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Abstract

In this paper, we propose an improved rotation invariant uniform local binary pattern (RIU-LBP) operator for
segmenting high-resolution sensing image which can effectively describe the texture features of a high-resolution
remote sensing image. The improved RIU-LBP is based on RIU-LBP. It introduces a threshold in binarization of
region pixels. The new LBP operator can better tolerate small texture variation and better distinguish the plain and
rough texture than the original RIU-LBP does. Then, a merging criterion of texture regions is proposed, which is
based on regional LBP value distribution and Bhattacharyya distance. Finally, the texture merging criterion and
spectral merging criterion are combined in the statistical region merging (SRM)-based remote sensing image
segmentation method to improve segmentation results, taking full advantage of rich spectral and texture
information in high-resolution remote sensing images. This algorithm can be adjusted to the number of segmented
regions, and experiments indicate better segmentation results than ENVI 5.0 and the SRM method.
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1 Introduction
Segmentation is an important problem in remote sens-
ing image processing [1,2]. Early remote sensing image
segmentation methods utilize pixel-based strategies and
ignore rich spectral and structure information. Thus, the
segmentation results are unsatisfactory and have adverse
influence on following image analysis. In recent years,
object-oriented segmentation methods are extensively
applied in remote sensing image analysis. Homogenous
region features such as intensity, texture, and shape can
be used to improve the segmentation accuracy. Although
there have been many significant object-oriented seg-
mentation algorithms in remote sensing image segmen-
tation using multispectral information [3-5], only a few
ones can be effectively applied in the segmentation of
high-resolution remote sensing images. High-resolution
remote sensing images contain rich spatial texture infor-
mation in many scales which is an advantageous resource
in the process of remote sensing image segmentation
[6,7]. However, traditional image segmentation algorithms
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do not take rich texture information into account. Nock
and Nielsen proposed a statistical method for image seg-
mentation by merging region following a particular order
of regions [8]. The method uses the most common nu-
merical pixel attribute spaces. However, it mainly exploits
spectral information in images and ignores useful texture
features. On the basis of Nock and Nielsen's work, some
new statistical region merging (SRM)-based segmentation
algorithms which are specific for high-resolution remote
sensing image segmentation are proposed [9-11]. How-
ever, none of them focus on taking advantages of texture
information in the merging process. To take such texture
features into account, we add texture information in
the merging process of the SRM to enhance the seg-
mentation performance. Among numerous texture de-
scription methods, the local binary pattern (LBP) operator
is chosen in consideration of its combination of statistic-
based and structure-based methods. It has been proved to
be theoretically simple and very effective in describing the
characteristics of local texture regions. Some improve-
ments on LBP operators have been proposed such as mul-
tiscale LBP, rotation invariant LBP, rotation invariant
uniform LBP (RIU-LBP), etc. [12-14].
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In this paper, we propose a high-resolution remote
sensing image segmentation algorithm based on the im-
proved LBP feature and SRM region merging method.
The proposed algorithm can make full use of the
spectral information and the texture information in
the high-resolution remote sensing image. Moreover,
the appropriate criterion can be adaptively chosen in
the region merging step according to the characteris-
tics of regions, which can further improve the segmentation
performance. This algorithm can segment high-resolution
remote sensing images with complex scene effectively.
The contributions of our proposed method includes
the following: First, an improved RIU-LBP is proposed to
describe texture features as the traditional LBP has diffi-
culties in differentiating high-resolution remote sensing
image regions with different textures. The improved
RIU-LBP operator is based on the RIU-LBP feature. A
threshold is introduced to determine a uniform mode
that handles regions with similar spectral information
but different texture information. Second, the improved
RIU-LBP operator is applied to extract texture infor-
mation in high-resolution remote sensing images for
segmentation tasks. The merging criterion based on tex-
ture information is combined with the SRM method to
form a double criterion to predict whether merging or not.
The merging rule based on texture information adopts the
Bhattacharyya distance. As shown in the experimental re-
sults, the proposed method outperforms the SRM and
ENVI 5.0, which is a remote sensing image processing soft-
ware developed by the Exelis Visual Information Solutions.
This paper is organized as follows. In Section 2, we re-

view the basic LBP and RIU-LBP and then propose the
improved RIU-LBP. In Section 3, we present the seg-
mentation algorithm. The proposed scheme using the
improved RIU-LBP and SRM is described elaborately.
Experiment results and analysis are shown in Section 4.
Finally, the paper is concluded in Section 5.

2 The LBP operator
2.1 Rotation invariant uniform local binary pattern
To describe the image texture features, the LBP was pro-
posed by Ojala et al. [12]. The LBP combined the
statistics-based method and the structure-based method
effectively. Thus, compared with other methods, it has
a great advantage in describing the texture feature of
image regions. For simplification, we take one color chan-
nel in images for discussion. The key of LBP is to encode
image pixels' value into binary codes. First, the gray value
of the geometric center in a local region is used as a
threshold value to binarize pixels around the center. Then,
the binarization values are multiplied by the correspond-
ing weights according to their positions. Adding the
weighted binarization values, the coding value of the cen-
ter pixel can be obtained.
The basic LBP has much variations and the quantization
is crude, which has high computational complexity. With
extensive statistical analysis, Ojala et al. found that the
local binary patterns have strong regular form. Some spe-
cific patterns account for a large proportion of the total of
the LBP. These local binary patterns have a similar struc-
ture, where the number of the 0/1 or 1/0 transitions be-
tween adjacent positions of the neighborhood pixels in the
local region is very small. Therefore, Ojala et al. defined
those patterns as ‘uniform’ patterns and proposed a RIU-
LBP operator so that a statistical distribution on uniform
patterns can be effectively computed. Unlike the basic
LBP, the RIU-LBP chooses circular neighborhoods as the
center pixel's coding unit and focuses on pixels which have
uniform mode [12,13]. Equation (1) shows how to deter-
mine whether a local binary pattern is uniform:

U LBPP;R
� � ¼ sign gP−1−gc

� �
−sign g0−gc

� ��� ��
þ
XP−1
p¼1

sign gp−gc
� �

−sign gp−1−gc
� ���� ��� ð1Þ

where P is the number of pixels around the center pixel, R
represents the radius of the circular neighborhood, gc is
the gray value of the center pixel, gp is the gray value of
the pth pixel around the center following the specific
order, and p ∈ [0,P − 1]. When U(LBPP,R) ≤ 2, the pattern is
determined as uniform [13], i.e., the pattern whose num-
ber of 0/1 or 1/0 transitions between the adjacent posi-
tions of the neighborhood pixels is less than two times
is uniform. Moreover, the RIU-LBP operator can be
defined as

LBPriu2P;R ¼
XP−1
p¼1

sign gp−gc
� �

; if U LBPP;R
� �

≤2

P þ 1; otherwise

8><
>:

ð2Þ

2.2 Improved rotation invariant uniform local binary
pattern
The sign operator sign(gp − gc) dominates the result of
RIU-LBP. If a slight change happens in gray values,
LBPriu2P;R might change dramatically as shown in Figure 1.

In other words, LBPriu2P;R is easily affected by the slight vari-
ation of gray values in the neighborhood pixels. Observing
the left columns in Figure 1A,B, it is obvious that the dif-
ference between Figure 1A,B is very small, but their
LBPriu28;1 values are quite different: Figure 1A is the uniform

LBP and the LBPriu2
8;1 value is 3, while Figure 1B is the non-

uniform LBP and the LBPriu28;1 value is 9.
From this example, we can see that the RIU-LBP oper-

ator defined by (2) cannot express the similarity of two
regions, once the gray values of neighborhood pixels are



(A) (B)

Figure 1 Two similar regions and their binarization results. Pixels in (A) and (B) are the same except the pixel in the second row and first
column. Their binarization results are similar, but the values of LBPriu2P;R are different.
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very close to the center pixel's gray value. In other
words, LBPriu2P;R is sensitive to the light variation. Unfortu-
nately, this situation is prone to occur in remote sensing
images because high-resolution remote sensing images
have rich texture information, and the gray values of dif-
ferent image regions with the same texture information
are vulnerable to this disturbance.
To solve this problem, we add a threshold T to make

LBPriu2
P;R stable. Then, the improved RIU-LBP operator is

defined as

LBPriu2;T
P;R ¼

XP−1
p¼0

sign gp−gc
��� ���−T� �

; if U LBPTP;R
� �

≤2

P þ 1; otherwise

8><
>:

