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Abstract
In this paper, we propose and analyze a mathematical model for the treatment of
chronic myelogenous (myeloid) leukemia (CML), a cancer of the blood. Our main
focus is on the combined treatment of CML based on imatinib therapy and
immunotherapy. Treatment with imatinib is a molecular targeted therapy that inhibits
the cells involved in the chronic CML pathogenesis. Immunotherapy based on
interferon alfa-2a (IFN-α) increases cancer cell mortality and leads to improvement of
outcomes of the combined therapy. Interaction between CML cancer cells and
effector cells of the immune system is modeled by a system of non-linear differential
equations, where we introduced biologically motivated time-varying delays in the
treatment terms. The analysis of the described system shows the existence of a
unique global positive solution and a unique non-trivial equilibrium. We also derive
explicit local and global stability conditions for the non-trivial equilibrium.
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1 Introduction and biological motivation
Chronic myelogenous leukaemia (CML) is a progressive, malignant disease characterized
by a large number of abnormal blood cells in the bone marrow and peripheral blood [,
]. The schematic progression in time of myelogenous leukemia is shown in Figure .
The benefit of the treatment of CMLwith imatinib (Gleevec (Novartis International AG,

Basel, Switzerland)) was first indicated in  [, ]. However, the loss of drug effective-
ness was observed due to mutations of the target cancer cells, rendering the cells resistant
to the drug [, ]. About  to % of patients do not respond to imatinib after prolonged
therapy [, ].
One of the earlymathematical models of CMLwas amodel created by Fokas et al. ()

[] which includes hematopoietic process focused on the maturation and proliferation of
the T cell precursors in the bone marrow. One of the models of anticancer CML therapy
is Moore and Lee’s work [] based on immune cell interactions with CML. Several recent
mathematical models have been developed to study the dynamics of CML under imatinib
treatment, including Komarova andWodarz () [], Michor et al. () [], Nanda
et al. () [], Kim et al. () [], and Paquin et al. () []. In all of these studies,
the authors conclude that imatinib does not completely eliminate the leukemia cell popu-
lation and propose that imatinib therapy should be combined with an additional form of
treatment.
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Figure 1 A scheme of myelogenous leukemia progression in time.Myelogenous leukemia progresses
through four distinct phases. After an initial period of 3-5 years the abnormal cell counts rise to a relatively
steady state, called the chronic phase. At this stage the disease can be diagnosed. Several years of the chronic
phase where the abnormal cell count oscillates with a period of the order of months are followed by a phase
characterized by oscillatory instability (the acceleration phase). Ultimately, this leads to the usually fatal acute
phase with sharp increase in the abnormal cell count. This is known also as the blast crisis [15].

In this paper, we present a model that combines imatinib with the interferon alfa-
α (IFN-α) immunotherapy. Including IFN-α treatment, we strengthen the immune re-
sponse. We show that the immune response may play an important role in determining
the length of time during treatment with imatinib for CML patients and would allow to
keep the patient in the chronic stage for a longer period of time.
Recent data shows that IFN-α activation of immune cells (T killer cells, natural killer

cells and others) contributes to the killing of cancer leukemic cells [, ]. Moreover, it is
already proven that IFN-α may extend imatinib effect by activating immunological effector
functions []. Therefore, we assume that the combination treatment of imatinib and IFN-
α immunotherapy can be a good candidate to improve the current CML therapy.
The mathematical description of the above model is described in Section . In Section 

we discuss the existence of a positive and unique equilibrium and prove local and global
stability of this equilibrium. Section  validates the model results using published data
taken from in vitro, mouse and human studies.

2 Model description
The dynamics of the interaction between the immune system (effector T cells) and CML
cancer cells in the body can be described by the following system of two ordinary non-
linear differential equations:

ẋ(t) = βx(t) ln
K
x(t)

– γx(t)y(t) –ωγx
(
h(t)

)
,

ẏ(t) = β
x(t)

η + x(t)
y(t) – γx(t)y(t) + inαγ

y(t)
η + y(t)

y(t – τ ) –μyy(t),
()
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where x(t) is the CML cells population, y(t) is the number of effector T (CTL) cells and
K > , τ > , βi > , γi > , ω > , inα > , h(t) ≤ t is a continuous function such that
t – h(t) ≤ θ , θ > , limt→∞(t – h(t)) = .
We will analyze system () behavior under the following initial conditions:

x(t) = ϕ(t), y(t) = ψ(t), t ≤ . ()

