ(t) = r(t)

[ m∑
k=

αkx
(
hk(t)

)
– βx(t)

]
, t ≥ , ()

where αk > , β > , hk : [,∞) → R are continuous functions such that the inequalities
t – τ ≤ hk(t) ≤ t are true for a τ = const, τ > , and r : [,∞) → (,∞) is a continuous
function satisfying the inequality r(t) ≥ r = const for an r > . We suppose also that for
any t >  the inequality hk(t) < t holds for at least one k.
Together with (), we consider an initial problem

x(t) = ϕ(t), t ∈ [–τ , ], ()

where ϕ : [–τ , ] →R is a continuous function and ϕ(t) >  if t ∈ [–τ , ].
It is obvious that equation () is a particular case of equation () if we set

r(t) := , hk(t) := t – τk , τ := τ *.

Moreover, it is easy to see that the constant K defined by () defines the unique positive
equilibrium x(t) = K , t ∈ [–τ ,∞) of equation () as well.
In this paper, we prove that there exists a unique positive global solution to the problem

(), (). Let us recall that a function x : [–τ ,∞) → R continuous on [–τ ,∞) and continu-
ously differentiable on [,∞) is called a global solution to the problem (), () if it satisfies
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equation () on [,∞) and initial condition (). In addition to this, we prove that this
solution is a bounded function isolated from zero. Finally, we will extend Theorem  to
nonautonomous equation (). Unfortunately, the construction of a Lyapunov-Krasovskii
functional for autonomous equation () given in [] to prove Theorem  is not applicable
to nonautonomous equation (). Therefore, we use another method based on a special
quasi-linearization of a given nonlinear equation.
We will apply the following standard notions given in the definition below.

Definition  The equilibrium solution x(t) = K , t ∈ [–τ ,∞) of equation () is locally sta-
ble if, for any ε > , there exists δ >  such that the inequality |ϕ(t) – K | < δ, t ∈ [–τ , ]
implies |x(t) – K | < ε, t ≥  if x(t) = ϕ(t), t ∈ [–τ , ]. If, in addition, for any such solution,
limt→∞ x(t) = K , the equilibrium solution x(t) = K , t ∈ [–τ ,∞) of equation () is called
locally asymptotically stable.
The equilibrium solution x(t) = K , t ∈ [–τ ,∞) of equation () is called a global attractor

of equation () if limt→∞ x(t) = K for all solutions x(t) of equation () defined by all initial
functions described by ().
The equilibrium solution x(t) = K , t ∈ [–τ ,∞) of equation () is globally asymptotically

stable if it is a global attractor for all solutions x(t) of equation () defined by all initial
functions described by () and if it is also locally stable.

Main results
In this section, we employ a simple stability result to the following linear equation:

ẋ(t) + a(t)x(t) +
m∑
k=

bk(t)x
(
hk(t)

)
= , t ≥ , ()

with bounded continuous functions

a : [t,∞) →R, bk : [t,∞) →R, hk : [t,∞) →R,

where t – τ ≤ hk(t) ≤ t, τ > , and for any t > , the inequality hk(t) < t holds for at least
one k.

Lemma  Assume that there exists a constant a >  such that

a(t)≥ a, t ∈ [,∞)

and

lim sup
t→∞

∑m
k= |bk(t)|
a(t)

< .

Then equation () is asymptotically stable.

This result has a long history. The first stability conditions of this kind were obtained by
Krasovskii [] for an equationwith a single delay. Aweaker result (a corollary of Lemma )
is given in [, p.]. Lemma  itself is a consequence of [, Corollary .].
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Theorem  A solution of problem (), () is positive and global.

Proof Since ϕ() > , there exists a unique positive local solution of problem (), (). Sup-
pose [, c) with c >  is the maximum interval of existence of this problem and a point
t ∈ (, c) is such that x(t) > , t ∈ [–τ , t), and x(t) = . Then ẋ(t) ≤ . Directly from
equation (), we get

ẋ(t) = r(t)
m∑
k=

αkx
(
hk(t)

)
> ,

which is a contradiction.
Hence, x(t) > , t ∈ [, c). If c = ∞, the theorem is proved. Suppose c < ∞. Then, by [,

Corollary ., p.], either lim supt→c– x(t) = +∞ or lim inft→c– x(t) = .
Let lim supt→c– x(t) = +∞. Then we have

ẋ(t)≤ r(t)
m∑
k=

αkx
(
hk(t)

)
, t ∈ [, c).

