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Abstract
In this paper, we propose a new technique for solving space-time fractional telegraph
equations. This method is based on perturbation theory and the Laplace
transformation. Fractional Taylor series and fractional initial conditions have been
introduced. However, all the previous works avoid the term of fractional initial
conditions in the space-time telegraph equations. The results of introducing
fractional order initial conditions and the Laplace transform for the studied cases
show the high accuracy, simplicity and efficiency of the approach.

1 Introduction
Telegraph equations are hyperbolic partial differential equations that are applicable in sev-
eral fields such as wave propagation [], signal analysis [], random walk theory [], etc.
In recent years, there has been a great deal of interest in fractional differential equations
[, ]. Time-fractional telegraph equations have been studied by Orsingher and Zhao []
and Orsingher and Beghin []. Telegraph equations apply to high-frequency transmission
lines such as telegraph wires and radio frequency conductors. They are also applicable to
designing high-voltage transmission lines.
In this paper, we consider two different types of telegraph equations. The first one is the

space-fractional telegraph equation

∂αu
∂xα

=
∂u
∂t

+ a
∂u
∂t

+ bu + f (x, t),  < α ≤ ,

subject to the initial and boundary conditions

u(, t) = ϕ(t), ux(, t) = ψ(t), u(x, ) = φ(x),  < x < ;

and the second equation is the classical time-fractional telegraph equation

∂αu
∂tα

+
∂α–u
∂tα–

+ u =
∂u
∂x

+ f (x, t),  < α ≤ ,

subject to the initial conditions

u(x, ) = ϕ(t), ut(x, ) = ψ(x),

© 2012 Khan et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.advancesindifferenceequations.com/content/2012/1/204
mailto:yasirmath@yahoo.com
http://creativecommons.org/licenses/by/2.0


Khan et al. Advances in Difference Equations 2012, 2012:204 Page 2 of 9
http://www.advancesindifferenceequations.com/content/2012/1/204

where u can be considered as a function depending on distance (x) and time (t), a and b are
constants depending on a given problem and f , ϕ, φ, ψ are known continuous functions.
The second equation has been solved byDas et al. [] using the homotopy analysismethod.
The aim of this paper is to introduce a new method for fractional space-time telegraph

equations. This new technique is a combined formof the perturbationmethod [–]with
the Laplace transform. This method is called the perturbation Laplace method (PLM).
Moreover, we have introduced fractional order initial conditions for space-time telegraph
equations. Point to be noted regarding fractional differential equations is that one should
use fractional Taylor series. To make the calculation easy and simple, for the first time,
we have used the Laplace transform to solve the systems of equations formed after apply-
ing homotopy perturbation instead of applying an inverse operator. Through the Laplace
transform of fractional order term, it is easy to judge that one must use fractional order
initial conditions. It is easy to judge, by applying the Laplace transformation, that it is
essential to use a fractional order initial condition to analyze any physical phenomenon
which has been expressed in terms of fractional differential equations. To the best of au-
thors’ knowledge, in the literature on space-fractional telegraph equations [], there is no
closed form solution for different values of α except for the standard case, i.e., for α = .
The elegance of this article can be attributed to its endeavor of finding the solution in a
simple way by considering only the PLM. Two examples which show that only a few iter-
ations are needed to obtain accurate approximate solutions are solved.

2 Fractional calculus theory
We give some basic definitions and properties of the fractional calculus theory proposed
by Jumarie [] which are used further in this paper.

Definition  Let f : R → R, x → f (x), denote a continuous (but not necessarily differen-
tiable) function. Then its fractional derivative of order α, α < , is defined by the following
expression:

f (α)(x) =


�(–α)

∫ x


(x – ξ )–α–f (ξ )dξ .

For positive α, we define

f (α)(x) =
(
f (α–)(x)

)′,  < α < ,

f (α)(x) =


�( – α)
d
dx

∫ x


(x – ξ )–α

(
f (ξ ) – f ()

)
dξ

and

f (α)(x) =
(
f (α–n)(x)

)(n), n≤ α < n + ,n≥ .

With this definition, the Laplace transform L{·} of the fractional derivative is defined as
follows:

L
{
f (α)(x)

}
= sαL

{
f (x)

}
– sα–f (),  < α < .
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Proposition  (On the decomposition of fractional derivatives) Let α be such that  <
α < . There are two different ways to obtain Dαf (x) (see []). One can calculate
DαDαDαf (x) to obtain the Laplace transform

L
{
DαDαDαf (x)

}
= sαf (s) – sα–f () – sα–f (α)() – sα–f (α)(). ()

Proposition  Assume that the continuous function f : R → R, x → f (x) has a fractional
derivative of order kα for any positive integer k and any α,  < α ≤ . Then the following
equality holds:

f (x + h) =
∞∑
k=

hαk

αk!
f (αk)(x),  < α ≤ .