Here, we assume that ϕ(t), where –θ ≤ t ≤  and ψ(t), where –τ ≤ t ≤  are nonnegative
continuous functions where x() = ϕ() > , y() = ψ() > , ϕ(t) ≤ ϕ(), ψ(t) ≤ ψ().
The first term on the right-hand side of the first equation of system () describes the

growth of CML cancer cells population in the form of the Gompertz law with the growth
rate β. The Gompertz curve provides a significantly better fit for leukemic cancer data
than logistic, exponential or polynomial curves []. The constant K in the first term rep-
resents the maximum carrying capacity of CML cells compartment [, ]. The second
term of the first equation of system () accounts for the loss of CML cancer cells due to
their interaction with CTL cells. The third term of this equation describes inhibition of
cancer cells by imatinib, where ω is a dose of imatinib given every day and h(t) is the
time-varying function accounting for the delay of the impact of imatinib treatment on the
number of cancer cells in the blood. The presence of such a time lag was shown by Volpe
[], who demonstrated that reduction in the number of cancer cells does not occur imme-
diately after the start of imatinib administration but rather after a certain time period. The
maximum delay time (θ ) is about three weeks. The influence of drugs tends to zero over
time, so a natural candidate for the delay function is h(t) = t – θe–λt . Hence, this function
satisfies the condition that limt→∞(t – h(t)) =  in the formulation of the model ().
The second equation describes the dynamic balance between stimulatory and inhibitory

effects of CTL cells. The first term represents the growth of the population of the effector
CTL cells y(t) due to the influence of CML antigen in the lymph nodes, where β is the
rate of this growth and η is the standard half-saturation concentration in the Michaelis-
Menten kinetics. The second term describes the loss of CTL cells due to the interaction
between CTL and CML cancer cells with a rate γ. CTL cells survive many hits by the tar-
get CML cells until they are inactivated and die []. The third term describes the stimula-
tory augmentation of the CTL cells due to IFN-α immunotherapy, where inα is the dose of
IFN-α. Interferon-α leads to increased expression of other cytokines, such as interferon-
γ that creates the pro-inflammatory environment with delay τ of about seven days [].
In this term, η is the standard half-saturation concentration of CTL immune within the
Michaelis-Menten kinetics. Finally, the last term in the second equation describes the loss
of CML cells due their natural death at a rate μy.
It is well known from the medical practice that the value of x(t) of the population of

CML cells cannot be reduced to zero by treatment of any type, so the therapy can be
called successful if the value of x(t) does not increase over time. Imatinib has a marked
inhibitory effect on the value of x(t), while IFN-α add-on has an additional effect due to
the stimulation of CML cell production. From mathematical standpoint, the role of the
variable y(t) is to decrease the value of x(t).
We used the model developed by Moore and Li [] to explore treatment combinations.

The difference between our model and the model by Moore and Li [] is that we simpli-
fied the model describing the dynamics of their system by removing the third equation
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Table 1 Parameter values

Param Physical interpretation Estimated value (units) Reference

τ delay for development of CTL cells 7 [days] [9]
θ maximal period to react to imatinib 20 [days] [6]
μx death rate of cancer cells 0.2 [0, 0.8] [days–1] [23]
μy death rate of effector T cells 0.06 [0, 0.5] [days–1] [24]
η1 saturation effect of CML cells in the

lymph nodes
100 [cells][ml–1] [9]

η2 saturation effect of immune cell
recruitment by cancer cells

2× 107 [cells][ml–1] [24]

β1 growth rate of CML cancer cells in the
form of the Gompertz law

0.03 [0; 0.5]
[days–1]

[9]

β2 change in the effector T cell (y(t))
population due to encounters with CML
antigen

0.41× 0.001 [days–1] [25],
[26]

γ1 loss of CML cancer cells due to
encounters with the effector T cells

0.005
[days–1[ cellsml ]

–1]
[9]

γ2 loss of CTL cells due to these encounters
between CTL and CML cancer cells

0.005
[days–1[ cellsml ]

–1]
[26]

γ3 factor using imatinib treatment 0.00014 [mg]–1 Estimated
γ4 factor using IFN-a treatment 0.005 [mg]–1 Estimated
ω once-daily dose of imatinib 400 - 800 [mg/day] [1]
inα IFN-a dose 13 [mg/days]