ð3Þ

where

U LBPTP;R
� �

¼ sign gP−1−gc
�� ��−T� �

−sign g0−gc
�� ��−T� ��� ��þ

XP−1
p¼1

sign gp−gc
��� ���−T� �

−sign gp−1−gc
��� ���−T� ���� ���

ð4Þ

The notation in (3) and (4) is defined in (1) and (2). The

original LBPriu2P;R in (2) is one special case of LBPriu2;TP;R ,

when T = 0. Thus, LBPriu2P;R has the comprehensive ability
to represent texture features.
(A)

Figure 2 Another two similar regions and their binarization results. T
The binarization results of the two regions are the same, but different in Fi
To illustrate LBPriu2;T
P;R s advantages for describing texture

features intuitively, two examples are shown in Figures 2
and 3. The parameters are set as P = 8, R = 1, and T = 20.

Figure 2 illustrates the binarization result of LBPriu2;T
8;1

using the same two similar regions as Figure 1. Figure 3
shows two regions with different texture characteristics,
and this example can show another advantage of the

LBPriu2;T8;1 operator.
As shown in Figures 1 and 2, for the two similar local

texture regions, their LBPriu2
8;1 values are different, but

their LBPriu2;20
8;1 values are the same. LBPriu2;20

8;1 is more ro-
bust to light variation and image noises. From Figure 3,
we can see that Figure 3A is relatively flat while Figure 3B
is relatively rough. After calculating the LBP values by

LBPriu28;1 and LBPriu2;208;1 , respectively, it is easy to find out

that the LBPriu28;1 values of both Figure 3A,B are the same,

but their LBPriu2;208;1 values are different. According to this

example, it is obvious that LBPriu2;20
8;1 can effectively distin-

guish different texture features than LBPriu28;1 does.
According to the analysis and verification above, two

merits of the improved RIU-LBP operator are observed.
The first merit is the ability to eliminate the disturbance
of the small gray value variation in the texture regions,
which can improve the robustness for the description of
texture regions with the same texture feature. The sec-
ond one is the strong discrimination capability for differ-
ent texture regions, such as the flat texture region and
(B)

he original regions in (A) and (B) are the same as that in Figure 1A, B.
gure 1.



(A) (B)

Figure 3 Two different regions. Two regions have different
texture characters. (A) is relatively flat, while (B) is relatively rough.

The LBPriu28;1 values of (A) and (B) are 4, while the LBPriu2;208;1 value of

(A) and (B) is 0 and 8, respectively.

Cheng et al. EURASIP Journal on Wireless Communications and Networking 2013, 2013:263 Page 4 of 12
http://jwcn.eurasipjournals.com/content/2013/1/263
the rough texture region. These two advantages are in
favor of the segmentation and the classification of the
texture image.

3 High-resolution remote sensing image
segmentation
3.1 Statistical region merging
The SRM algorithm is an effective image segmentation
algorithm, which was proposed by Nock and Nielsen [8].
The SRM algorithm is based on region growing and
merging techniques with statistical tests to determine
the merging of regions. The image segmentation algo-
rithm based on SRM includes two crucial steps: the mer-
ging predication and the computing order to test region
merging.
Let I be the observed image, and |I| be the number of

pixels in the image, where |·| stands for the cardinal
number. Let Rl be a set of regions with l pixels, the mer-
ging predication on the two candidate regions R and R'
can be defined as

P R;R 0ð Þ ¼ true; if �R−�R 0j j≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 Rð Þ þ b2 R 0ð Þ

q
false; otherwise

(
ð5Þ

b Rð Þ ¼ g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= 2Q Rj jð Þð Þ lnðjR Rj jj=δÞ

q
ð6Þ

where δ = 1/(6|I|2), |R| is the number of pixels in the
image region R, g is the gray level which is usually 256
in remote sensing images, and Q is the spectral scale
factor to weigh the possibility to merge two regions
based on spectral information. It controls the number
of the regions in the segmentation result. As three color
channels exist in remote sensing images, two regions are
merged together when P(R(p),R(p')) of any color channel
returns true. Obviously, spectral information is the major
factor to predict region merging in the SMR algorithm.
If the 4-neighborhood rule is adopted, there are N < 2|I|

