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Abstract

In this paper, a CAT(0) version of famous Fan’s minimax inequality is established and
as its application, we obtain some fixed point theorems and best approximation
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1 Introduction
A metric space is a CAT(0) space if it is geodesically connected and if every geodesic

triangle in this space is at least as thin as its comparison triangle in Euclidean plane.

CAT(0) spaces play fundamental role in various areas of mathematics [1]. Moreover,

there are applications in biology and computer science as well [2,3].

Fixed point theory in a CAT(0) space was first studied by Kirk [4]. Since then, the

fixed point theory for single valued and multivalued mappings in CAT(0) spaces has

been developed [5-8].

The famous Knaster-Kuratowski-Mazurkiewicz theorem (in short, KKM theorem)

and its generalization have a fundamental importance in modern nonlinear analysis

[9,10]. Recently, Niculescu and Roventa established the KKM mapping principle for

CAT(0) spaces [11].

In this paper, a minimax inequality in CAT(0) spaces is established and as its appli-

cation, some fixed point and best approximation theorems in CAT(0) spaces are

proved.

2 Preliminaries
Let (X, d) be a metric space. A geodesic path joining x Î X to y Î Y (briefly, a geode-

sic from x to y) is a map c from a closed interval [0, l] ⊆ ℝ to X such that c(0) = x, c

(l) = y and d(c(t), c(t’)) = |t - t’| for all t, t’ Î [0, l]. In particular, c is an isometry and

d(x, y) = l. The image of c is called a geodesic segment joining x and y. When it is

unique, this geodesic is denoted by [x, y].

The metric space (X, d) is said to be a geodesic space if every two points of X are

joined by a geodesic, and X is said to be uniquely geodesic if there is exactly one geo-

desic joining x and y for each x, y Î X. A subset Y of X is said to be convex if Y

includes every geodesic segment joining any of two its points.
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A geodesic triangle △(x1, x2, x3) in a geodesic space consists of three points x1, x2, x3
in X (the vertices of △) and a geodesic segment between each pair of vertices (the

edges of △). A comparison triangle for geodesic triangle △ (x1, x2, x3) in (X, d) is a tri-

angle �̄(x1, x2, x3) := �(x̄1, x̄2, x̄3) in the Euclidian plane E2 such that

dE2 (x̄i, x̄j) = d(xi, xj),

for i, j Î {1, 2, 3}.

A geodesic space is called a CAT(0) space if all geodesic triangles satisfy the CAT(0)

inequality:

For every geodesic triangle, △ in X and its comparison triangle �̄ in E2, if x, y Î △,
and x̄, ȳ are comparison points in �̄, then

d(x, y) ≤ dE2 (x̄, ȳ).

We now collect some elementary facts about CAT(0) spaces which will be used in

the proofs of our main results.

Lemma 2.1 [1]Every CAT(0) space (X, d) is uniquely geodesic, and the balls in (X, d)

are convex.

Lemma 2.2 [12]Let (X, d) be a CAT(0) space. Then,

1. for each x, y Î X such that x ≠ y then d(x, z) + d(z, y) = d(x, y) if and only if z Î
[x, y],

2. for each x, y Î X and t Î [0, 1], there exists a unique point z Î [x, y] such that d

(x, z) = td(x, y) and d(y, z) = (1 - t)d(x, y).

Recall that we say a topological space K has the fixed point property if every contin-

uous map f : K ® K has a fixed point. Let X and Y be topological Hausdorff spaces, B

⊆ Y and T : X ® Y be a multivalued map with nonempty values. Define

T−(B) = {x ∈ X : T(x) ∩ B �= ∅},

and let int(B), ∂B and F(B) denote the interior, boundary and the set of all none-

mpty finite subsets of B.

Let E be a CAT(0) space and F ⊆ E. Recall that the notion of a convex hull is intro-

duced via the formula

co(F) =
∞⋃
n=0

Fn,

where F0 = F and for n ≥ 1, the set Fn consists of all points in E which lie on geode-

sics which start and end in Fn-1. The convex hull of a finite subset is not necessarily

closed, but in any locally convex Hausdorff space, if K1,..., Kn are compact convex sub-

sets, then the convex hull of their union is compact too [13].