Corollary . [, p.] implies that x(t) ≤ y(t), where y is a solution of the initial linear
problem

ẏ(t) = r(t)
m∑
k=

αky
(
hk(t)

)
, t ∈ [,∞),

y(t) = x(t), t ∈ [–τ , ].

Since every solution y of a linear delay differential equation is bounded on any finite in-
terval, x is also bounded on the interval [, c). We have a contradiction.
Suppose now lim inft→c– x(t) = . Then either x is a monotone decreasing function on

[t, c) for some t ∈ [, c) or there exists a sequence tn ∈ [t, c) such that

tn < tn+, lim
n→∞ tn = c, lim

n→∞x(tn) = , ẋ(tn) = 

and

x(t) > x(tn), t ∈ [–τ , tn).

In the first case (without loss of generality, we assume that x is a monotone decreasing
function for t ∈ [, c)), limt→c x(t) = .Hence, x is a solution of (), () on [, c] with x(c) = 
and as above, we obtain a contradiction because

 ≥ ẋ(c) = r(c)
m∑
k=

αkx
(
hk(c)

)
> .

Consider now the second case. Then

 = ẋ(tn) = r(tn)

[ m∑
k=

αkx
(
hk(tn)

)
– βx(tn)

]
.
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Let n→ ∞. Then tn → c, hence

m∑
k=

αkx
(
hk(c)

)
= ,

where for at least one k one has hk(c) < c, and so x(hk(c)) = .We have a contradiction. The
theorem is proved. �

Theorem  For a solution x of problem (), (),

lim sup
t→∞

x(t) <∞, lim inf
t→∞ x(t) > .

Proof Substituting x(t) = y(t) +K , equation () takes the form

ẏ(t) = r(t)

[ m∑
k=

αky
(
hk(t)

)
– αy(t) – βy(t)

]
. ()

Hence,

ẏ(t) ≤ r(t)

[ m∑
k=

αky
(
hk(t)

)
– αy(t)

]
.

Consider the linear equation

ż(t) = r(t)

[ m∑
k=

αkz
(
hk(t)

)
– αz(t)

]
, ()

where

z(t) = y(t), t ∈ [–τ , ].

Corollary . [, p.] implies that y(t) ≤ z(t) for t > . Now, we apply Lemma  to equa-
tion (). Since

r(t)
∑m

k= αk

r(t)α
=

r(t)α
r(t)α

=


< ,

by Lemma , equation () is asymptotically stable. Hence, the function y is bounded from
above and consequently is the function x.
Suppose lim inft→∞ x(t) = . Then either x is an eventually monotone decreasing func-

tion or there exists a sequence tn ∈ [–τ ,∞) such that

tn < tn+, lim
n→∞ tn = ∞, ẋ(tn) = 

and

x(t) > x(tn), t ∈ [–τ , tn).
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In the first case (without loss of generality, we assume that x is a monotone decreasing
function for t > ), there exists t* >  such that x(t*) < K . Hence,

ẋ(t*) = r(t*)

[ m∑
k=

αkx
(
hk(t*)

)
– βx(t*)

]

≥ r(t*)

[ m∑
k=

αkx(t*) – βx(t*)

]
= r(t*)

[
αx(t*) – βx(t*)

]
> .

This is in contradiction to our assumption.
Consider now the second case. Then there exists a sufficiently large integer n such that

x(tn) < K . Hence,

 = ẋ(tn) = r(tn)

[ m∑
k=

αkx
(
hk(tn)

)
– βx(tn)

]
> r(tn)

[
αx(tn) – βx(tn)

]
> .

We have a contradiction and the theorem is proved. �

In the following, when discussing the stability properties of solutions of equation (), we
will assume that initial conditions () hold.

Theorem  The positive equilibrium K of equation () is globally asymptotically stable.

Proof We have to prove that K is an attractor for all solutions of the equation and that it
also is locally stable. To do this, it is sufficient to prove that the zero solution is an attractor
for all solutions of equation () and that it also is locally stable.
Suppose that x is a fixed solution of equation (). Then y(t) = x(t) –K is a fixed solution

of equation (). After substituting y(t) = e–λtz(t), where λ >  is a sufficiently small number
satisfying λ < r(α + βm), we have an equation

ż(t) = r(t)

[ m∑
k=

αkeλ(t–hk (t))z
(
hk(t)

)
–

(
α –

λ

r(t)

)
z(t) – βe–λtz(t)

]
. ()

Since y(t) = e–λtz(t), we can rewrite equation () as

ż(t) = r(t)

[ m∑
k=

αkeλ(t–hk (t))z
(
hk(t)

)
–

(
α –

λ

r(t)
+ βy(t)

)
z(t)

]
. ()

By Theorem , there exist constantsm,M,  <m <M such that

m < x(t) <M

for t >  and

m –K < y(t) <M –K .