On making x =  and the substitution h → x, we obtain the fractional Maclaurin series

f (x) =
∞∑
k=

xαk

αk!
f (αk)(),  < α ≤ .

3 Perturbative Laplace method
In order to elucidate the solution procedure of the perturbative Laplace method (PLM),
we consider the following fractional differential equation:

Dnαu(x, t) = R[x]u(x, t) + q(x, t), t > ,x ∈ R,  < nα ≤ , ()

where Dnα = ∂nα

∂tnα , R[x] is generally the linear differential operator with respect to the vari-
able x and f (x), q(x, t) are continuous functions. In view of HPM [–], we can construct
a homotopy for Eq. () as follows:

( – p)Dnαu(x, t) + p
[
Dnαu(x, t) – R[x]u(x, t) – q(x, t)

]
= , ()

or

Dnαu(x, t) = p
[
R[x]u(x, t) + q(x, t)

]
, ()

where p ∈ [, ] is an embedding parameter. If p = , Eq. () and Eq. () become

Dnαu(x, t) = , ()

and when p = , both Eq. () and Eq. () turn out to be the original fractional differential
equation ().
The homotopy perturbation method [–] admits a solution in the form

u = pu + pu + pu + · · · . ()

Setting p =  in the solution of Eq. (), we get

u = u + u + u + · · · . ()
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Invoking Eq. () into Eq. () and collecting the terms with the same powers of p, we can
obtain a series of equations of the following form:

p: Dnαu(x, t) = ,

p: Dnαu(x, t) = Ru(x, t) + q(x, t),

p: Dnαu(x, t) = Ru(x, t), ()

p: Dnαu(x, t) = Ru(x, t),

...

By using the definition given in Eq. (), we get

p: snαu(x, s) – snα–u(x, ) – s(n–)α–u(α) (x, )

– s(n–)α–u(α) (x, ) – · · · – sα–u((n–)α) (x, ) = ,

p: snαu(x, s) = Ru(x, s) + q(x, s),

p: snαu(x, s) = Ru(x, s),

p: snαu(x, s) = Ru(x, s),

...

()

Solving Eq. () for u,u,u,u, . . . respectively, by using the fractional initial value condi-
tions, we get

p: u(x, t) = L–
{


snα

(
snα–u(x, ) + s(n–)α–u(α) (x, )

+ s(n–)α–u(α) (x, ) + · · · + sα–u(nα)
 (x, )

)}
,

p: u(x, t) = L–
{


snα

(
Ru(x, s) + q(x, s)

)}
,

p: u(x, t) = L–
{


snα

(
Ru(x, s)

)}
,

p: u(x, t) = L–
{


snα

(
Ru(x, s)

)}
,

...

()

Substituting successive iterations in Eq. () will give the required result.

4 Space-time fractional telegraph equations
Example  Let us consider the space-fractional telegraph equation

∂αu
∂xα

=
∂u
∂t

+
∂u
∂t

+ u,  < α ≤ , ()
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subject to the initial and boundary conditions

u(, t) = e–t , ux(, t) = e–t , u(x, ) = ex,  < x < .

In order to illustrate the efficiency of our method, we replace the fractional order α,  <
α ≤ , by the order α,  < α ≤ , in Eq. ()

∂αu
∂xα

=
∂u
∂t

+
∂u
∂t

+ u,  < α ≤ , ()

subject to the initial and boundary conditions

u(, t) = e–t , u(α)(, t) = e–t , u(x, ) = ex,  < x < .

Using the procedure in Section , we canwrite Eq. () in the formof recurrence equations
as follows:

p: Dαu(x, t) = , u(, t) = e–t , u(α) (, t) = e–t ,

p: Dαu(x, t) =
∂u
∂t

(x, t) +
∂u
∂t

(x, t) + u(x, t), u(, t) = u(α) (, t) = ,

p: Dαu(x, t) =
∂u
∂t

(x, t) +
∂u
∂t

(x, t) + u(x, t), u(, t) = u(α) (, t) = , ()

p: Dαu(x, t) =
∂u
∂t

(x, t) +
∂u
∂t

(x, t) + u(x, t), u(, t) = u(α) (, t) = ,

...

In view of Eq. (), Eq. () can be written in the following form:

p: sαu(s, t) – sα–e–t – sα–e–t = ,

p: sαu(s, t) = s–e–t + s–α–e–t ,

p: sαu(s, t) = s–α–e–t + s–α–e–t , ()

p: sαu(s, t) = s–α–e–t + s–α–e–t ,

...

