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Abstract

This article investigates the properties of social choice functions (SCFs) that represent resource allocation strategies for
interference coupled wireless systems. The resources can be physical layer parameters such as power vectors or spatial
streams. Strategy proofness and efficiency properties of SCFs are used to capture the properties of non-manipulability
and Pareto optimality of resource allocation strategies, respectively. This article introduces and investigates the
concepts of (strong) intuitive fairness and non-participation in interference coupled systems. The analysis indicates
certain inherent limitations when designing strategy proof and efficient resource allocation strategies, if additional
desirable and intuitive properties are imposed. These restrictions are investigated in an analytical mechanism design
framework for interference coupled wireless systems. The article also investigates the permissible SCFs, which can be
implemented by a mechanism in either Nash equilibrium or dominant strategy for utility functions representing
interference coupled wireless systems. Among other results, it is shown that a strategy proof and efficient resource
allocation strategy cannot simultaneously satisfy continuity and the often encountered property of non-participation.

Introduction

From the evolution of wireless infrastructure from second
generation to third generation, there has been a gradual
transition from voice centric to data centric applications.
Many of these applications are quality of service (QoS)
based. A QoS application typically requires users to report
their channel qualities to a central controller. The ven-
dors manufacturing end user equipment have an incentive
to report a higher channel quality, than the true channel
quality experienced by the user. Such a misrepresenta-
tion of the channel quality is motivated by the vendor’s
intention of over provisioning for its users. There can be
other instances, where the users have an incentive to mis-
represent their measured channel quality or interference
temperature. The result of solving a resource allocation
problem with misrepresented utilities is that the out-
come might not always be the one desired by the central
controller, e.g., base station, operator. Such a misrepre-
sentation of utilities can have an undesirable effect on the
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resource allocation. Being in a position to tackle such a
misrepresentation helps in better formulation of the opti-
mization problem for radio resource allocation in wireless
networks.

Expecting the resource allocation strategy to be strategy
proof could be one possible solution to the central con-
troller’s dilemma of solving an optimization problem with
misrepresented utilities. Much of previous strategy proof-
ness literature in wireless network has been motivated
from the perspective, that the users might have a motiva-
tion and ability to misrepresent their utilities (refer to the
networks-related literature in “Literature survey” section).

We utilize the social choice function (SCF) to rep-
resent resource allocation strategies in interference
coupled wireless systems. The goals of the designed
resource allocation strategies can be viewed in terms
of social choice, which is simply an aggregation of
the preferences of the different users toward a sin-
gle joint decision. The difference of interest between
the operator and users is one example in networks,
where the theory of mechanism design can be utilized.
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Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
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Mechanism design attempts implementing desired social
choices in a strategic setting, assuming that the differ-
ent members of society act rationally in a game theoretic
sense [1].

We utilize an axiomatic framework for SCFs (discussed
in detail in “SCFs” section). An SCF represents a resource
allocation strategy in interference coupled wireless sys-
tems. In our abstraction, if an SCF satisfies a particular
axiom, then the resource allocation strategy is said to sat-
isfy the property corresponding to the axiom. We capture
the non-manipulation of the resource allocation strategy
by the property of strategy proofuess of the SCF. An exam-
ple of a strategy proof SCF is the second price auction
(Vickrey Clarke Groves auction). Pareto optimality of the
resource allocation strategy is captured by the property of
efficiency. This article studies such and certain other desir-
able properties of SCFs representing resource allocation
strategies.

We consider resource sets beyond pure exchange
economies. The only constraint on our resource sets is
that they satisfy the signal-to-interference plus noise ratio
(SINR)-based utility (SBU) function framework (see “Util-
ity modeling” section). This article provides certain new
insights on a particular class of strategy proof and effi-
cient resource allocation strategies and has the following
main contributions (see “Analysis: properties of resource
allocation strategies” section):

1 We introduce the property of intuitive fairness (see
“SCFs” section). Intuitive fairness implies that if a
particular user scales down its demand for utility,
then the other users must obtain the same or better
utility. For strong intuitive fairness, the users can
choose from a family of utility functions.

(a) A strategy proof and efficient resource
allocation strategy, which satisfies the
property of intuitive fairness (see Definition
6) is robust to a particular user’s scaling down
of the utility, when the utilities of all other
users are fixed.

(b) A strategy proof and efficient resource
allocation strategy, satisfying either intuitive
fairness (see Definition 6) or strong intuitive
fairness (see Definition 7), can be altered only
if two or more users change their utilities, i.e.,
the resource allocation strategy is robust to
the change in utilities of any singular user.

(c) If a strategy proof and efficient resource
allocation strategy is not constant with
respect to the utility of a user &, then another
user j (j # k) experiences a measurable
decrease in its performance, even if this other
user j's utility function is fixed.
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2 We introduce the property of non-participation,
which says that if a particular user does not demand
any utility, then it obtains no resource.

A strategy proof and efficient resource allocation
strategy for interference coupled systems cannot
simultaneously satisfy continuity and the property of
non-participation. Continuity is a desirable property
of resource allocation strategies for designing
practical algorithms and for mathematical
tractability. Hence, this result proves to be an
impossibility result, i.e., a strategy proof, efficient,
and non-participation resource allocation strategies
are discontinuous.

3 Let a mechanism implement an SCF in Nash
equilibrium. Then, there exists a “point” in the set of
physical layer resources, such that the SCF chooses
this point for all possible utility functions in the
family of SBU functions. A similar result can be
proved for dominant strategy implementation.

4 A resource allocation strategy is strategy proof, if and
only if the SINR function yx for a particular user k is
a constant function, independent of its own utility
ug. The constant mentioned in the previous sentence
depends on the utility functions of the other users.

There has been a significant amount of economic lit-
erature on this topic. We give a brief overview of this
literature in “Literature survey” section. It can be observed
from the literature that previous work in networks and
communication theory has typically focused on the design
of strategy proof resource allocation strategies for par-
ticular wireless or communication systems. This article
characterizes certain boundaries while designing strategy
proof and efficient resource allocation strategies, when
combined with certain desirable and intuitive proper-
ties. We investigate these contradictions in the framework
of interference coupled wireless systems and an analyt-
ical framework of mechanism design, described in the
following section.

Analytical framework

In this article, we shall investigate the case of interfer-
ence coupled wireless systems, beyond pure exchange
economies. Before we begin to describe our system model
and present the relevant definitions, we provide certain
notational conventions used in the article in the next
section.