(90 [mg] weekly)
[27]

K constant, the maximum possible
concentration of CML

[1.5× 105; 4× 105]
[cells/ml]

[9]

accounting for the behavior of the naive effector cells. Also, we added in the first equation
the term accounting for the reduction in the number of cancer cells due to drug adminis-
tration, while in the second equation we added the term describing the rate of increase in
the number of immune cells that results from the treatment.
In our mathematical analysis of the above system, we aspire to stabilize the value of x(t)

in such a way that x(t) does not exceed the limit of cancer CML cells in blood, which is
characteristic of a chronic phase. The summary of values of the parameters used in the
model is presented in Table .

3 The local and global stability of combinedmodel for tumor immunotherapy
3.1 Positivity and uniqueness of solution system (1)-(2)
In this section we discuss the positivity and uniqueness of the solution (x(t), y(t)) of system
()-().

Lemma  [] Consider the initial value problem for a scalar linear delay equation

u̇(t) = –a(t)u
(
h(t)

)
, t ≥ , u(t) = ϕ(t), t < , u() = u.

If

a(t)≥ , t – h(t)≤ δ, δ supa(t)≤ 
e
,  ≤ ϕ(t)≤ u, u > ,

then u(t) > , t >  and for the solution of the inequality

v̇(t)≥ –a(t)v
(
h(t)

)
, t ≥ , v(t) = u(t), t ≤ ,

one has v(t)≥ u(t).
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Theorem  Suppose that x() ≤ K , ωγθ ≤ 
e . Then system ()-() has the unique global

solution (x, y) such that

 < x(t)≤ K ,  < y(t) ≤ y()e(|β–μy|+inαγ)t , t > . ()

Proof System () can be presented in the following form:

ẋ(t) = f
(
x(t), y(t),x

(
h(t)

))
, ẏ(t) = g

(
x(t), y(t), y(t – τ )

)
,

where f (u, v,w), g(u, v,w) are continuous Lipschitz functions on the domain au ≤ u ≤ bu,
av ≤ v ≤ bv, aw ≤ w ≤ bw for any positive constants au, bu, av, bv, aw, bw. Using Theo-
rem .. from [], we can state that there is a unique local solution of system ()-().
Since x() > , y() > , this local solution is positive.
Denote by [, c) the maximum existence interval of the system’s solution. For y() > 

we have from the second equation of system ()

y(t) = y()e
∫ t
(β

x(s)
η+x(s)

–γx(s)+inαγ


η+y(s)
y(s–τ )–μy)ds. ()

Hence y(t) > , t ∈ [, c).
Suppose x() < K , which means that  < x(t) < K , t ∈ [, c) or there is a t >  such that

x(t) = K . Then ẋ(t) <  so x(t) < K , t > t or there is a t > t such that x(t) < K , t < t < t
and x(t) = K . It is clear that ẋ(t) < , which allows us to obtain that x(t) ≤ K for t ≥ t.
Repeating the process of our reasoning, we prove that x(t)≤ K , t ≥ t.
The case x() = K is same as the case () if we replace the point t = .
Now, let us estimate y(t) behavior.
Having

ẏ(t) ≤ |β –μy|y(t) + inαγy(t – τ ),

we can state that

y(t) ≤ y() +
∫ t



(|β –μy|y(s) + inαγy(s – τ )
)
ds

≤ y() +
∫ t



(|β –μy| + inαγ
)
max

–τ≤ξ≤s
y(ξ )ds.

Denote z(t) =max–τ≤ξ≤t y(ξ ). Then

z(t) ≤ y() +
∫ t



(|β –μy| + inαγ
)
z(s)ds.

From the well-known Gronwall-Bellman inequality, we have

 < y(t) ≤ z(t) ≤ y()e(|β–μy|+inαγ)t .

Hence, the inequalities in () hold for t ∈ [, c).
Suppose that c < ∞. Then there are only two possibilities:

http://www.advancesindifferenceequations.com/content/2012/1/217
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(a) limt→c– x(t) = +∞ or limt→c– y(t) = +∞;
(b) limt→c– x(t) =  or limt→c– y(t) = .
By inequalities (), x(t) and y(t) are bounded on any final interval. Then (a) is impossible.
By () relation limt→c– y(t) =  is also impossible.
Suppose now that limt→c– x(t) = . There exists C >  such that  < y(t) < C, t ∈ [, c).