For t > , we have

α –
λ

r(t)
+ βy(t) > α –

λ

r(t)
+ β(m –K) = α –

λ

r(t)
+ βm

http://www.advancesindifferenceequations.com/content/2012/1/230
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and

m∑
k=

αkeλ(t–hk (t)) < αeλτ .

Hence,
∑m

k= αkeλ(t–hk (t))

α – λ
r(t) + βy(t)

<
αeλτ

α – λ
r(t) + βm

≤ αeλτ

α – λ
r
+ βm

, t ∈ [,∞).

Since

lim
λ→

αeλτ

α – λ
r
+ βm

=
α

α + βm
< ,

for a sufficiently small λ > ,

lim sup
t→∞

∑m
k= αkeλ(t–hk (t))

α – λ
r(t) + βy(t)

< .

We will now fix such λ. Suppose u is an arbitrary continuous function such that m – K <
u(t) <M – K . By Lemma , all solutions of linear equation (), where y is replaced by u,
tend to zero. Then it is also true if u = y. Hence, z as a solution of nonlinear equation ()
is a bounded function. Then

lim sup
t→∞

y(t) = lim sup
t→∞

e–λtz(t) = . ()

It means that the zero solution is a global attractor of equation (). We need only to
prove that this equation is locally stable. The linearized equation for () has the form

u̇(t) = r(t)

[ m∑
k=

αku
(
hk(t)

)
– αu(t)

]
. ()

By Lemma , equation () is asymptotically stable (see equation () in the proof of The-
orem ). The theorem is proved. �

Remark  The proof of Theorem  provides not only global asymptotic stability of the
positive equilibrium K , but also exponential estimation of the rate of convergence of so-
lutions. Tracing the proof carefully, we have

x(t) –K = y(t) = e–λtz(t),

where x is a fixed solution of equation (), y(t) is a corresponding solution of equation ()
and z(t) is a corresponding solution of equation (). Since z(t) is bounded and () holds,
we state that for a given solution x = x(t) of equation (), there exists a constant Hx such
that

∣∣x(t) –K
∣∣ ≤ Hxe–λt ,

where λ is a sufficiently small positive number satisfying λ < r(α + βm) and t ∈ [–τ ,∞).
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Conclusions, concluding remarks and open problems
It is well known that the positive equilibrium K of the delay logistic equation

ẋ(t) = ax(t)
(
 –

x(t – τ )
K

)

is globally asymptotically stable if aτ < / and locally asymptotically stable if aτ < π/.
Thus, there is a gap between sufficient conditions for global and for local stabilities. One
of the old problems is to show that local asymptotic stability implies global asymptotic
stability for this equation. This problem also remains open for most of known nonlinear
delayed equations in mathematical biology.
By Theorem , local and global stability conditions for equation () coincide since this

equation is stable for all positive coefficients. It would be interesting to find other equa-
tions with such a property.
In the proof of Theorem , we applied the substitution y(t) = z(t)e–λt with a small pa-

rameter λ > . Such kind of substitutions are well known in the investigation of stability of
linear equations. Maybe such a substitution is used here for a nonlinear equation for the
first time.
The usefulness of asymptotic methods could be exploited to extend other powerful (de-

terministic) techniques such as the Laplace decomposition method or He’s polynomials
to deal with difference-differential models (see references [, ] for instance).
A partial case of equation () was considered in [] where also some other delay differ-

ential equations with quadratic nonlinearity were studied.
Finally, we outline some open problems and topics for further research.
. Study the oscillation properties of equation ().
. Extend Theorems - to the equation

ẋ(t) =
m∑
k=

ak(t)x
(
hk(t)

)
– b(t)x(t) ()

if
∑m

k= ak(t) = b(t).
. Prove the existence of a periodic solution for equation () with periodic functions

ak(t), b(t) and study its local and global stability.
. Study the existence, uniqueness, oscillation and stability properties of solutions of the

following equations:

ẋ(t) =
m∑
k=

ak(t)x
(
hk(t)

)
– b(t)xn(t), n > ,

and

ẋ(t) =
m∑
k=

ak(t)x
(
hk(t)

)
– b(t)x

(
g(t)

)
.
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