Preliminaries and notation

Matrices and vectors are denoted by bold capital letters
and bold lowercase letters, respectively. Let y be a vec-
tor, then y; =[y]; is the /th component. Let y_; denote
the vector y without the /th component. Likewise G, =
[ Gl is a component of the matrix G. The notation
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y > 0 implies that y; > 0 for all components [. x = y
implies component-wise inequality with strict inequality
for at least one component. Similar definitions hold for the
reverse directions. ¥ # y implies that the vector differs in
at least one component. Let ) denote a set of vectors and
denote a family (class) of functions or tuples. We use yx
for indexing of individual components of vectors and indi-
vidual components of tuples of functions, where yx € V.
Let YK =: X ek Vi unless otherwise specified. The set of
non-negative real numbers and positive real numbers are
denoted as Ry and as R, 4, respectively.

Interference coupled wireless systems

In a wireless system, the users’ utilities can strongly
depend on the underlying physical layer. An important
measure for the link performance in cellular and ad hoc
wireless networks is the SINR. SINR is also utilized as
a performance indicator in the standardization commu-
nity. Hence, results pertaining to such a model could
help investigate the limitations of SINR-based communi-
cation systems. Consider K users with transmit powers
p =[p1,...,px]T and K := {1,...,K}. The noise power
at each receiver is o2. Hence, the SINR at each receiver
depends on the extended power vector

p

1_7: :[pl!---’pK’UZ]T' (1)

o

The resulting SINR of user k is

SINRk(p) = = (D), (2)

P
Tk (p)
where 7y is the interference (plus noise) as a function of
p. In order to model interference coupling, we shall fol-
low the axiomatic approach proposed in [2,3]. The general
interference functions possess the properties of condi-
tional positivity, scale invariance, and monotonicity with
respect to the power component and strict monotonicity
with respect to the noise component. For further details,
kindly refer to the Appendix.

Utility modeling
In mathematical economics, the modeling of users’ utili-
ties is an initial step toward characterizing the preferences
of the users and in turn utilizing the framework of mech-
anism design and implementation theory. In our system
model, each user can choose its own utility function. For
a user, announcing its true utilities to the operator might
not be in its best interest, i.e., the users can choose to
reveal a utility function, which differs from their true
utility functions, so as to obtain more utility.

Generally, it is not possible to accurately communicate
a non-parametric utility function in an Euclidean space.
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However, for the purpose of obtaining certain initial intu-
ition on the topic we have not concerned ourselves with
this issue. For a practical implementation we can uti-
lize approximations, e.g., a parametrization, where one
could transmit a scalar and choose a function from a look
up table based on the transmitted scalar or transmission
of a finite number of scalars (based on the system con-
straints, e.g., bandwidth, time duration of block fading,
etc.), which represent coefficients of a polynomial utilized
to approximate the utility function. Scalar parameterized
mechanisms have been discussed in [4].

We are particularly interested in analyzing the class of
utility functions, which are functions of the SINR, given
by (2). The utility functions, which shall be introduced
in Definition 1, are motivated based on the below two
factors.

e Users in a wireless system are coupled by interference.
e Performance indicators in wireless systems are
influenced by physical layer parameters.

Definition 1. For user k, uy is said to be an SBU function,
if there exists a strictly monotonic, increasing and contin-
uous function g and an interference function Zy such that

Pk
Zk(p)

Remark 1. Let u =[uy,...,ux] € UX, where UK is the
family of SBU functions for K users.

In this article, “utility” can represent certain arbitrary
performance measures, which depend on the SINR by a
strictly monotonic, increasing, and continuous function g
defined on R. The utility of user k is

ur(P) = q(vk (@),

An example of the above case is capacity: g(x) = log(1+
x) and effective bandwidth g(x) = x/(1 + x) [5]. The
same theory can be developed for strictly monotonic,
decreasing, and continuous functions g. For the follow-
ing performance indicators, we would like to minimize the
objective function, e.g., mean square error : g(x) = 1/(1+
x), BER: §(x) = Q(4/x), and high-SNR approximation of
BER g(x) = x~* with diversity order a.

ur(p) = q( ) = a(n®))- (3)

kek. (4)

Analytical framework: SCFs and mechanism design
In this section, we review certain mechanism design and
implementation theoretic notation [6], in the context of
interference coupled systems. We assume that the num-
ber of users K > 2. Let R be an arbitrary set of out-
comes at the physical layer. Let R := XcxRg and ry €
Rg. Resources at the physical layer are power, antenna
weights, spatial streams, etc. A combination of these could
also be considered as resources and modeled by our
framework.
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Example 1. Consider a SIMO uplink scenario with a total
power constraint or a MISO downlink scenario with a
total power constraint Py, and beamforming vectors for
the users being wy, with k € IC. The set of resources R can
be represented in this scenario as follows.

R={pon....,00 P =0, pi < Powl, lo1ll2
kelC
= = |kl =1}
(5)
Letr =[ry,...,rx]. A result is said to be presented for

the case of pure exchange economies, if the resource set is
defined as follows:

={reRf Y n=<CCeRy} (6)
keK

As mentioned in the “Introduction” section, in this arti-
cle we analyze the case of interference coupled wireless
systems, beyond pure exchange economies.

SCFs

Each user k has a preference relation defined over the set
of outcomes R, which admits a numerical representation
ug: R = Ry.

Remark 2. As has been observed earlier in this article, the
set of outcomes R is the set of resources, which could be
the set of power P. In this special case, where power allo-
cation is an outcome, we have that the particular power
vector p € P.

Example 2. Consider the case, when the users report
their utility functions to a central controller, e.g., base
station. Based on a system objective (an SCF), the base
station allocates resources to the users. Based on the allo-
cated resources, the users derive their own performance,
e.g., QoS level.

Different users in a wireless system could have differ-
ent preferences depending on their resource allocation
strategy. We shall utilize the SCF to characterize resource
allocation strategies. If a particular property (axiom) is
satisfied by the SCEF, then the corresponding property is
satisfied by the resource allocation strategy, i.e., we utilize
certain properties (axioms) to emulate desirable proper-
ties of resource allocation strategies.

An SCF aggregates the preferences of all the users into
a social choice for the entire system, i.e., the resource
allocation strategy.

Definition 2. An SCF is a function f : UX + R (i.e., f is
an injective function) that associates with every u € UX a
unique outcome f (u) in R.

We now clarify that what we mean by a strategy K-tuple
and a strategy set. A strategy is a complete contingent plan
or decision rule that says what a user will do at each of its
information sets. Let Si be the strategy set of a user k €
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and SX := x xSk be the strategy set of the set of users /C.
We now present certain well-known desired properties of
SCFs. We shall revisit strategy K-tuples and strategy sets,
when we deal with mechanisms and implementation theo-
retic concepts in “Mechanism design and implementation
theoretic concepts” section.

Review of extant properties of SCFs

We formalize certain desirable properties of resource allo-
cation strategies by means of an axiomatic framework
for SCFs to capture these properties. In this article, we
are interested in exploring the interplay between the
axiomatic framework and the implementation of resource
allocation strategies.