Hence, the first equation in () implies

ẋ(t)≥ –γCx(t) –ωγx
(
h(t)

)
.

Consider the following initial value problem:

ẇ(t) = –γCw(t) –ωγw
(
h(t)

)
, w(t) = x(t), t ≤ . ()

After substitution w(t) = e–γCtu(t), equation () has a form

u̇(t) = –ωγe–γC(t–h(t))u
(
h(t)

)
. ()

We have ≤ t – h(t) ≤ θ . Hence

ωγe–γC(t–h(t))θ ≤ ωγθ ≤ 
e
, t ∈ [, c].

Lemma  and the inequality u(t) < u(), t <  imply that u(t) > , t ∈ [, c], then also w(t) >
, t ∈ [, c]. Hence, there exists δ >  such that w(t) > δ, t ∈ [, c]. By Lemma  we have
x(t)≥ w(t) ≥ δ > , t ∈ [, c). This is a contradiction to the assumption limt→c– x(t) = .
Hence, c = ∞ and the theorem is proven. �

Theorem  If

μy > β + inαγ, ()

there is the unique equilibrium (X∗, ) of system () where X∗ = Ke–
ωγ
β .

Proof It is obvious that (X∗, ) is an equilibriumof system ().Wehave to prove the unique-
ness only of this equilibrium or, in another words, we have to prove there is no other equi-
librium (X,Y), where X > , Y > .
Suppose that (X,Y), where X > , Y >  is the equilibrium of system (). Then, from

the second equation in (), we have

β
X

η +X
– γX + inαγ

Y

η + Y
–μy = .

Hence,

Y =
η[μy + γX – β

X
η+X

]

inαγ –μy – γX + β
X

η+X

.
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Thus, we have

μy + γX – β
X

η +X
≥ μy – β > ,

inαγ –μy – γX + β
X

η +X
≤ inαγ –μy + β < .

Then Y <  contradicts our assumption and, therefore, system () has only one equilib-
rium (X∗, ). �

In the rest of the paper we assume that the conditions of Theorems  and  hold.

3.2 Local stability of the equilibrium (X∗, 0)
To analyze local stability of the equilibrium (X∗, ) for system (), we will use the lemma
defined below. Consider the scalar linear equation

ẋ(t) +
m∑
k=

akx
(
hk(t)

)
= f (t), ()

where ak > , limt→∞ hk(t) = ∞.

Lemma  [] If lim supt>
∑m

k= ak(t – hk(t)) < 
 , limt→∞ f (t) = , then for any solution x

of (), limt→∞ x(t) = .

Theorem  If

ωγ < β, γX∗ +μy > β
X∗

η +X∗ , ()

then the equilibrium (X∗, ) is locally asymptotically stable.

Proof After substitution of x(t) = u(t) + X∗, y(t) = v(t), system () can be rewritten in the
following form:

u̇(t) = β
(
u(t) +X∗) ln K

u(t) +X∗

– γ
(
u(t) +X∗)v(t) –ωγ

(
u
(
h(t)

)
+X∗),

v̇(t) = β
u(t) +X∗

η + u(t) +X∗ v(t) – γ
(
u(t) +X∗)v(t)

+ inαγ
v(t)

η + v(t)
v(t – τ ) –μyv(t).

()

The linearized system () has a form of

u̇(t) = –(β –ωγ)u(t) – γX∗v(t) –ωγu
(
h(t)

)
,

v̇(t) = –
(

γX∗ +μy – β
X∗

η +X∗

)
v(t).

()

The second inequality () implies that the second equation of () is exponentially stable.
Hence limt→∞ v(t) = .

http://www.advancesindifferenceequations.com/content/2012/1/217
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The first equation can be rewritten in the form (), wherem = , a = β –ωγ > , a =
ωγ > , h(t) = t, h(t) = h(t), f (t) = –γX∗v(t). Since t–h(t) =  and limt→∞(t–h(t)) = ,
then

lim sup
t>

∑
k=

ak
(
t – hk(t)

)
=  <



.

By Lemma  limt→∞ u(t) = . The theorem is proven. �

3.3 Global stability of the equilibrium (X∗, 0)
To analyze the global stability of the equilibrium (X∗, ) for system (), we will use the
following lemmas.