Solving Eq. () for u,u,u,u, . . . , we get the following form:

p: u(x, t) = e–tL–
{(


s
+


sα+

)}
,

p: u(x, t) = e–tL–
{


sα

(

s
+


sα+

)}
,

p: u(x, t) = e–tL–
{


sα

(


sα+
+


sα+

)}
, ()

p: u(x, t) = e–tL–
{


sα

(


sα+ +


sα+

)}
,

...
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Equation () in the most refined form can be written as

u(x, t) = e–t
(
 +

xα

�( + α)

)
,

u(x, t) = e–t
(

xα

�(α + )
+

xα

�(α + )

)
,

u(x, t) = e–t
(

xα

�(α + )
+

xα

�(α + )

)
, ()

u(x, t) = e–t
(

xα

�(α + )
+

xα

�(α + )

)
,

...

The solution in a series form can be expressed as

u(x, t) = e–t
(
 +

xα

�( + α)
+

xα

�(α + )
+

xα

�(α + )
+

xα

�(α + )
+

xα

�(α + )
+ · · ·

)

=
∞∑
k=

e–txkα

�( + kα)
= e–tEα

(
xα

)
,

where Eα denotes the Mittag-Leffler function.

Example  We consider the nonhomogeneous fractional time telegraph equation

∂αu
∂tα

+
∂α–u
∂tα–

+ u =
∂u
∂x

+ f (x, t),  < α ≤ , ()

subject to the initial conditions

u(x, ) = , ut(x, ) = ,

with

f (x, t) =
tn

�(n + )
sinhx,

and for the fractional initial condition

∂αu
∂tα

+
∂α–u
∂tα–

+ u =
∂u
∂x

+ f (x, t),  < α ≤ , ()

subject to the initial conditions

u(x, ) = , u(α)(x, ) = ,

with

f (x, t) =
tn

�(n + )
sinhx.
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By applying the aforesaid method, we can write Eq. () in the form of recurrence equa-
tions as follows:

p: Dαu(x, t) = , u(x, ) = , u(α) (x, ) = ,

p: Dαu(x, t) = –u(α–) (x, t) – u(x, t) +
∂u(x, t)

∂x
+ f (x, t),

u(x, ) = u(α) (x, ) = ,

p: Dαu(x, t) = –u(α–) (x, t) – u(x, t) +
∂u(x, t)

∂x
,

u(x, ) = u(α) (x, ) = ,

p: Dαu(x, t) = –u(α–) (x, t) – u(x, t) +
∂u(x, t)

∂x
,

u(x, ) = u(α) (x, ) = ,

...

()

By using Eq. (), we can write Eq. () in the following form:

p: sαu(x, s) = ,

p: sαu(x, s) =
sinhx
sn+

,

p: sαu(x, s) =
– sinhx
sn+

,

...

Proceeding as before, we obtain

p: u(x, t) = ,

p: u(x, t) = L–
{

sα

(
sinhx
sn+

)}
,

p: u(x, t) = L–
{

sα

(
– sinhx
sn+

)}
,

...

()

Equation () can also be written as

u(x, t) = ,

u(x, t) =
(

tn+α

�(n + α + )

)
sinhx,

u(x, t) =
(

–tn+α+

�(n + α + )

)
sinhx,

u(x, t) =
(

tn+α+

�(n + α + )

)
sinhx,

...
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Figure 1 Plot of u(x, t) with respect to t at x = 2, where n = 1.

Figure 2 Plot of u(x, t) with respect to x and t at n = 1 and α = 1.5.

and so on. In this way, the rest of components of the homotopy perturbation series can be
obtained. Finally, we obtain the series solution as

u(x, t) =
(

tn+α

�(n + α + )
–

tn+α+

�(n + α + )
+

tn+α+

�(n + α + )
+ · · ·

)
sinhx.

Figure  shows the approximate solution of Eq. () for different values ofα using the per-
turbative Laplace method. The numerical result of the probability density function u(x, t)
for different fractional Brownianmotions α = ., ., ., and also for standardmotion
α = , is calculated for n = , x =  with respect to the variable t. The three-dimensional
variation of u(x, t) vs. x and t at α = . and n =  is shown in Figure . It is seen from
the figures that u(x, t) increases with increasing t but decreases with increasing α, which
assures the exponential decay of regular Brownian motion.

5 Conclusion
In this paper, we have introduced a combination of perturbation and Laplace methods
for space-time fractional problem which we called the PLM. We described the method
and used it in some fractional telegraph equations in order to show its applicability and
validity. We achieved accurate approximations by using only a few numbers of iterations,
which reveals efficiency of the newmethod. The solution very rapidly converges by utiliz-
ing the perturbation Laplacemethod. The PLM is also valid for other fractional differential
equations, and this paper can be used as a standard paradigm for other applications.
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