Definition 2.1 [11] Let C be a nonempty subset of a CAT(0) space E. A multivalued

mapping G : C ® 2E is said a KKM mapping if

co(F) ⊆
⋃
x∈F

G(x),

for every nonempty finite set F ∈ F(C).

Example 2.1 Let C be a convex subset of CAT(0) space E and f : C ® ℝ be such

that for each x1,..., xnÎ X if x Î co({x1,..., xn}), then there exist a1,..., anÎ ℝ with
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φ(x) = {y ∈ C : f (y) ≤ f (x)}. such that f (x) ≤ ∑n
i=1 aif (xi). For each x Î C define

φ(x) = {y ∈ C : f (y) ≤ f (x)}.

We show that j is a KKM map. By contradiction, suppose y Î co({x1,..., xn}) and y ∉
∪ij(xi). Therefore, there exist a1,..., anÎ ℝ with

∑n
i=1 ai = 1 such that

f (y) ≤ ∑n
i=1 aif (xi). Since f (xi) < f (y) for each i = 1,..., n, so we have a contradiction.

Thus, j is a KKM map.

Definition 2.2 We say that a CAT(0) space X has the convex hull finite property if

the closed convex hull of every nonempty finite family of points of X has the fixed

point property.

Example 2.2 [14] In a locally compact CAT(0) space, the closed convex hull of each

finite family of points has the fixed point property. So, every locally compact CAT(0)

space has the convex hull finite property.

The following important result is established in [11].

Theorem 2.1 (KKM mapping principle) Suppose that E is a complete CAT(0) space

with the convex hull finite property and X is a nonempty subset of E. Furthermore, sup-

pose M : X ® 2X is a KKM mapping with closed values. Then, if M(z) is compact for

some z Î X, then
⋂
x∈X

M(x) �= ∅.

3 Main results
The following theorem is a direct application of KKM mapping principle.

Theorem 3.1 Suppose X is a compact subset of a complete CAT(0) space E with con-

vex hull finite property and F : X ® E is continuous. Then, there exists y0 Î X such

that

d(y0, F(y0)) = inf
x∈X

d(x, F(y0)).

Proof. Consider the map G : X ® 2E defined by

G(x) = {y ∈ X : d(y, F(y)) ≤ d(x, F(y))}.

Since F is continuous, so G(x) is closed for every x Î X. We claim that

co(A) ⊆
⋃
x∈A

G(x),

for all finite set A ⊆ X. On the contrary, there exists {x1,..., xn} ⊆ X and y Î co({x1,...,

xn}) such that y /∈ ⋃
i G(xi). This clearly implies

d(xi, F(y)) < d(y, F(y)),

for i = 1,..., n. Hence, xiÎ B(F (y), d(y, F (y))) for i = 1,..., n. Therefore, we have

co({x1, . . . , xn}) ⊆ B(F(y), d(y, F(y))),

which implies that y Î B(F(y), d(y, F(y))). Clearly, this gets a contradiction.

By compactness of X, we deduce that G(x) is compact for every x Î X. Therefore,

there exists y0 Î ∩xÎXG(x). This clearly implies d(y0, F (y0)) ≤ d(x, F(y0)) for every x Î
X which implies
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d(y0, F(y0)) = inf
x∈X

d(x, F(y0)),

and the proof is complete. □
Theorem 3.2 Suppose X is a compact subset of a complete CAT(0) space E with con-

vex hull finite property and F : X ® E is a continuous map such that for every c Î X,

with c ≠ F(c), there exists a Î (0, 1) such that

X ∩ B(F(c), (1 − α)d(c, F(c))) �= ∅.

Then, F has a fixed point.

Proof. By Theorem 3.1, there exists y0 Î X such that

d(y0, F(y0)) = inf
x∈X

d(x, F(y0)).