Lemma  [] Consider the scalar linear delay differential equation

ẋ(t) = –a(t)x(t) + b(t)x
(
h(t)

)
,

where a, b are continuous bounded on [,∞) functions, h, k = , . . . ,m are continuous func-
tions, limt→∞ h(t) = ∞.
If a(t)≥ a > , |b(t)| ≤ qa(t),  < q < , then the solution of the above equation is asymp-

totically stable.

Lemma  [] Consider the following equation and inequalities:

ẋ(t) + a(t)x(t) –
m∑
k=

ak(t)x
(
hk(t)

)
= , t ≥ , ()

ẏ(t) + a(t)y(t) –
m∑
k=

ak(t)y
(
hk(t)

) ≤ , t ≥ , ()

ż(t) + a(t)z(t) –
m∑
k=

ak(t)z
(
hk(t)

) ≥ , t ≥ , ()

where a, ak , k = , . . . ,m are continuous bounded on [,∞) functions, ak(t) ≥ , hk , k =
, . . . ,m are continuous functions, limt→∞ hk(t) = ∞.
Denote by X(t, s) the fundamental function of equation (). Then X(t, s) > ,  ≤ s ≤ t.

Moreover, for any t, the equality x(t) = y(t) = z(t), t ≤ t, implies y(t) ≤ x(t) ≤ z(t), t > t,
where x, y, z are the solutions of (), (), () respectively.

Let us formulate one of the classical results by Chaplygin [] (see also []).

Lemma  Consider the ODE and corresponding differential inequalities:

ẋ(t) = f
(
t,x(t)

)
, t ≥ t,

ẏ(t) ≤ f
(
t, y(t)

)
, t ≥ t,

ż(t)≥ f
(
t, z(t)

)
, t ≥ t,

where f (t,u) is a continuous function. If y(t)≤ x(t) ≤ z(t), then y(t) ≤ x(t)≤ z(t), t > t.

http://www.advancesindifferenceequations.com/content/2012/1/217
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Theorem  If condition () holds, then for any solution (x, y) of system (), we have
limt→∞ x(t) = X∗, limt→∞ y(t) = , which means that (X∗, ) is a global attractor for all
solutions of system ()-().

Proof Suppose (x, y) is an arbitrary solution of (). From the second equation () we have

ẏ(t) ≤ –(μy – β)y(t) + inαγy(t – τ ).

By Lemma  we have  < y(t) ≤ u(t), where u is the solution of the equation

u̇(t) = –(μy – β)u(t) + inαγu(t – τ ),

where u(t) = y(t), t ≤ . Lemma  implies that limt→∞ u(t) = . Hence limt→∞ y(t) = . The
second part of the theorem is proven.
In order to prove that limt→∞ x(t) = X∗, at first wewill show that ẋ is a bounded function.

From the first equation (), we have

ẋ(t)≤ βx(t) ln
K
x(t)

.

Since

lim
x→

x ln
K
x
= , lim

x→+∞x ln
K
x
= –∞,

then for someM > , ẋ(t)≤ M.
Since limt→∞ y(t) = , then  < y(t) <My for someMy > . Thus

ẋ(t)≥
(

β ln
K

max{x(),K} – γMy –ωγ

)
max

{
x(),K

}
=M

and |ẋ(t)| ≤ C for some C > .
Using all the above, we can rewrite the following:

ẋ(t) ≤ βx(t) ln
K
x(t)

–ωγx
(
h(t)

)

≤ βx(t) ln
K
x(t)

–ωγx(t) +ωγ

∫ t

h(t)

∣∣ẋ(s)∣∣ds

≤ βx(t) ln
K
x(t)

–ωγx(t) +ωγC
(
t – h(t)

)
.

Since limt→∞(t – h(t)) = , then for any ε > , there exists t such that ωγC(t – h(t)) < ε,
t ≥ t.
And therefore,

ẋ(t)≤ βx(t) ln
K
x(t)

–ωγx(t) + ε, t ≥ t.

Consider now an ODE associated with the previous differential inequality

u̇(t) = βu(t) ln
K
u(t)

–ωγu(t) + ε, t ≥ t, ()
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where u(t) = x(t), and a functional equation F(p, ε) = , where

F(p, ε) = βp ln
K
p
–ωγp + ε.