Example 3. Consider for two users an SCF f (see
Equation 7). We analyze the case for linear interference
functions and for a total power constraint Ptotal Then we
have that y1(p) = - +02 and y»(p) = W’ where
vi2 and vy are the normalized coupling between user 1
and 2. Let the utility sets for the users be as follows:

UD = {1 logri(@)} UP = (w2 log((P)),

where [ @1, w2] = ® > 0. Let us choose the following f:

f(w) = argmax (a)l log y1(e®) + w2 log y, (es)), (7)

s5:e°1 42 <Pyory)

where s =[s1,52], p = €* such that py € p, pr = €’ and
Pyotal is the total power constraint on the system for 2 users
(see Figure 1b). The function w; log y1 (e°) + w; log ya(ef)
is strictly convex and bounded. Therefore, there exists
a unique optimizer, i.e., the function f is a well-defined
SCF. From (7) we can see that a user has an incentive to
misrepresent its utility function.

By misrepresenting its utility function, a user can
manipulate the outcome of a resource allocation strat-
egy. Avoiding such behavior is a desired property from
the perspective of an operator or a regulator. The prop-
erty, that a particular resource allocation strategy is non-
manipulable, is emulated by the SCF f satisfying the prop-
erty strategy proofuess. The following two definitions can
also be found in [7].

Definition 3. An SCF f is said to be strategy proof, if for all
users k € K and for all utility functions uy, iy € U, Vi €
UK, we have that ug (f (ug, i) = w(f (g, B_g)).

An SCEF is said to be strategy proof if the users have
no incentive to misrepresent their utilities to the central
controller.

Definition 4. An SCFf is efficient if Vu € UX,

1. thereis nor € R such that ux(r) > ui(f(u)) for all
users k € IC, and
2. ur(r) > ur(f(u)) for some user k € .

Efficiency from the point of view of wireless communica-
tion (physical layer perspective) of the resource allocation
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Figure 1 Depiction of a the set of resources P and the QoS set Q2 for the case of 2 users in a wireless system. (a) Set of resources for two
users. In this case, the set of powers permitted by the power constraints for the two users. (b) SINR region corresponding to the set of powers, with
the transformation y = y (p). (c) QoS region after the transformation of the SINR region via the utility function mapping u(p) = q(y (p)).

strategies implies choosing an operating point on the
Pareto boundary of the feasible utility region [8].
Definition 5. The option set of a user k € K, given a utility
function (K — 1)-tuple u_j; € UK, is the set

Q(u—g) = {r € R | Juy € U, such thatf (ug, u_x) = r}
8)

where r is a resource vector.

The option set Qg is the set of resources for all the users,
which user k can influence with its utility function, given
the utility function (K — 1)-tuples u_; € UX~1. The use
of option sets has proved to be a useful technique in ana-
lyzing strategy proof SCFs [9]. The reader should bear in
mind that option sets are relative to a given function on a
given domain, even if this is not explicit in the notation.
We shall now present certain new properties, which are
quite natural from a wireless system perspective.

Introduced properties of SCFs
In this section, we introduce the properties of (strong)
intuitive fairness and non-participation and connect them
with certain well established concepts in literature.
Definition 6. An SCF f is said to satisfy the property of
intuitive fairness, if for all utility function K-tuples u €
UK, for all user k € K we have that, for arbitrarily chosen
(upou—g) and 0 < A < 1, g (f (Aj, u—j)) > wie(f (uj, u—j)),
kel k#j.

An SCEF is said to be intuitive fair, if for all users k € K,
we have the case, that if any user linearly scales down

its utility, then the other users should either obtain the
same or better utility as in the case, when the user had
not scaled its utility. Definition 6 is similar to the axiom
of population monotonicity (in the context of coopera-
tive bargaining theory [10]) introduced under a different
name in [11]. The axiom of population monotonicity states
the following. Suppose a group of users K; have arrived
to play a particular resource allocation game. If the users
Ko\ (with K1 € Ky) do not show up, let the set of
users /C; reach a particular solution outcome. If the users
K2\K1 show up afterwards, resource allocation is carried
out again and no user in XC; should be better off.

Now, we allow the user to possess the ability of not only
scaling its utility function, but also choosing other utility
functions altogether.

Definition 7. An SCF f is said to satisfy the property of
strong intuitive fairness, if for all users k € KC, for all utility
function (K — 1)-tuples u_; € UKL, uy, iy € U and for
0 < g (r) < u(r) for all » > 0, we have that

ur(f (U, u—)) > we(f (wj u—;)), k € K\j.

In the definition of strong intuitive fairness it can be
seen that the utility function 7 is dominated by the util-
ity function uy, for all users k € IC, for all resource vectors
r € R, and all utility function (K — 1)-tuples u_j; € UKL,
Remark 3. The SCEF f presented in Example 3 satisfies the
properties of efficiency and strong intuitive fairness.

The properties of intuitive fairness and strong intu-
itive fairness are somehow connected to the property of
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min—-max fairness. For any resource allocation strategy
providing QoS to the users we can associate a specific
notion of fairness. The consideration of fairness notions
has mainly been a wired network issue [12,13]. The most
common fairness notion is min—max fairness. It repre-
sents an equilibrium associated with an ideal social system
characterized by the fact that no user’s QoS measure can
be increased without decreasing an already lower user’s
QoS measure.

Example 4. In the framework of interference coupled
systems the min-max fair power allocation solves the
problem

[Vplk
. aww S
min max (I‘Tq) = min m 1
PEP kek a PEP kek f(W)
k

where q,rfq describes the QoS requirement of the kth user

and yk(req) the corresponding SINR threshold. V is the link
gain matrix for the interference coupled wireless system.
Fortunately, in cellular wireless networks the intricacies
associated with the so-called bottleneck connections are
nonexistent. Under non-existing or equal QoS require-
ments the min—max fair power allocation equalizes all link
QoS measures and represents the right eigen-vector of the
interference matrix.

Comparing min-max fairness to intuitive fairness, we
can see that if a particular user k reduces its demand for
utility, then there are more resources for the remaining
users. Hence, another user j € K\k could increase its
utility without decreasing the utility of a user m € IC\{j, k}.

We now discuss another property of resource allocation
strategies, namely pointwise continuity. We say that the
sequence of functions {u},cn, u™ € UK converges to
u € UK, if for all constants Ry > 0, we have that

lim max "™ (r) — u(r)||p = 0.

=0 r>0,3 e Tk <Riotal

The sequence of utility functions {u,ﬁ")}neN are defined
by their values, so the utility functions converge if their
values converge. This reduces the convergence of real-
valued functions to the convergence of real numbers. Such
a convergence is called pointwise convergence. We are
dealing with utility function K-tuples (K-tuple of util-
ity functions) as against utility functions. Hence, we use
the / — 1 norm. We would like at this point to remind
the reader that we say that an SCF f is continuous, if for
all convergent sequences of utility K-tuples (™} ,cn the
following expression holds:

dim [If@™) —f@)lp = 0.

We now explain a very natural property, which is almost
always satisfied for all resource allocation strategies occur-
ring in interference coupled wireless systems. The prop-
erty states that, if a particular user demands no utility,
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then the resource allocation strategy does not allocate any
resource to this user.

Definition 8. An SCF f is said to satisfy the property of
non-participation, if for a given user k € K and for all
utility function (K — 1)-tuples u_; € UX~1, we have that

fx(O,u_g) =0.

Remark 4. In practical wireless networks it must be
noted that if a user requires no utility, i.e., it demands
no resources at a particular time instant, it still has to
utilize some resources to report its utility function to
the resource allocation agent (central controller). Hence,
the property of non-participation though seemingly intu-
itive and harmless could lead to certain restrictions for
resource allocation strategies, when it is expected to be
satisfied with certain other properties. This will displayed
in detail later in the proof of Theorem 3 (where the inter-
play of axioms of non-participation and continuity along
with strategy-proofness and efficiency is brought to light).

Equipped with the suitable notations and framework,
we present the results of our analysis in “Analysis: proper-
ties of resource allocation strategies” section.

Mechanism design and implementation theoretic concepts
In the previous section, we have seen that the SCF being
used as a tool to capture certain desirable properties of
resource allocation strategies in a wireless system. We
shall now like to shift our focus to investigating the imple-
mentation aspects of resource allocation strategies in a
wireless network. For this purpose, we shall utilize the the-
ory of mechanism design and implementation theory. We
begin by introducing the mechanism below.

Definition 9. A mechanism is a functiong : SX > R that
assigns to every strategy K-tuple s € SX a unique element
reR.

A mechanism is a procedure for determining outcomes.

Who gets to choose the mechanism, i.e., who is mecha-
nism designer depends on the scenario in question, e.g.,
base station, operator, regulator, etc.
Example 5. Consider an example, where the resources at
the physical layer are only the powers of the users, i.e.,
R = P, with P the set of powers defined as follows:
P =1{p | D rexPk < Prota} and the utility function is
defined by (4). With this scenario, Figure 1 displays the
concepts of an SCF f, the set of outcomes P and the set of
utilities U/X.

Let g(Sk, s—x) be the attainable set of user k at s_y, i.e.,
the set of outcomes that user k can induce when the other
users select s_g. For k € IC, uy € U and a resource vector
reR,letL(r,uy) ={r € R | ur(r) > ur(r)} be the weak
lower contour set of user k with u; at resource vector r.
Definition 10. Given a mechanism g : SX — R, the
strategy profile s* € SX is a Nash equilibrium of g at
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u € UK, if and only if for all users k € K and for all
(K — 1)-strategy tuples s_j € Si we have that

ur(g(sk, 8% 1)) < ur(g(sy,s* ). )

The Nash equilibrium of a mechanism can also be char-
acterized in terms of the weak lower contour set as follows.
Given a mechanism g : SK — TR, the strategy profile
s € SKisa Nash equilibrium of g atu € UX ifforallk € K,
g(Sk,s—k) < L(g(s),ur). Let N8(u) be the set of Nash
equilibria of the mechanism g at utility function tuple
u. We now introduce the corresponding implementation
theoretic concept of Nash equilibrium implementation.
Definition 11. The mechanism g implements the SCF f
in Nash equilibrium, if for each utility function K-tuple
u € UX, the following condition is fulfilled.

e For any strategy K-tuple s € N8(u), g(s) = f (w).

Hence, there exists a strategy K-tuple s € N¥(u) such that
g(s) =f(w).

The SCE f is Nash implementable if there exists a mech-

anism that implements f in Nash equilibria. The second
condition in Definition 11 ensures that irrespective of the
choice of the strategy K-tuple in the set N¥(u), we always
obtain the same outcome in the set of outcomes, namely
f(u). Such a requirement is essential for implementation,
since otherwise, we would not be in a position to charac-
terize the properties of the SCF f. We now turn to another
concept in game theory and mechanism design, namely
that of strategic dominance, i.e., a particular strategy si is
“better” than another strategy $y for a particular user k €
IC, independent of the other users j € IC\k strategies s_g.
Even though, the concept of dominant strategy is some-
times thought of as a simplification [14], it is still a useful
analytical and practical tool to investigate mechanisms
and resource allocation strategies.
Definition 12. The strategy sy € S is a dominant strat-
egy for user k € K of g at utility function u; € Uy if
for all strategy (K — 1)-tuples §_; € SK~1, g(Sx,5_x) <
L(g (s, 8—1), ur)-

Let DS‘,g;(uk) be the set of dominant strategies for user
k of mechanism g at utility function uy. The strategy K-
tuple s € SX is a dominant strategy equilibrium of g at
utility K-tuple u € UX if for all users k € K, s; € DSf(uk).
Let DS%(u) be the set of dominant strategy equilibria of
mechanism g at utility K-tuple u.

Example 6. In the context of wireless systems, the authors
of [15] show that with an appropriately designed down-
link scheduler the socially optimal uplink rate allocation
emerges as a dominant strategy for all users.

Definition 13. The mechanism g implements the SCF f
in dominant strategy equilibria if for each utility K-tuple
u e uk,
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1. there exists a strategy K-tuple s € DS®(u) such that

g(s) = f(u) and
2. for any strategy K-tuple s € DS8(u), g(s) = f(u).

Remark 5. The SCF f is dominant strategy implementable
if there exists a mechanism that implements f in dominant
strategy equilibria.

The mechanism g is called a direct revelation mechanism
associated with the SCF f if S = U for all k € K and
g(u) = f(u) forallu € UX. We do not distinguish between
the SCF f and the direct revelation mechanism associ-
ated with the SCF f. While analyzing the implementation
aspects in “Nash implementation and dominant strategy
implementation” section, when we say the SCF f, we also
mean the direct revelation mechanism g associated with
the SCF f.

Analysis: properties of resource allocation
strategies
For certain interference coupled wireless scenarios we
would like to characterize resource allocation strate-
gies, which satisfy certain desirable properties from the
axiomatic framework, which can be implemented using
mechanisms (see Figure 2).

We shall present following results in this section.

1. Results pertaining to desired properties of resource
allocation strategies captured by SCFs (see sections
“Nash implementation and dominant strategy
implementation”, “Intuitive fairness and strong
intuitive fairness SCFs”, and “Non-participation and
continuity properties of SCFs” sections.