adjacent pixel pairs in the observed image I. Let SI be the
set of all these pixel pairs in I, and f(p,p') be a real valued
function to measure the similarity of two pixels in the
pixel pair (p,p'). In the SRM algorithm, a pre-ordering
strategy is proposed by Nock and Nielsen. The procedure
of this strategy can be described as follows: first, sort all
the pairs in SI by the increasing order of f(p,p'), and then
traverse this order only once. For each pair of pixels (p,p')
∈ SI, if R(p) ≠ R(p'), where R(p) stands for the region to
which the P pixel belongs, and the value of P(R(p),R(p'))
returns true, R(p) and R(p') can be merged [8].

3.2 High-resolution remote sensing image segmentation
based on improved RIU-LBP and SRM
A good segmentation for high-resolution remote sensing
images should take both of its spectral information and
texture information into account. However, the SRM al-
gorithm mainly exploits the spectral information in im-
ages and ignores useful texture features. To make up the
deficiency, we introduce the texture information in the
SRM algorithm, and the texture information is repre-
sented by our proposed LBP descriptor.
In order to compare the texture similarity between

two regions, the Bhattacharyya distance is chosen. For a
processed image by the LBP operator, the Bhattacharyya
distance of two regions R and R' can be calculated by

JB R;R0ð Þ ¼ − ln ∑
i∈E

pR ið ÞqR 0 ið Þ
� 	

ð7Þ

where pR(i) and qR '(i) represent the probability of the
pixels whose improved RIU-LBP values are i in the re-
gions R and R' , respectively, and E is an ensemble of
possible improved RIU-LBP values. As the Bhattacharyya
distance increases, the similarity becomes lower between
two candidate regions. The merging criteria based on
the Bhattacharyya distance can be defined as

PB R;R0ð Þ ¼ true; if JB R;R 0ð Þ≥M
false; otherwise



ð8Þ

where JB(R,R') is the Bhattacharyya distance between the
regions R and R' , and M is the texture scale parameter
to control the merging scale based on the texture infor-
mation. The greater is M, the lower is the region mer-
ging probability. If PB(R,R') is true, we merge the regions
R and R' . It is similar to the SRM algorithm that two re-
gions can be merged if PB(R(p),R(p')) of any color chan-
nel returns true.
The SRM algorithm mainly employs the spectral infor-

mation for region merging. However, there are many dif-
ferent regions with a similar spectral feature because
these regions show quite different texture features. For
these regions, the SRM algorithm is prone to over-
merging. To solve this problem, we introduce the tex-
ture information in the process of region merging. With
this improvement, the condition of two regions merging
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is stricter. If two regions are merged, they must satisfy
both the spectral similarity condition (5) and the texture
similarity condition (8). The two merging scale factors,
i.e., the spectral scale factor Q and the texture scale
factor M, are combined to decide the final number of
regions in the segmentation result. The algorithm
flow is shown in Figure 4. First, all adjacent pixel
pairs' similarity function value is calculated. Then, we
sort all the pixel pairs following the increasing order
of similarity function value, and choose the pairs ac-
cording to this order to determine whether two pixels
in each pair comes from the same region. If they are
from different regions, another decision that whether
the merging criterion is satisfied should be made. The
merging criterion is divided in two cases by the size
of two regions because the texture information could
be stably and exactly extracted from a large enough
region. If the numbers of pixels in two regions are
greater than the pre-set value NT , we need to com-
pare their spectral similarity and texture similarity. In
other cases, only the spectral similarity needs to be
Calculate similarity of all

Sort f(p,p') in des
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Have fin
selectin
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Number of pixe
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Figure 4 The algorithm flow of the proposed algorithm.
taken into account. The segmentation result is ob-
tained after all pixel pairs are processed.

4 The experimental results
We choose two high-resolution remote sensing images as
experimental data. The first image is shown in Figure 5
which was obtained in late October 2009. It includes three
bands with a resolution of 0.5 m. The second image is
shown in Figure 6 which was taken on January 2, 2010
and the resolution is 0.5 m.

4.1 Comparison of RIU-LBP and improved RIU-LBP
In order to verify the texture representation ability of
the improved RIU-LBP, we compare its discrimination
with those of the RIU-LBP. Two images tailored from
Figure 5 are selected as experimental images. The first
tailored image for verifying the discrimination is shown
in Figure 7, and the second one for comparing the sta-
bility is shown in Figure 8.
First, two different types of region specified by the red

rectangle and the green rectangle are selected in Figure 7.
 adjacent pixels f(p,p')
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Figure 5 GeoEye-1 image of Fairfax in Virginia.

Figure 7 The tailored remote sensing image. The two regions
specified by red and green rectangles are heterogeneous regions.
They are used to compare texture describing ability of RIU-LBP and
improved RIU-LBP.
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The region surrounded by the red rectangle contains woods
only, and the other contains lawn only. Next, we process

two regions with LBPriu2P;R and LBPriu2;TP;R , respectively, and
then calculate the corresponding LBP value distribution
(Figure 9) and Bhattacharyya distance (Figure 10). The

threshold in LBPriu2;TP;R is set to 15 in Figure 9. In these ex-
periments, P is 8 and R is 1. As shown in Figure 9, it is ob-
vious that the LBPriu2P;R value distributions of heterogeneous

regions are similar while the LBPriu2;T
P;R value distributions

are different. LBPriu2;T
P;R can better distinguish heteroge-

neous regions than LBPriu2
P;R does.

Since the distribution in Figure 9 is obtained when
T = 15, the result might not be convincing in general.
To further validate the ability to distinguish two het-
erogeneous regions, varying thresholds are used to
Figure 6 GeoEye-1 image of San Diego, California Town and
Country Grand Hotel.
compute the distributions with LBPriu2;T
P;R , and the

Bhattacharyya distance is introduced to measure the dif-

ference of two regions. Since LBPriu2;T
P;R can be viewed as a

function whose parameter is the threshold T, the discrete
Bhattacharyya distance can be considered as a function
whose parameter is threshold T as well. Since LBPriu2P;R is a
constant after specifying two regions, we can regard it as a
function whose parameter is threshold T too for conveni-
ent comparison. Figure 10 shows the Bhattacharyya dis-
tance of two regions from Figure 7 after computing their

LBPriu2P;R and LBPriu2;T
P;R features with different thresholds.

From Figure 10, we find that the Bhattacharyya distance

of LBPriu2;T
P;R is greater than that of LBPriu2

P;R when 1 ≤T ≤ 60.
According to the analysis in Section 3.2, the LBP value
distribution of two different regions is more dissimilar using

the LBPriu2;T
P;R operator, and thus, LBPriu2;T

P;R distinguishes the

lawn and woods better. Therefore, LBPriu2;T
P;R is better in

the discrimination of the different texture regions.
Similar to the experiment to verify the discrimination

of LBPriu2;T
P;R , two homogenous regions specified by a red

rectangle and a green rectangle are selected in Figure 8
to compare the stability to homogenous regions.
Figure 8 Another tailored remote sensing image. The two
regions specified by red and green rectangles are homogenous
regions. They are used to compare texture describing ability of
RIU-LBP and improved RIU-LBP.



(A) (B)

Figure 9 The LBPriu2P;R value distribution (A) and LBPriu2;TP;R value distribution (B) of the two heterogeneous regions in Figure 7. Green bars

represent the LBP value distribution of the region specified by the green rectangle in Figure 7, and red bars represent the LBP value distribution
of the region specified by the red rectangle in Figure 7.
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Apparently, two regions are both lawn. Next, we process
two regions with similar procedures. The final LBP value
distributions are presented in Figure 11, and the Bhatta-
charyya distance is shown in Figure 12. The threshold in

LBPriu2;T
P;R is set to 15 as well. As we can see in Figure 11,

both LBPriu2
P;R value distribution and LBPriu2;T

P;R value distri-
bution are similar for homogenous regions. To further
test the stability to describe homogenous regions, com-
parison of the Bhattacharyya distance is used as well.

In Figure 12, the distances with LBPriu2;TP;R are lower

than the distances with LBPriu2P;R when 18 ≤T ≤ 27 and T ≥ 32,

which denotes that LBPriu2;T
P;R

0s representation ability to

homogenous regions is more stable than that of LBPriu2P;R

with a proper threshold.
Figure 10 The Bhattacharyya distance of the two regions in

Figure 7 after processing with LBPriu2;TP;R and LBPriu2P;R .
From these experiments, we can draw a conclusion that

the texture representation ability of LBPriu2;T
P;R is better than

that of LBPriu2P;R for the stability to homogenous regions
and the discrimination to heterogeneous regions. Recal-
ling the analysis in Section 2.2, the essential reason is that
our proposed LBP operator can block small variation of
the gray values of the pixels around the center pixel and
can strongly discriminate the flat and rough regions.
4.2 High-resolution remote sensing image segmentation
experiments
The aim of the experiments below is to compare the
segmentation performance with the SRM algorithm [8]
and ENVI 5.0. ENVI 5.0 is the latest version of the re-
mote sensing image processing software developed by
Exelis Visual Information Solutions. It includes a feature
extraction module with remote sensing image segmen-
tation tools. The segmentation method in ENVI 5.0
consists of two main steps: an edge-based segmenta-
tion followed by Full Lambda Schedule [15] merging
technique.
To measure the segmentation quality, we choose two

indexes to measure the quality of segmentation object-
ively. The first index is pixel segmentation error rate
E ¼ Nerror

N sum
� 100% , where Nerror represents the number

of pixels that are misclassified, and Nsum is the total
number of pixels to be classified in the image. The
second index is the region ratio RR ¼ NR

N ref
, where NR

is the number of regions in the final segmentation
image, and Nref is the number of regions in the refer-
ence segmentation image. When the pixel segmenta-
tion error rate E remains unchanged, the area ratio
RR being close to 1 indicates that the segmentation



(A) (B)

Figure 11 The LBPriu2P;R value distribution (A) and LBPriu2;TP;R value distribution (B) of the two heterogeneous regions in Figure 8. Green
bars represent the LBP value distribution of the region specified by the green rectangle in Figure 8, and red bars represent the LBP value
distribution of the region specified by the red rectangle in Figure 8.
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result is better. RR > 1 implies over-segmentation
which means too many segmentation regions in the
result image. RR < 1 means under-segmentation which
indicates that some different regions are merged into
the same region.
Two high-resolution remote sensing images are

chosen to conduct the segmentation comparison. The
first one is Figure 5. To evaluate the segmentation result,
we need a reference segmentation image. As the detail
in high-resolution remote sensing images is quite clear,
the reference image is obtained by manual segmentation
and the result is shown in Figure 13. While the segment
factor is 48.2 and the merge factor is 98.0, ENVI 5.0
works best, and the result is given in Figure 14. When
the scale factor Q is 250, the SRM segmentation algo-
rithm works best, and the segmentation result is shown
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Figure 12 The Bhattacharyya distance between the two regions

in Figure 8 after processing with LBPriu2;TP;R and LBPriu2P;R .
in Figure 15. In our proposed segmentation algorithm,
Q is chosen as 200, the LBP operator is defined as
LBPriu2;158;1 and M is 0.12, and the result is best. The result
of our proposed segmentation algorithm is shown in
Figure 16. The indexes E and RR of three methods
are shown in Table 1. The second image is shown in
Figure 6, which was taken on January 2, 2010, and the
resolution is 0.5 m. The segmentation result of ENVI 5.0
is shown in Figure 17. The segmentation scale factor is
set to be 36.8, and the merging scale factor is chosen
as 98.0. Then, we use the SRM algorithm to segment
this image and set the segmentation scale factor Q as
1,000. The segmentation result is shown in Figure 18.
In our proposed algorithm, the LBP operator is
LBPriu2;12

8;1 , Q is set to 100, and M is chosen as 0.1.
The result is shown in Figure 19.
Figure 13 The reference segmentation result.



(A) (B)

Figure 14 The segmentation result of Figure 5 using ENVI 5.0. (A) The boundaries of segmented regions are illustrated by green curves.
(B) The segmented regions are labeled in different colors.

(A) (B)

Figure 15 The segmentation result of Figure 5 using the SRM algorithm. (A) The boundaries of segmented regions are illustrated by red
curves. (B) The segmented regions are labeled in different colors.

(A) (B)

Figure 16 The segmentation result of Figure 5 using our proposed algorithm. (A) The boundaries of segmented regions are illustrated by
red curves. (B) The segmented regions are labeled in different colors.

Table 1 The detail results (E and RR) of the three
segmentation methods

Algorithm Pixel segmentation
error rate (%)

Region ratio

ENVI 5.0 14.96 1.0946

The SRM algorithm 17.65 1.1222

Our proposed method 14.21 1.0626
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4.2.1 Comparison analysis with ENVI 5.0
As shown in Figures 14 and 16, it is clear that our pro-
posed algorithm outperforms ENVI 5.0 subjectively. As
shown in Figure 14, two regions that have different spec-
tral information with surrounding lawn are segmented
into one region. This is because ENVI 5.0 does not make
full use of the spectral information and the texture



(A) (B)

Figure 17 The segmentation result of Figure 6 using ENVI 5.0. (A) The boundaries of segmented regions are illustrated by green curves. (B)
The segmented regions are labeled in different colors.

(A) (B)

Figure 18 The segmentation result of Figure 6 using the SRM algorithm. (A) The boundaries of segmented regions are illustrated by red
curves. (B) The segmented regions are labeled in different colors.

(B)(A)

Figure 19 The segmentation result of Figure 6 using our proposed algorithm. (A) The boundaries of segmented regions are illustrated by
red curves. (B) The segmented regions are labeled in different colors.
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information, and the edge and the geometrical relation-
ships between adjacent regions are the main cues used
in ENVI 5.0 segmentation algorithm. Our method's re-
sult in Figure 16 shows that our method performs better
in separating regions with different spectral information.
This is because our proposed algorithm inherits the
merits of the original SRM algorithm. The objective in-
dexes also indicate that our proposed algorithm is better.
The index E is the smallest. Meanwhile, the index RR is
the region ratio which is closest to 1. From Figures 17
and 19, we can draw the same conclusion that our pro-
posed algorithm is better. A large number of homogenous
regions are merged into different areas in Figure 17.
Moreover, ENVI 5.0 cannot segment lawn and trees in
the top left corner accurately, and even with a bigger
segmentation scale factor, the regions of lawn and
trees still are mis-merged. In Figure 19, our method
segments regions of lawn and trees into different re-
gions and merges most homogenous regions into one
region.

4.2.2 Comparison analysis with the SRM algorithm
As shown in Figures 15 and 16, the SRM algorithm
over-segments many regions such as the regions of the
bottom left corner and the top right corner. Parts of
woods and lawn are merged into one region in the bot-
tom left corner, and parts of woods and road are merged
together in the top right corner as they have similar
spectral information. The segmentation result in Figure 16
obviously has superior performance in separating regions
with similar spectral information but different texture
information. This is because our proposed algorithm
applies the improved RIU-LBP to describe the texture
information and adds the adaptive merging criterion
in the original SRM algorithm. So the spectral and
texture information could be involved in judgment of
region merging. Thus, Figure 16 by our method has
the best subjective segmentation results. The objective
indexes also show that our proposed algorithm is better.
From Figures 17 and 18, we observe that the SRM algo-
rithm has the same problem with ENVI 5.0 that it cannot
segment the lawn and trees in the top left corner because
the spectral information of the lawn and trees in Figure 6
are very close. A greater segmentation scale factor does
not help, but our proposed algorithm works well. From
Figure 19, the lawn and trees have been separated well by
our method. It owes to the utilization of the texture infor-
mation which has distinct difference between the lawn
and trees, and the satisfactory result is obtained without
over-segmentation.

5 Conclusions
In this paper, we improve the RIU-LBP descriptor by
introducing a threshold in the binarization step. The
new LBP operator can better describe the texture in-
formation of high-resolution remote sensing images.
Then, the segmentation algorithm is proposed based
on the idea that the appropriate criterion is adap-
tively selected for merging according to the nature of
the region, which can make full use of the spectral
information and the texture information in high-
resolution remote sensing images. Our proposed al-
gorithm improves the accuracy of segmentation of
the texture regions and successfully segments differ-
ent regions that have similar spectral information
with different texture information. The experimental
results demonstrate the effectiveness of our proposed
algorithm.
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