We claim that y0 is a fixed point of F. Indeed, assume not, i.e., y0 ≠ F(y0). Then, our

assumption on X implies the existence of a Î (0, 1) such that

X ∩ B(F(y0), (1 − α)d(y0, F(y0))) �= ∅.

Let x Î X ∩ B(F(y0), (1 - a)d(y0, F (y0))). Clearly, x ≠ y0, and we have

d(x, F(y0)) < (1 − α)d(y0, F(y0)).

Since d(y0, F(y0)) ≤ d(x, F(y0)), we clearly get a contradiction and this completes the

proof. □
Definition 3.1 Let E be a CAT(0) space, and C be a convex subset of E. A function f

: C ® ℝ is said to be metrically quasi-concave (resp., metrically quasi-convex) if for

each l Î ℝ, the set {x Î C : f(x) > l} (resp., {x ® C : f(x) < l}) is convex.
Example 3.1 Consider Hilbert space l2 consisting of all complex sequences with the

norm ||x|| = (
∑∞

i=1 ξ2i )
1
2, where x = (ξj) Î l2. Define the functions f, g : l2 ® ℝ defined

by

f (x) =
{

0 x = 0
1

||x|| x �= 0,

and g(x) = ||x||. It is easy to see that f is metrically quasi-concave and is not quasi-

convex, and g is metrically quasi-convex and not metrically quasi-concave.

Lemma 3.1 Let C be a convex subset of a CAT(0) space X, and the function f : C × C

® ℝ satisfies the following conditions.

1. for each x Î C, the function f(·, x) : C ® ℝ is metrically quasi-concave (resp.,

metrically quasi-convex),

2. there exists g Î ℝ such that f(x, x) ≤ g (resp., f(x, x) ≥ ) for each x Î C.

Then, the mapping G : C ® 2X, which is defined by

G(x) = {y ∈ C : f (x, y) ≤ γ } (resp., G(x) = {y ∈ C : f (x, y) ≥ γ }),

is a KKM mapping.

Proof. The conclusion is proved for the concave case, the convex case is completely

similar. On the contrary assume that G is not a KKM mapping. Suppose that there

exists a finite subset A = {x1,..., xn} of C and a point x0 Î co(A) such that x0 ∉ G(xi) for
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each i = 1,..., n. By setting

λ = min{f (xi, x0) : i = 1, . . . ,n} > γ ,

and

B = {z ∈ C : f (z, x0) > λ0},

where l > l0> g. For each i, we have xiÎ B. According to hypothesis 1, B is convex

and hence co(A) ⊆ B. So, x0 Î B, and we have f (x0, x0) > l0> g which is a contradic-

tion by (2). Thus, G is a KKM mapping. □
Definition 3.2 Let X, Y be CAT(0) spaces. A map F : X ® 2Y is said to be

• upper semicontinuous if for each closed set B ⊆ Y , F-(B) is closed in X.

• lower semicontinuous if for each open set B ⊆ Y , F-(B) is open in X.

It is well known that if F(x) is compact for each x Î X, then F is upper semicontinu-

ous if and only if for each x Î X and ε >0, there exist Δ >0 such that for each x’ Î B

(x, Δ), we have F(x’) ⊆ B(F(x), ε).

The following is a CAT(0) version of the Fan’s minimax inequality [15].

Theorem 3.3 Suppose C is a compact and convex subset of a complete CAT(0) space

E with convex hull finite property and f : C×C ® ℝ satisfies the following,

1. for each x Î C, the function f(x,·) : C ® ℝ is lower semicontinuous (resp., upper

semicontinuous),

2. for each y Î C, the function f(·, y) : C ® ℝ is metrically quasi-concave (resp.,

metrically quasi-convex),

3. there exists g Î ℝ such that f(x, x) ≤ g (resp., f(x, x) ≥ g) for each x Î C.