2. Results pertaining to Nash equilibrium

implementation and Dominant strategy

Axiomatic framework
(desirable properties

Resource allocation

strategies
of resource allocation

strategies)

o
. u (V]
e Efficiency 5 L
A = e Nash equilibrium
(Pareto optimality) 2 9
o implementation
o
¢ Strategy £
proofness ¢ Dominant
e Non- strategy

dictatorship implementation

Figure 2 Abstraction: Investigation of the possibility of
obtaining implementable resource allocation strategies
satisfying certain desirable axioms. The left hand side of the figure
displays axioms representing desirable properties of resource
allocation strategies. The right hand side of the figure gives examples
of possible implementation solutions.




Boche et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:284

http://jwen.eurasipjournals.com/content/2012/1/284

implementation of resource allocation strategies in a
wireless network based on a SINR physical layer
model (see “Nash implementation and dominant
strategy implementation” section).

Non-manipulable and efficient SCFs

We begin by presenting a result, which states the follow-
ing. An SCF f is strategy proof, if and only if for all users
k € K, the outcome of the resource allocation for the
Kkt user, ie., yk(r) is a constant, which is independent
of its own utility function u; € U. However, this con-
stant is dependent on the utility functions uy,. .., ug_1,
Ugs1, - - - UK, L., the utilities of the other users u_g.
Theorem 1. An SCF f is strategy proof, if and only if for
all users k € K and for all utility function (K — 1)-tuples
u_; € UKL, there exists a constant cp(u_y) > 0 such
that for all resource vectors r € Qi(u—_g), yi(r) = cx(u—g),
where yy. is the SINR function of the k™" user.

Proof. “=": Assume that the SCF f is strategy proof.
Let there be an arbitrary user k € K and an utility function
(K—1)-tuple u_; € UK~ also chosen arbitrarily but fixed.
Then, for utility functions ug, iy € U chosen arbitrarily,
we have that

ur(f (i, u—i)) = ur(f (G, u—g)).

Since, yx is a special case of our utility function, the
above expression follows from strategy proofness. Then
Vi(f g, u—r)) = vi(f (g, w—x)). However, due to strategy
proofness, we also have

i (f (g, w—i)) > i (f (ug, u—g))
Vel (g, u—i)) = vie(f (ug, u—g)).

Then, yi(f (itk, u—x)) = yi(f (g, u_x)) = cx(u_y). Since
we have chosen the utility function &ty € U arbitrarily, we
have for all resource vectors r € Qp(u_y) that y(r) =
cx(m—g).

“<=": Let us choose a user k € I arbitrarily. Let u_; €
UX=1 be an arbitrarily chosen (but fixed) utility function
(K — 1)-tuple. Let ug, iy € U be chosen arbitrarily. Then,
we have that

Vi (f (f, )
up (v (f (ug, u—x)))
= (v (f (e, w—g)))
= wr(f (it u—g))-

vie(f (i, u—y)) =
ug(f (g, u_g))

(10)

Equation 10 holds for all users k € K. Hence, the SCF f
satisfies the property of strategy proofuess. O

We now present a result for the 2-user case. This result
shows the restriction of the available SCFs f, if we want
them to satisfy the properties of strategy proofness and
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efficiency, i.e., the resource allocation strategy is non-
manipulable and is Pareto optimal.

Corollary 1. Let the number of users K = 2. Then SCF
fis efficient and strategy proof, if and only if there exists
a resource vector r* € R with y(r*) a Pareto optimal
resource allocation and for all utility function 2-tuples
(u1, uz) € U% we have that f(u1, up) = r*.

Proof. “=—": We have the number of users K = 2. Let
SCEF f be strategy proof and efficient. For uy € U (u—1 =
uy) each resource r € Q;(u—_1) is on the Pareto boundary
(y1(r), y2(r)) of the SINR region. From the strategy proof-
ness of the SCF f; for all utility functions u;,t; € U, we
have

Sy, u2) = f (i, ug). (11)

Let us choose a utility function &t € U for user 2

arbitrarily. Then, the following expressions hold.

(12)
(13)

f(ul) MZ) = f(ul» 122)
S, up) = f(y, 42).

Then from (11), (12), and (13) for the utility functions
uy, i1, u, iy chosen arbitrarily, we have that f(u;, up) =
f(ur,2) = f(i1, 42). Hence, we have proved our desired
result.

“«<=": Can be easily proved. O

The classical results [16,17] are for the case of pure
exchange economies. Our results are for the case of
beyond pure exchange economies for interference cou-
pled systems. Theorems 1 and 1 provide certain initial
intuition on the structure of strategy proof and efficient
SCFs for the case of interference coupled systems. We
observe that the structure imposed by the SBU function
framework is quite restrictive. This structure is the basis
of the impossibility results presented in Theorems 2, 3, 4,
and 3.

Intuitive fairness and strong intuitive fairness SCFs

Here we present our results in relation to the restric-
tions obtained, when we try to obtain strategy proof and
efficient resource allocation strategies, which satisfy the
property of either

® intuitive fairness or
® strong intuitive fairness.

We now present a result, which states the following: a
non-manipulable, efficient, and intuitive fair resource allo-
cation strategy is independent of the downwards scaling
of the utility function u; € U of a particular user k € IC,
when the utility function (K — 1)-tuple u_; € uk-1
is fixed, i.e., the resource allocation strategy is robust to
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downwards scaling of the utility function of a particu-
lar user, when the utility functions of all the other users
are fixed.

Theorem 2. Let an SCF f be strategy proof and efficient.
Then, the SCF f fulfills the property of intuitive fair, if and
only if for all users k € K, for all utility functions u € UX
and for 0 < X < 1, we have that

ur(f (Attg, u—g)) = up(f (uie, u_g)),

ie, for0 < A < 1we have that f \uy, u_y) = f(ug, u_g).

1<k<Kk,

Proof. =: Let SCF f be strategy proof, efficient and not
a constant function. Let us assume that SCF f is intuitive
fair. Then, we have that for all users k € IC, for all utility
function K-tuples u € UK for u(r) = Qg u_g), 0 < A <
1 and for all users j € K\k, we have that

ur(f (w(1))) = ug(f (u)).
Furthermore, we have that yx(f(u(X))) > yi(f(n)).

For user j we have from Theorem 1, that yx(f(u(1))) =
yk(f(@)). Then, for r(A) := fm(})) we have that
ur(r(r)) = ur(f(u)) for k € K. Since, SCF f is efficient,
we must have that ug(r(1)) = ur(f(u)) for k € K.

<=: This direction can easily be verified. Let an SCF f
be strategy proof, efficient and satisfy the following expres-

sion, for all users k € K and A € (0,1]:

ur(f A, u_y)) = w(f (ug, u_g))
ief(Aup,u_g) = f(ur, u—g).

Then, it can easily be observed that the SCF satisfies the
property of intuitive fairness. O

Remark 6. The SCF f(w) defined according to (7) (in
Example 7) satisfies the properties of efficiency and intu-
itive fairness.