We have F(X∗, ) = , F ′
p(X∗, ) = –β 	= . By the implicit function theorem, for small ε > ,

there exists the unique solution p = p(ε) of the equation F(p, ε) =  such that limε→ p(ε) =
X∗. It is obvious that p(ε) is a positive equilibrium of ODE ().
For the solution of equation (), we have u̇(t) > , t > t if u(t) < p(ε) and u̇(t) < , t > t

if u(t) > p(ε). Hence, for any solution of this equation, we have limt→∞ u(t) = p(ε). By
Lemma  we have x(t)≤ u(t), t ≥ t.
We also have

ẋ(t)≥ βx(t) ln
K
x(t)

– γx(t)y(t) –ωγx(t) –ωγC
(
t – h(t)

)
.

Since

lim
t→∞ y(t) = , lim

t→∞
(
t – h(t)

)
= ,

then for any ε > , there exists t such that

ẋ(t)≥ βx(t) ln
K
x(t)

– εx(t) –ωγx(t) – ε, t ≥ t.

Consider an ODE

v̇(t) = βv(t) ln
K
v(t)

– εv(t) –ωγv(t) – ε, t ≥ t. ()

Performing the same calculations as for equation (), we can show that for small ε > ,
equation () has the unique equilibrium q(ε) such that limε→ q(ε) = X∗. Hence, for any
solution of equation (), we have limt→∞ v(t) = q(ε). By Lemma  we obtain x(t) ≥ v(t),
t ≥ t.
Thus, for t =max{t, t}, we have v(t)≤ x(t)≤ u(t), t ≥ t. Hence

q(ε) ≤ lim
t→∞x(t)≤ p(ε).

But

lim
ε→

p(ε) = lim
ε→

q(ε) = X∗.

Hence

lim
t→∞x(t) = X∗.

The theorem is proven. �

By definition, local stability and global attractivity imply global stability. Hence, we have
the following result.
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Theorem  Suppose conditions () and () hold. Then the equilibrium (X*, ) is globally
asymptotically stable.

4 Simulation results
In order to verify the mathematical model of the biological system, it is widely accepted
to estimate the conditions defined in the presented theorems based on the parameters set
taken from the biological andmedical literature (these parameters are taken fromTable ).
System () has an equilibrium (X∗, ) where X∗ = Ke–

ωγ
β . Substituting the relevant pa-

rameters from Table , we get that X∗ = .×  exp(–×.
. ) = ,, which means

that the cancer cells number will not exceed the , cells at a constant daily dose of
 mg imatinib.
With increasing the daily dose of imatinib to  mg, the amount of cancer cells de-

creases to almost ,. These numerical results are consistent with the data given in
[].
In order to check the local and global stability conditions, we substitute parameters to

the expression inα × γ + β < μy. The following numerical inequality is received:  ×
.+.×– < .. The obtained result supports that themodel ()-() has a positive
stable local and global equilibrium if condition () is satisfied.

5 Conclusion
In this work we have proposed a mathematical model for the combination treatment of
chronicmyelogenous leukemiawith imatinib and IFN-α to overcome immune suppressive
side effects of imatinib, prolonging the chronic phase of the disease. Our model consists
of a system of two non-linear delay differential equations with logarithmic and rational
nonlinearities.
In order to describe the influence of two types of the treatment component (imatinib

and IFN-α) on the model compartments, we introduced delays and explained a biological
motivation for it. The proposed two-compartment model allows to evaluate directly the
expected steady states of the system.
In our work we investigate the contribution of IFN-α (immunotherapy) in eliciting

strong killer cells (CTL) responses against cancer (CML) cells in addition to imatinib ther-
apy by examination of CTL and CML cells populations only. The dose of IFN-α has an
inhibitory effect on the value of x(t), as seen from the formula (). As a result of calcula-
tions shown in Section , we observe that y(t) inhibits x(t), destroying itself to  in spite
of constant addition of IFN-α.
The existence of unique global solutions for CMLmodel was defined. Explicit local and

global stability conditions for the unique non-trivial equilibrium were obtained by apply-
ing themethod of delays in differential inequalities and linear stability theory of non-linear
delay differential equations. The numerical results show that our model replicates the av-
eraged behavior of the combined treatment.
In the future, in order to avoid resistance to imatinib, it looks reasonable to change the

IFN-α to another type of the treatment in combination with imatinib []. The best form
of combination therapy that leads to improved survival in patients remains to be seen in
future by mathematical models and clinical trials.
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