Then, there exists a y0 Î C such that f (x, y0) ≤ g (resp., f (x, y0) ≥ g) for all x Î C

and hence

sup
x∈C

f (x, y0) ≤ sup
x∈C

f (x, x)

(resp., inf
x∈C

f (x, y0) ≥ inf
x∈C

f (x, x)).

Proof. By hypothesis 3, l = supxÎCf (x, x) < ∞. For each x Î C, define the mapping G

: C ® 2C by

G(x) = {y ∈ C : f (x, y) ≤ λ},

which is closed by hypothesis (1). By Lemma 3.1, G is a KKM mapping. By Theorem

2.1,
⋂
x∈C

G(x) �= ∅.

Therefore, there exists a y0 ∈ ⋂
x∈C G(x). Thus, f (x, y0) ≤ l for every x Î C.

Hence,

sup
x∈C

f (x, y0) ≤ sup
x∈C

f (x, x).
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This completes the proof. □
Definition 3.3 Let X be a CAT(0) space and D ⊆ X. The map G : D ® 2X is called

quasi-convex if the set G-(C) is convex for each convex subset C of Y.

Theorem 3.4 Suppose X is a compact subset of a complete CAT(0) space E with con-

vex hull finite property and F, G : X ® 2E are upper semicontinuous maps with none-

mpty compact convex values and G is quasi-convex. Then, there exists x0 Î X such that

d(G(x0), F(x0)) = inf
x∈X

d(G(x), F(x0)).

Proof. Let H : X ® 2X be defined by

H(y) = {x ∈ X : d(G(x), F(x)) ≤ d(G(y), F(x))}.

For each y Î X, since y Î H(y), so H(y) ≠ ∅.

We claim that H(y) is closed for each y Î X. Suppose that {yn} be a sequence in H(y)

such that yn® y*. We show that y* Î H(y). Let ε >0 be arbitrary. Since F is upper

semicontinuous with compact values, so there exists N1 such that for each n ≥ N1, we

have

F(yn) ⊆ B̄(F(y∗), ε).

Similarly, we can prove there exists N1 such that for each n ≥ N2, we have

G(yn) ⊆ B̄(G(y∗), ε).

Let N = max{N1, N2}. Then, we have

d(G(y∗), F(y∗)) ≤ d(G(y∗),G(yn)) + d(G(yn), F(yn)) + d(F(yn), F(y∗))
≤ 2ε + d(G(yn), F(yn))

≤ 2ε + d(G(y), F(yn))

≤ 2ε + d(G(y), F(y∗)) + d(F(y∗), F(yn))
≤ 3ε + d(G(y), F(y∗)).

Since ε was arbitrary, so

d(G(y∗), F(y∗)) ≤ d(G(y), F(y∗)),

and this proves our claim.

Now, we show that for each A ∈ F(X), co(A) ⊆ H(A). On the contrary, suppose co(A)

⊄ H(A) for some A ∈ F(X). Then, there exists y Î co(A) such that y ∉ H(a) for every a

Î A. Therefore,

d(G(a), F(y)) < d(G(y), F(y)), (1)

for some a Î A. For each a Î A, we have

G(a)
⋂ ⎛

⎝ ⋃
y′∈F(y)

B(y′,max
b∈A

d(G(a), F(y)))

⎞
⎠ �= ∅.

Since F(y) is convex, so
⋃

y′∈F(y)
B(y′,max

b∈A
d(G(b), F(y))))

Shabanian and Vaezpour Fixed Point Theory and Applications 2011, 2011:61
http://www.fixedpointtheoryandapplications.com/content/2011/1/61

Page 6 of 9



is convex. This shows that

G(y)
⋂ ⎛

⎝ ⋃
y′∈F(y)

B(y′,max
b∈A

d(G(b), F(y)))

⎞
⎠ �= ∅,

because G is quasi-convex. Therefore, by (1), we have

d(G(y), F(y)) ≤ max
b∈A

d(G(b), F(y)) < d(G(y), F(y)).

This is a contradiction. Now, by Theorem 2.1, it follow that there exists x0 Î X such

that

x0 ∈ ∩y∈XH(y).

Hence,

d(G(x0), F(x0)) = inf
x∈X

d(G(x), F(x0)).

This completes the proof. □
Corollary 3.1 Suppose X is a compact subset of a complete CAT(0) space E with con-

vex hull finite property and G : X ® 2X is an onto, quasi-convex and upper semicontin-

uous map with nonempty compact convex values and f : X ® X is a continuous single

valued map. Then, there exists x0 Î X such that f(x0) Î G(x0).

Corollary 3.2 Suppose X is a compact subset of a complete CAT(0) space E with con-

vex hull finite property and G : X ® 2X is a quasi-convex and an upper semicontinuous

map with nonempty compact convex values. Then, there exists x0 Î X such that

d(x0,G(x0)) = inf
x∈X

d(G(x), x0).

Corollary 3.3 Suppose X is a compact subset of a complete CAT(0) space E with con-

vex hull finite property and G : X ® 2X is an upper semicontinuous map with none-

mpty compact convex values. Then, there exists x0 Î X such that

d(G(x0), x0) = inf
x∈X

d(G(x0), x).

Moreover, if x0 ∉ G(x0) then x0 Î ∂X.

Proof. By Theorem 3.4, clearly there exists x0 Î X such that

d(G(x0), x0) = inf
x∈X

d(G(x0), x). (2)

Suppose x0 ∉ G(x0). Since G has compact values, so d(x0, G(x0)) = r >0. We prove

that x0 Î ∂X. Assume, it is not. Then, x0 Î int(X). Therefore, there exists an ε Î (0, r)

such that B(x0, ε) ⊆ X. Take z0 Î G(x0) such that d(x0, z0) < r + ε
2. By Lemma 2.2(2),

there exists y0 Î [x0, z0] such that d(x0, y0) = ε
2. Again by Lemma 2.2(1), we have

d(y0,G(x0)) ≤ d(y0, z0) = d(x0, z0) − d(x0, y0) < r = d(x0,G(x0),

which is a contradiction by (2). Therefore, x0 Î ∂X. □
Corollary 3.4 Suppose X is a compact subset of a complete CAT(0) space E with con-

vex hull finite property and G : X ® 2X is an upper semicontinuous map with none-

mpty compact convex values. If G(x) ∩ X = ∅ for all x Î ∂X, then G has a fixed point.
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Proof. On the contrary, assume that G does not have a fixed point. Therefore, by

Theorem 3.4, there exists x0 Î ∂X such that

0 < d(x0,Gx0) ≤ d(x,Gx0), (3)

for all x Î X. Since x0 Î ∂X, we have Gx0 ∩ X ≠ ∅. This is a contradiction by (3). □
If in Theorem 3.4, G is single valued, then it reduces to the following analog of Fan’s

best approximation to single-valued mappings in CAT(0) spaces.

Corollary 3.5 Suppose X is a compact subset of E and G : X ® E is a continuous

map. Then, there exists x0 Î X such that

d(Gx0, x0) ≤ d(Gx0, x),

for all x Î X.

The following is an analog of Fan’s fixed point theorem in CAT(0) spaces [16].

Theorem 3.5 Suppose X is a compact subset of a complete CAT(0) space E with con-

vex hull finite property and G : X ® E is a continuous map and for every x Î X with x

≠ Gx,

(x,Gx] = [x,Gx]\{x},

contains at least one point of X, then G has a fixed point.

Proof. By the Corollary 3.5, there exists x0 Î X such that

d(x0,Gx0) ≤ d(x,Gx0), (4)

for all x Î X.

We claim that x0 is a fixed point of T. On the contrary, assume that x0 ≠ Gx0. Then,

by assumptions, there exists z Î X such that z Î (x0, Gx0].

Therefore,

d(z,Gx0) = d(x0,Gx0) − d(x0, z) < d(x0,Gx0),

which by (4) it is a contradiction. □
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