

POSTER PRESENTATION

Free-breathing 3D cardiac function with accelerated magnetization transfer prepared imaging

Eric M Schrauben^{1*}, Oliver Wieben^{1,2}, Kevin M Johnson¹

From 17th Annual SCMR Scientific Sessions New Orleans, LA, USA. 16-19 January 2014

Background

3D cardiac MRI has long held promise for improved heart coverage, higher resolution, and reduced sensitivity to poor breath-hold reproducibility. However, its use has been limited by reduced blood pool to myocardium contrast for spoiled and balanced steady-state free precession (bSSFP) implementations. T2-preparation techniques [1] are capable of increasing contrast but are unfortunately limited by lengthy preparation periods and resulting scan inefficiencies. In this work, we develop a paradigm for high contrast 3D cardiac function that relies on the alternative use of magnetization transfer (MT) preparation [2] combined with accelerated 3D spoiled gradient echo imaging (SPGR).

Methods

An off-resonance RF pulse was interleaved with wholeheart, respiratory gated 3D radial SPGR sampling [3]. Simulations and phantom scans were performed to optimize MT saturation (power, off-resonance, and frequency). Phantom scans utilized 4% agar, fat, and doped water. After optimization, initial volunteer images were collected on a clinical 1.5T system (HDx, GE, Waukesha, WI) using: FOV = $64 \times 32 \times 32$ cm3, 2.0 mm isotropic spatial resolution, TR/TE1/TE2 = 5.6/1.32/3.32ms, $\alpha = 4^{\circ}$, free-breathing: scan time = 10 min, 50% acceptance window (bellows), number of projections = 39,000. In-vivo experiments utilized a 1600° , 20 ms Hamming-windowed Sinc pulse applied every 10 TRs. This pulse was applied at 210 Hz off-resonance providing some fat-saturation. In addition, two full echoes (TE1 and TE2) at \pm 62.5 kHz were added to further remove fat signal while increasing SNR of water images. Twenty cardiac time frames were reconstructed using iterative soft thresholding of temporal differences with a spatial wavelet transform.

Results

Figure 1 shows images from phantom scans for a sweep of MT off-resonance frequencies and demonstrates the potential for simultaneous suppression of muscle (agar) and fat. In-vivo results are presented in Figure 2 for two reformats: vertical long axis in end-systole and end-diastole (left) and an end-systolic base to apex short axis stack (right). Excellent blood pool to myocardium contrast and fat suppression are observed. Isotropic spatial resolution allows for retrospective whole-heart reformats in any orientation.

Conclusions

The feasibility of a novel whole-heart functional cardiac acquisition using MT preparation with isotropic spatial resolution in a clinically reasonable scan time is presented. Further studies on optimization of acquisition parameters, including off-resonance frequency, number of projections, and acquired spatial resolution, will improve the applicability of the sequence for clinical situations.

Funding

NIH grant 2R01HL072260.

Full list of author information is available at the end of the article

© 2014 Schrauben et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

¹Medical Physics, University of Wisconsin - Madison, Madison, Wisconsin, USA

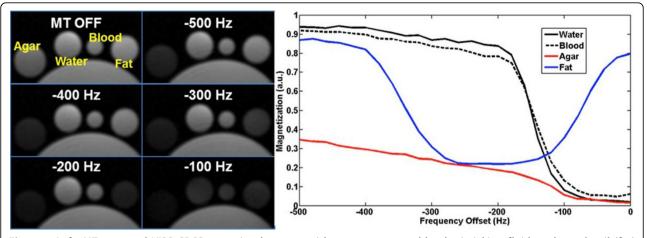


Figure 1 Left: MT-prepared VIPR SPGR scans in phantoms with water, 4% agar, blood-mimicking fluid, and canola oil (fat) demonstrate signal saturations at various MT offset frequencies. Right: Signal calculations over a range of frequencies show maximum fat suppression near its peak at 1.5T.

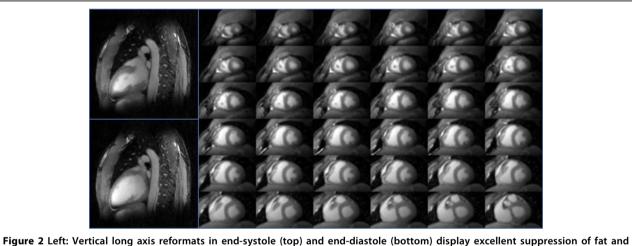


Figure 2 Left: Vertical long axis reformats in end-systole (top) and end-diastole (bottom) display excellent suppression of fat and muscle without off-resonance induced banding artifacts seen in bSSFP. Right: End-systolic short-axis stack from apex to base displays benefits of isotropic spatial resolution for retrospective reformatting of the entire heart in any orientation.

Authors' details

¹Medical Physics, University of Wisconsin - Madison, Madison, Wisconsin, USA. ²Radiology, University of Wisconsin - Madison, Madison, Wisconsin, USA.

Published: 16 January 2014

References

- 1. Brittain JH, et al: MRM 1998.
- 2. Henkelman RM, et al: NMR Biomed 2001.
- 3. Barger AV, et al: MRM 2000.

doi:10.1186/1532-429X-16-S1-P63

Cite this article as: Schrauben *et al.*: **Free-breathing 3D cardiac function with accelerated magnetization transfer prepared imaging**. *Journal of Cardiovascular Magnetic Resonance* 2014 **16**(Suppl 1):P63.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit