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Abstract

We propose a model to show that under off-normal bombardment of an incident ion beam, a solid surface may
spontaneously form nanoscale dots lining up into chains perpendicular to the incident beam direction. These dots
demonstrate a highly ordered hexagonal pattern. We attribute the self-organization behavior to surface instability
under concurrent surface kinetics and to a shadow effect that causes the self-alignment of dots. The fundamental
mechanism may be applicable to diverse systems, suggesting an effective approach for nanofabrication.

Introduction
Self-organized nanostructures have wide applications
from functional materials to advanced electronic and
optical devices [1,2]. Recent experiments demonstrated
ion beam sputtering as a promising approach to gener-
ate various self-organized nanostructure patterns over a
large area [3-8]. In this process, surface materials on the
target are sputtered away by incoming ions, and the
interplay between sputter-induced roughening and sur-
face smoothening produces patterns such as ripples and
dots. The feature size and morphology of these patterns
are affected by parameters such as the incident ion
beam flux, the beam energy, and the material of the
substrate. Among them, the incident angle of the ion
beam is an important factor to select the formation of
different patterns. Normal bombardment produces hexa-
gonally ordered dots [7], while off-normal bombardment
produces ripples [4]. However, by rotating a sample
simultaneously during off-normal sputtering, ordered
dots can be obtained [3]. It was generally believed that
sample rotation is necessary during off-normal bom-
bardment to produce isotropic sputtering so that a pat-
tern of dots can form.
Recently, the experiment of off-normal bombardment

of Ga ion beam on a GaAs substrate showed an intri-
guing finding [9]. Hexagonally ordered dots were
obtained even without sample rotation. More interest-
ingly, the dots formed chains aligned perpendicular to

the incident beam direction. A unique feature of this
experiment is preferential sputtering, which refers to
higher sputtering yield of certain element in the target
and therefore causes a deviation of its surface composi-
tion from the original state [10]. For a GaAs substrate,
the two elements (Ga and As) have different sputtering
yield. The element As is more likely to be sputtered
away, leaving a surface layer composed mostly of Ga.
These Ga atoms diffuse on the surface and nucleate to
form dots. This intriguing behavior to form nanoscale
features calls for a new understanding.
Several models have been suggested to account for the

pattern formation by an incident beam [11-14]. Most
are rooted in the theory of Bradley and Harper [15],
where the local sputtering rate depends on the surface
curvature and the incident angle of the beam, leading to
surface instability. However, the model cannot explain
phenomena such as the saturation of the ripple ampli-
tude and kinetic roughening. To account for these
effects, the model was extended to include nonlinearity.
For example, a nonlinear term, ∇2h, was introduced,
where h is the surface height. This term leads to a finite
saturated surface ripple amplitude after a long time of
evolution [16]. To account for kinetic roughening, the
model was further improved by adding a conserved KPZ
term, ∇2(∇h)2, a higher-order term in Sigmund’s theory
[17]. These models necessarily generate ripples under
off-normal bombardment because of anisotropic sputter-
ing. In contrast, no ripples were observed during the
preferential sputtering of GaAs. In this paper, we pro-
pose a model and the simulation to describe the
dynamics of ordered dot formation and the alignment
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behavior under an off-normal beam. The fundamental
mechanism may be applicable to diverse systems, sug-
gesting a potential novel approach for nanofabrication.

Model
We represent the substrate surface with a spatially con-
tinuous and time-dependent function, h(x,y,t), where x
and y are axes parallel to the substrate surface and t is
time. Starting from an initially flat surface, the formation
of surface morphology and its evolution are captured by
the change of h in the z direction. We consider concur-
rent surface kinetics including diffusion, redeposition,
and sputtering. The time evolution of the surface is
given by:

∂h
∂t

= −∇ · J − ρh + β(∇h)2 (1)

The first term represents mass conservation, where J
is the diffusion flux of Ga on the surface. The second
term, rh, accounts for the redeposition of sputtered
atoms, which settle down on the surface again after tra-
veling in the air [18]. The coefficient, r, describes the
rate of redeposition. For a fixed coordinate, this term
should be formulated as −ρ(h − h̄), where h̄ is the spa-
tial average of the surface height [18]. This term
describes the phenomenon that atoms above the average
height tend to be sputtered and redeposited on the sur-
face below the average. Here, we use a moving coordi-
nate such that the zero height coincides with the surface
average and the h̄ term is dropped. This paper focuses
on surface morphology; thus, the average height change
due to sputtering or redeposition is irrelevant. The third
term, b(∇h)2, describes the tilt-dependent sputtering
yield, which affects the saturation of growth [19]. The
sputtering rate, b, is dependent on the beam flux and
energy. Using a flat surface (∇h = 0) as a reference, the
sputtering yield decreases with the slope. Thus, those
regions with larger slopes tend to increase heights rela-
tive to the flat regions.
The diffusion flux, J, can cause either roughening or

smoothening of the surface depending on the driving
forces. We consider the net supply of Ga atoms on the
surface for the roughening mechanism and the surface
energy as well as the shadow effect for the smoothening
mechanism. The roughening mechanism in ion beam
bombardment is usually modeled by the theory of Brad-
ley and Harper, which explains the surface instability by
curvature-dependent energy dispersion, a process that
happens by the removal of atoms similar as etching. In
this case, the induced nanostructures such as ripples or
islands are composed of the same material as that of the
substrate. However, the dots shown in the GaAs experi-
ment have different compositions from that of the

substrate, suggesting that the diffusion of atoms plays an
important role. In the experiment, Ga atoms are
enriched on the surface due to preferential sputtering of
As as well as the deposition of Ga from the ion beam.
Enriched Ga atoms nucleate and grow into dots as they
diffuse. The nanostructures formed by diffusion-driven
roughening appear like droplets or bubbles [20,21].
They are amorphous and have a hemi-spherical shape
rather than partially amorphous and form a cone shape
[7,8] or ripples. They are usually observed at relatively
high energy of ion beam over 10 keV, which is more
likely to promote the preferential sputtering and high
mobility of the diffusing atoms. Ripple structure induced
by diffusion-driven roughening is hardly observed
because highly mobile atoms tend to form droplets
rather than longish ripples. The latter is usually gener-
ated by sputtering-driven roughening [22-25]. In this
paper, we describe the growth of dots as an uphill mass
flow along the slope, a∇h, where a is the growth rate
that can be affected by the diffusing velocity of atoms
and the sputtering yield. This term properly captures
the instability and growth of dots due to the supply of
atoms from the perimeter of the dot. This term is iso-
tropic because atoms are supplied from all direction.
Because it is not related to the angle of the incident
beam, ripples do not appear in our model at off-normal
bombardment, which is consistent with experimental
observations.
The smoothening effect due to surface energy is con-

sidered in the following way. The chemical potential of
atoms on the surface can be expressed by μ = KgΩ [26],
where K is the surface curvature, g is the surface energy
per unit area, and Ω is the atomic volume. The curva-
ture can be expressed by the second derivative of the
surface height K = -∇2h. The atoms on the surface tend
to move to regions with lower chemical potential, giving
a diffusion flux of -DT∇μ, where DT is diffusion coeffi-
cient. Denote l = DTgΩ, we get a diffusion flux of
l∇(∇2h).
Next, we consider the shadow effect. In the shadow

zone, where the ion beam is blocked by the dots during
off-normal bombardment, the sputtering is weakened.
The stronger sputtering on the top of dots (∇2h < 0)
drives mass diffusion towards the shadowed valleys (∇2h
< 0). The diffusing direction follows the gradient,
∇(∇2h). We represent this shadow effect by an additional
surface smoothening term, which is similar to the sur-
face energy term but modified in two aspects. Firstly,
the shadow effect happens only along the direction of
the incident beam. Without losing generality, we assume
that the beam is within the x-z plane. Then, the shadow
effect only happens along the x direction. Secondly, a
surface higher gets more sputtering and deeper in the
valley gets less sputtering. To the first order
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approximation, we assume that the smoothening flux is
proportional to h. Following the form of surface energy,
the corresponding mass flux can be written as h{i
h∇(∇2h)}i, where i is the unit vector in the x direction
and h is the coefficient. Note that the h before the gra-
dient operator makes this term nonlinear, which
becomes important only after the surface has developed
sufficient roughness. Otherwise, this term would affect
the early stage of simulations, whose anisotropic
smoothening effect would generate ripples not observed
in experiments. The magnitude of h will depend on the
incident angle, θ, between the incident beam and the z
axis.
Consideration of all the contributions gives the follow-

ing diffusion flux:

J = α∇h + λ∇(∇2h) + η
{
i · h∇(∇2h)

}
i (2)

Now, we discuss how the shadow effect causes the
dots to line up into chains. Consider a hexagonal pat-
tern of dots as shown in Figure 1. These dots line up
into chains along the y axis. Dot A would be partially
shadowed by B and C if it shifts to the left, when mass
accumulation at its front would bring it back to line up
with B and C. Similarly, dot A would be exposed to
more sputtering if it shifts to the right and would gradu-
ally move back to be in-line with B and C. The anisotro-
pic smoothing given by the third term in Equation 2
causes the wavelength in the x direction to be larger
than that in the y direction. As a result, the distance
between dots is not isotropic, i.e., a > b in Figure 1.
This behavior is consistent with experimental
observations.
To facilitate numerical simulations, Equations 1 and 2

can be expressed into dimensionless forms with h, x,
and y normalized by a length scale l0 and t normalized

by a time scale, t0. Then, parameters r, b, a, l, and h
are normalized by 1/t0, l0/t0, l0

2/t0, l
4
0/t0, and l30/t0,

respectively. The dimensionless equations appear the
same as Equations 1 and 2, except that the symbols now
represent the corresponding normalized values, such as
h represents h/l0. Below, we always refer to the normal-
ized quantities.

Results and discussion
The finite difference method was used to solve Equation
1 in its dimensionless form. The calculation domain size
was taken to be 200 × 200. Periodic boundary condi-
tions were applied. The grid spacing and time step were
taken to be Δx = Δy = 0.5 and Δt = 0.01, which corre-
spond to a physical spacing of 6 nm and a physical time
step of 1.8 ms. The initial surface morphology was con-
structed by adding to a flat surface a small random per-
turbation with magnitudes between 0 and 10-5.
Representative simulation results are shown in Figures

2 and 3. The following normalized parameters were
chosen: r = 0.24, b = 1, a = 1, and l = 1 [27]. Figure 2
shows an evolution sequence for h = 1.0 from t = 0 to t
= 10,000. Figure 2a shows the initial substrate surface at
t = 0. After a short time of bombardment, small peaks

x

A

B

C

a
b

y
incident 
beam

Figure 1 Schematic of a hexagonal pattern of dots lined up
along the y axis. The formed line is perpendicular to the direction
of the incident beam. Dot A would be partially shadowed by B and
C if it shifts to the left, when mass accumulation at its front would
bring it back to line up with B and C. Anisotropic smoothing causes
the distance between dots anisotropic, i.e., a > b.

(a) t = 0 (b) t = 100 

(c) t = 1400 (d) t = 2000 

(e) t = 2200 (f) t = 10000 

y y

x x 

y y

x x 

y y
x x 

Figure 2 An evolution sequence showing that self-organized
dots emerge, line up, and form chains.
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quickly emerge and form a wavy chain pattern, as
shown in Figure 2b. Linear terms are dominant during
the early stage of evolution. The nonlinear term repre-
senting the shadow effect does not reflect itself signifi-
cantly in the result. Dots start to emerge and grow
quickly after t = 1,000, as shown in Figure 2c for t =
1,400. As of now, the dots are randomly distributed
without showing any particular order. The height
growth of dots slows down after t = 2,000, since the
nonlinear term starts to affect the growth. Figures 2d
and 2e show that the dots start to line up and form
short chains. Overall, these short chains appear to orien-
tate along the y axis, though the orientation of a single
chain is less definite. During this stage, the dominating
behavior is the change of the location of dots particu-
larly at dislocation regions, while their heights remain
almost constant. Over time, the chains become more
ordered. Figure 2f shows that at t = 10,000, the chains
are clearly aligned along the y axis, which is perpendicu-
lar to the incident beam direction. The dots form a hex-
agonal pattern and their sizes are uniform. These
simulation results are consistent with experimental
observations [9].

Figure 3 shows simulation results at t = 10,000 for dif-
ferent values of h, revealing how the strength of the sha-
dow effect affects the pattern. The parameter h is a
function of the incident angle, where h = 0 corresponds
to normal bombardment, or zero incident angle between
the incident beam and the z axis. The magnitude of h
increases with the incident angle. Figure 3a shows that
no chain is formed when there is no shadow effect or h
= 0. The dots simply form a hexagonal pattern. Figure
3b shows that with h = 0.5, chains appear to form but
are not perfectly aligned. The comparison with Figure 2f
clearly shows that stronger shadow effect leads to well-
aligned chains perpendicular to the beam direction.

Conclusions
Our model and simulations have revealed how self-orga-
nized dots emerge, line up, and form chains during ion
beam sputtering. These simulations show the impor-
tance of the shadow effect, which happens only during
off-normal bombardment and leads to chains perpendi-
cular to the incident beam direction. In addition, it is
shown that the chains of dots are not formed by an
initial ripple generation along y followed by a subse-
quent process to break up these ripples into dots.
Instead, the dots emerge at the early state of evolution
and then gradually rearrange to form chains. These
results are consistent with experiments. The study in
this paper will provide insight into the self-organization
process and provide guidance to extend the approach
for nanofabrication. For instance, similar mechanism
may be applied to other compound systems as a general
approach to form ordered nanodot patterns. Our study
suggests that high mobility is essential, which gives a
hint that it may be necessary to raise the temperature
close to the melting point to initiate the mechanism.
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Figure 3 Simulation results at t = 10,000 for different values of
h. The results reveal how the strength of the shadow effect affects
the pattern. (a) No shadow effect (h = 0) and (b) weak shadow
effect (h = 0.5).
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