We now present a corollary to Theorem 2, which states
the following. Let a resource allocation strategy be non-
manipulable and efficient. If the resource allocation strat-
egy is not robust to downward scaling of the utility func-
tion of a particular user k € /C, then at least one other user
j € KC\k pays the price with a decrease in its performance,
even if the utility functions u_j are fixed.

Corollary 2. Let SCF f be strategy proof and efficient. For
an arbitrarily chosen user k € K, with ux € U, u_y €
UK=L, and ) € (0,1), let

S G i) # f (e, u_p).

Then, there exists at least one user j € IC\k such that

wi(f Oty 1)) < i (f (e, U_p)).

(14)

Proof. Let the assumptions of the corollary be true. Let
us assume that for all users k € IC, for all utility functions
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uy € U, for all utility function (K — 1)-tuples u_; € UK~!
and for all j € K\k with A € (0, 1) we have that

uj(f Auje, u—)) > wi(f (ug, u—g)).

Since, the SCF f satisfies the axioms of strategy proofuess
and efficiency, we have that

ui(f Zui, u—g)) = wi(f (u, u—r)), j € K\k.

From Theorem 1 we have for an arbitrarily chosen user k,
that ug(f (A, u_x)) = ug(f(ug, u—_g)). Furthermore, we
have that f (Aug, u_x) = f(ug, u—g) for0 < A < 1. O

We now present certain results, in relation to the
stronger property of strong intuitive fairness.
Corollary 3. Let an SCF f be strategy proof and efficient.
Then, the SCF f fulfills the property of strong intuitive fair-
ness, if and only if for an arbitrary user k € I, for all
j € K\k with utility function (K — 1)-tuple u_; € U1,
there exists a constant dy(u_y, j) such that for all resources
r € Q(u_y) we have that

ur(r) = di(u_p, j).

Proof “=": Let us choose a user k € K arbitrarily.
We shall take the perspective of user k without any loss
of generality. Let us arbitrarily choose a utility function
(K — 1)-tuple u_; € UX~1. We have to show that for util-
ity functions ug, iy € U, the expression ui(f (uy, u—_g)) =
up(f (i, u—_g)) holds for all k € K. Let us assume that there
exists a user ko, where ko € IC\k, such that

Uy (f iy u—i)) 7 gy (f (g, u—g)).

We define u; (r) as follows:
ug(r) = max(ug (r), it (r)).

The utility function uj is strictly monotonic increasing
and continuous. For all resource vectors r € R, we have
that w3 (r) > ur(r) and uj(r) > i (r). Therefore, from the
property of intuitive fairness for all users j € C\k, we have
that

ui(f(up, u—y)) < wi(f (e, u—y)), jekK\k
Yi(f g, u_i)) < v(f (u,u—p)), jeK\k

From Theorem 1 we have that yx(f(uj,u—x)) <
vi(f (uk, u—g)). Since, SCF f is efficient, we must have that
Ye(f (up, u—r)) = vi(f (ug, u—_x)), for all k € K. Therefore,
from Theorem 1, we have that f(u},u_) = f(ug, u_g).
We can have the same expression also for (u;,u_x) and
(&tx, u—g). Then, for arbitrary utility functions uy, ity € U
we have f(up,u_) = f(ig, u_g). We have proved the
desired result.

“<=": Let us choose a strategy proof and efficient SCE f.
Let, for an arbitrary user k € K and for all other users; €
KC\k with utility function (K — 1)-tuple u_j € UX~1, there
exists a constant di(u_g,j) such that for each resource
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vector r € Qg (u—_x) we have that ug(r) = di(u_g, j). Then,
it can easily be verified that the SCF f satisfies the property
of strong intuitive fairness. O

From the above proof, we can obtain the following addi-

tional result. If a resource allocation strategy satisfies the
properties of strategy proofuess, efficiency, and strong intu-
itive fairness, then changing the preference of a single user
is not sufficient to change the resource allocation, i.e., to
affect a change in the resource allocation at least two users
must change their preferences or utility functions for the
desired resources.
Corollary 4. Let an SCF f be strategy proof and efficient.
Then, the SCF f fulfills the property of strong intuitive fair-
ness, if for all users k € K and for all utility function
(K —1)-tuples u_j € UK=L, we have that the cardinality of
the option set Qi (uy) is equal to 1. Therefore, for any utility
functions uy, iy € U we have f (uy, u_i) = f (thg, u—g).

Proof. The proof is contained in the proof of Theorem
3. O

We have stated that for all utility function K-tuples
u_j € U1 and for all utility functions u # 0 and for an
arbitrarily chosen user j € KC\k, we have that

inf

rr = inf U, u_g)) > 0.
reqlh T uk;eofk(( o U—k))

Theorem 4 has a certain connection to the axiom non-
dummy introduced in [18]. An SCF f is non-dummy, if
Vk € K, 3u € UK and ity € U, such that f(u) # f (i, u_g).
The non-dummy axiom states that each user can change
the outcome of the SCF by changing its utility function.
It guarantees every user the minimum right to affect the
social decision. Then, we can say that a strategy proof,
efficient, and strong intuitive fair resource allocation strat-
egy for interference coupled systems does not satisfy the
axiom non-dummy.

Non-participation and continuity properties of SCFs

In this section, we present a result, which states that if the
resource allocation strategy is non-manipulable, Pareto
optimal satisfies property of non-participation, then the
resource allocation strategy has to be discontinuous. This
has certain implications on the algorithmic implementa-
tion of resource allocation strategies. Furthermore, conti-
nuity is a desirable property for resource allocation strate-
gies, e.g., in certain classes of widely used games, the Nash
equilibrium is a continuous function of the game param-
eters, which follows from the implicit function theorem
[19].

Theorem 3. Let an SCF f be strategy proof and efficient.
Then, the SCF f cannot simultaneously be continuous and
satisfy the property of non-participation.
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Proof. Let an SCF f be strategy proof and efficient. For
the sake of obtaining a contradiction, let us assume that
the SCF f is continuous and satisfies the property of non-
participation. Let us choose a user k € K arbitrarily
and take the perspective of this user k, without any loss
in generality. Let us choose a utility function (K — 1)-
tuple u_; € UK~ arbitrarily. For all power vectors p

Qi (u_i) we have that v = cx(u_i) > 0. Therefore,

Pk
Ir(p

Exploiting the fact, that 7 is an interference function, we
have that

= c¢x(u—_g), for all power vectors p € Qu_p).

Tip) = Ti((p o))
> Ii((0,09)) = 07 Zi((0, 1))
= akz,uk > 0,
where 0 < up = Ik((O,l)). For all power vectors

Pk o Pk
L® = olu

p € Quu_i) we have ci(u_g) = where

wk = Zx((0,1)). Therefore, we have that the power vec-
tor px > ck(u_k)o,fkk, where A € (0,1). Let u)(p) =
(Mg, u—ic) (p) for all Pyt > 0. Then, we have that

lim max (M) (P) — O, u_r)([@)ln
A—0 (PZ‘LZke/c Pk=<Pioal - =
= lim (A max lux(p)|) = 0.
A—0 ( P=0,3 ek Pi=Protal k(l_’ )
(15)
Then, we have that
Alig})fk(u(k)) = fi((0,u_g)) = 0. (16)

Equation 16 follows from the property of non-
participation (Definition 8), which we have assumed that
our SCF f satisfies (for the sake of obtaining a contradic-
tion). However, fi(u(1)) > Ck(u—k)szﬂk > 0. As can be
observed that the constant ¢y (u_k)ak2 W is independent of
A. Therefore, infy< <1 fx (1)) > 0, which is in contradic-
tion with (16). Hence, we have our desired contradiction,
which proves the result. O

The SCF f(w) defined in (7) (in Example 3) satisfies the
properties of efficiency, continuity, and non-participation.
Another practical way of justifying the non-fulfillment
of the axiom of non-participation along with the other
axioms in practical resource allocation strategies is that in
practical resource allocation strategies a user always uti-
lizes certain resources, i.e., in practical resource allocation
strategies fx (0, u_;) = ¢ for some constant ¢ > 0. A simple
way to picture this is that even if the user decides to trans-
mit nothing, it would require some resource to sense the
channel or measure the interference temperature. Hence,
the constant ¢ can be made arbitrarily small, however we
always have ¢ > 0.
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Nash implementation and dominant strategy
implementation

In this section, we present certain results pertaining to
Nash equilibrium implementation and dominant strategy
implementation aspects for the class of SBU functions. In
this article, we have not concerned ourselves with exis-
tence and uniqueness issues of the Nash equilibrium. For
the purpose of analysis of this article, we assume that
these issues have been addressed. One such paper toward
this direction is [20]. We begin by presenting Lemma 1,
which characterizes the Nash equilibrium properties of a
strategy K-tuple.

Lemmal. 1. Letu e UX be a fixed utility function
K-tuple. Let s € N8(u) be an arbitrary strategy
K-tuple. Then, we have for all utility function
K-tuples it € UX, that s € N (i).

2. Letu,it € UX be arbitrary utility function K-tuples.
Then, we have that N¢(u) = N&(u).

Proof. (1) Choose an arbitrary strategy K-tuple s €
N&(u). Then, we have for all users k € K, g(Sg,s_x) C
L(g(s), uy), i.e., we have for all users k € K and for all
5k € Sk q(vi(gGrr5-1))) =< q(vk(g(sk,5-k))), i.e., we have
for all users k € KC and for all 5 € Sk, yk(gGkrs—k)) <
Vi(g(sk,S—)). Let ity := q - yx, for any k € K. We have for
all users k € K and for all 5 € Sk that 4 (g(Gk, s—x)) <
i (g(sx>$_k)), i.e., s € N8 ().

(2) We need simply to exchange the order of # and u in
part (1) of the proof and we have the desired result. O

A similar result as in the Nash equilibrium implementa-

tion developed in Lemma 1 can be proved for dominant
strategy implementation, i.e., for arbitrary u, it € UK, we
have that DS¢(u) = DS%(z). We shall now develop the
connection between the Nash equilibrium and an SCF
f, which can be implemented in Nash equilibrium and
between an SCF f and its dominant strategy implementa-
tion.
Theorem 4. An SCF f can be implemented in Nash equi-
librium, if and only if it is a constant function. Further-
more, an SCF f can be implemented in dominant strategy,
if and only if it is a constant function.

Proof. “=": We shall only prove the result for the first
statement of the theorem. Let #V,u® e UK be arbi-
trary utility functions in the family of functions X, where
u® :[u(ll),...,ug)] and u® :[ugz), . ..,u}?)]. Let sV
and s be two strategy K -tuples such that sV e N&(uD)
and s@ e N8u®). We have from Lemma 1 that sV ¢
N¢(u®). This gives us

S@®) D) 2 ).
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Equality (a) in (17) follows from condition 2 in Def-
inition 11 and equality (b) in (17) follows from s e
NE(uD).

“<=": The other direction can easily be verified. The
proof for the second statement of the theorem can be
carried out in a similar manner. O

We now compare Theorem 4 with Maskin’s result in [8].
Maskin’s result requires an SCF to satisfy the following
two properties: monotonicity and no-veto power. In [8], an
SCE f : UK +— R satisfies Maskin’s monotonicity condi-
tion, if Vr € R and Vu, it € UK, if r = f(u) and for all users
k € K, Vr € Rif uxp(r) > wi(r) implies iix(r) > (7)),
then r = f(n).

Transitioning to our case of SBU functions, let ux(r) >
ur(#), for all k € K and for some u € UX. Then, from the
definition of SBU functions (Definition 1) we have y;(r) >
vk (¥), for all users k € K. Once again, from Definition 1
we have lftk(yk(r)) > ﬁk(yk(?)), for all users k € I and for
all i € UK.

It can be observed that our class of SBU functions
always satisfies the monotoncity property of Maskin. On
the other hand, it does not satisfy the no-veto property
(see [8], p- 31). Furthermore, we analyze a smaller class of
utility functions, compared to the general class analyzed
by Maskin. Therefore, the domain for our SCFs is smaller
than the domain of SCFs for the results from Maskin.
Hence, the class of mechanisms which can implement our
SCF in Nash equilibria should potentially be larger. How-
ever, we observe from Theorem 4 that for the class of SBU
functions the only permitted mechanisms, which imple-
ment the SCF in Nash equilibria or dominant strategy are
constant functions.

Example 7. Consider a multiuser multiple access chan-
nel, with a beamforming array at the base station [21,22].
For fixed channels, the optimal beamforming weight vec-
tors wzp ' for the kth user, with respect to maximiz-
ing yk(p,wzp “s can easily be calculated. The optimal
SINR for the kth user can be written as: yx(p, wzpt) =
pkhf(ozl + Zj#kp/hjh;{)_lhk where py, hy, and crk2 are
the power, the channel vectors at the base station array
and the noise for the kth user, respectively. The interfer-
ence function for the kth user is, Zy(p) = (th (0?1 +

Z#kll-elcpjh,’h;{)’lhk)fl. The structure of the feasible
utility region depends on several factors, for instance,
the receiver strategy. For one set of beamformers wyg,
Vk € K corresponds to one particular utility region
U(Piotal, @) for fixed channels, where @ =[wq,...,wk]

and Py, is the total power constraint. Let a mecha-
opt opt

nism g implement f (ylw v, yI?K ) in Nash equilibria.
Then from Theorem 4 the only permitted solution is the
constant power allocation, i.e., a fixed power vector.
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Literature survey

Economic literature survey

All the work cited here is for the case of pure exchange
economies. Hurwicz [23] showed that there is no strat-
egy proof, efficient, and individually rational mechanism
in 2 user 2 resource pure exchange economy. The authors
of [24] attempted to replace individual rationality in Hur-
wicz’s result with a weaker axiom of non-dictatorship.
Ameliorating upon both results, Zhou [25] established an
impossibility result that there is no strategy proof, effi-
cient, and non-dictatorial mechanism in 2 user m resource
(m > 2) pure exchange economies. He conjectures that
there are no strategy proof, efficient, and non-inversely dic-
tatorial mechanisms in the case of 3 or more users. In [26],
Zhou’s conjecture has been examined and a new class of
strategy proof and efficient mechanisms in the case of four
or more users (operators) was discovered.

The studies by the authors of [18,27] provided examples
of strategy proof, efficient, and non-dictatorial SCFs. These
SCFs are also non-dummy. When we have four or more
users, two-stage dictator making mechanisms are strategy
proof, efficient, and non-dummy. When we have three or
more users, the SCFs provided by Satterthwaite and Son-
nenschein [27] are strategy proof and efficient. When we
have four or more users, Kato and Ohseto [18] have shown
existence of certain strategy proof, efficient, non-dummy,
and dictatorial SCFs.

The property of strategy proofuness requiring revealing
of a users’ preference is a dominant strategy. However,
as can be seen from the previous results, this con-
cept has serious drawbacks. In particular, many strat-
egy proof mechanisms have multiple Nash equilibrium,
some of which produce undesired outcomes. A possi-
ble solution to this problem is to require double imple-
mentation in Nash equilibrium and in dominant strate-
gies. Saijo et al. [6] characterize securely implementable
SCF and compare their results with dominant strategy
implementations. Reichelstein and Reiter [28] discuss
the realization and implementation of a social choice
rule. It is shown that Nash implementation is always at
least as costly, in message space size, as (decentralized)
realization.

Networks literature survey

Our reference list is by no means comprehensive and
the interested reader is further referred to the references
in the mentioned papers. The studies of [29,30] intro-
duce the concept of a progressive second price auction.
Lazar and Semret [29] have shown that a certain form of
the Nash equilibrium holds when the progressive second
price auction is applied by independent sellers on each
link of a network with arbitrary topology. The studies of
[31-33] study rules and structure of games such that their
outcomes achieve certain objectives.
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Huiping and Junde [34] propose a strategy proof trust
management system fitting to wireless ad hoc networks.
Pal and Tardos [35] have developed a general method
for turning a primal-dual algorithm into a group strat-
egy proof cost-sharing mechanism. The authors of [36,37]
have called nodes selfish if they are owned by independent
users and their only objective is to maximize their individ-
ual goals. The article presents a game theoretic framework
for truthful broadcast protocol and strategy proof pric-
ing mechanism. Guanxiang et al. [38] have proposed an
auction-based admission control and pricing mechanism
for priority services, where each user pays a congestion
fee for the external effect caused by their participation.
The mechanism is proved to be strategy proof and effi-
cient. Wang and Li [39] have addressed the issue of user
cooperation in selfish and rational wireless networks using
an incentive approach. They have presented a strategy
proof pricing mechanism for the unicast problem. The
authors of [40,41] have provided a tutorial on mechanism
design and attempt to apply it to concepts in engineer-
ing. Huang et al. [42,43] have utilized SINR and power
auctions to allocate resources in a wireless scenario and
present an asynchronous distributed algorithm for updat-
ing power levels and prices to characterize convergence
using supermodular game theory. Wu et al. [44] have
proposed a repeated spectrum sharing game with cheat-
proof strategies. They propose specific cooperation rules
based on maximum total throughout and proportional
fairness criteria. Sharma and Teneketzis [45] have pre-
sented a decentralized algorithm to allocated transmission
powers, such that the algorithm takes into account the
externalities generated to the other users. Kakhbod and
Teneketzis [46] consider a decentralized bandwidth/rate
allocation problem in unicast service provisioning. They
present a mechanism, which is implementable in Nash
equilibrium, individually rational and budget balanced.
Procaccia and Tennenholtz [47] advocate the reconsider-
ation of highly structured optimization problems in the
context of mechanism design. They argue that, in cer-
tain domains, approximation can be leveraged to obtain
truthfulness without resorting to payments.

Conclusions

The article investigates certain desirable and natu-
ral properties of SCFs representing resource allocation
strategies for interference coupled wireless systems. The
property of non-manipulation and Pareto optimality of
the resource allocation strategies is captured by the
properties of strategy proofness and efficiency of the
SCF, respectively. We introduce the certain desirable
and natural properties of resource allocation strategies,
namely (strong) intuitive fairness and non-participation.
We prove that there are certain inconsistencies, among
the properties of strategy proofuess, efficiency, (strong)
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intuitive fairness, non-participation, and continuity. These
inconsistencies result in certain limitations while having
algorithmic implementations and certain analytical inves-
tigations of these resource allocation strategies. Hence, it
can be observed that non-manipulation and Pareto opti-
mality of the resource allocation strategies are stringent
requirements and along with certain other desirable prop-
erties is not always implementable. It has been shown that
the only permissible SCF representing a resource allo-
cation strategy in interference coupled wireless systems,
which can be implemented in either Nash equilibrium or
dominant strategy is the trivial constant function.

Appendix

Interference functions

Definition 14. Interference functions: We say that 7 :
Rl_ﬁl — Ry is an interference function if the following
axioms are fulfilled:

Al conditional positivity Z(p) > 0 if p > 0
A2 scale invariance I(oq_a) = aI(I_a),Va e R4
A3 monotonicity Z(p) > I(é) iftp> é

A4 strict monotonicity Z(p) > I(Iz) if P> 12,

IZK+1 = EI(+1'

Note that we require that Z(p) is strictly monotonic
with respect to the last component Py An example is

I(p) =vip+o2 wherev e ]R{i is a vector of interference
coupling coefficients. The axiomatic framework Al-A4
is connected with the framework of standard interference
functions [2].

Definition 15. Standard interference functions: A func-
tion Y : Rf — R, is said to be a standard interference
function if the following axioms are fulfilled:

Y1 positivity Y (p) > 0, forall p € RX,
Y2 scalability Y(ap) < aY(p), foralla > 1,
Y3 monotonicity Y(p) > Y(p) if p > p.

For any constant noise power Py o? the func-
tion Y(p) = Z(p) is standard. Conversely, any standard
interference. function can be expressed within the frame-
work A1-A4. The details about the relationship between
the model A1-A4 and Yates’ standard interference func-
tions were discussed in [3] and further investigated in [48].
For the purpose of this article, it is sufficient to be aware
that there exists a connection between these two models
and the results of this article are applicable to standard
interference functions.
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