

POSTER PRESENTATION

Left ventricular function, morphology, and myocardial tissue characterization in Sickle Cell Disease: a multi-modality imaging study

Ahmad Homaa^{1*}, Ankit A Desai², Roberto M Lang¹, Thejasvi Thiruvoipati¹, Kristen Turner³, Lynn Weinert¹, E Bruce Jamison¹, Nicole Artz³, Sharon Trevino², Sharon Feehan¹, Roberto Machado², Joe GN Garcia², Amit R Patel¹

From 2011 SCMR/Euro CMR Joint Scientific Sessions Nice, France. 3-6 February 2011

Objectives

Our aim was to characterize the cardiac morphology, function and myocardium in patients with sickle cell disease (SCD) using CMR and transthoracic echocardiography (TTE).

Background

Cardiovascular complications are a major cause of death in SCD yet the mechanism remains unclear.

Methods

Thirty-one stable, African-American outpatients with SCD (mean age 32±8 yrs) prospectively underwent CMR (Philips 1.5 Tesla) and TTE (Philips iE33). Retrospectivelygated cines of left ventricular (LV) 2-, 3-, and 4-chamber, and short axis cine stack were obtained using SSFP (temporal resolution 25-40ms). Late gadolinium enhancement (LGE) images of the same views were obtained 10-20 minutes after infusion of Gd-DTPA (0.15 mmol/kg) using phase sensitive inversion recovery (TR 4.5 ms, TE 2.2ms, TI 250-300 ms, flip angle 30°, PSIR flip angle 5°).

Single short-axis, mid-ventricular myocardial T2* slice and coronal, hepatic T2* slice were acquired with a single breath-hold, at six echo-times (2.3 to 14 msec) using a gradient echo sequence. Tissue T2* signal intensity was measured in LV septum and liver at two separate echo times and T2*= - Δ TE/ln (SI_{TE2}/ SI_{TE1}) where Δ TE represents time difference between the two echo times and I_{TE1} and I_{TE2} represent signal intensity at

¹University of Chicago Medical Center, Chicago, IL, USA Full list of author information is available at the end of the article echo time one and two. Myocardial and hepatic T2* were abnormal if <20ms and <18ms, respectively.

CMR LV volumes, ejection fraction (EF), and mass were calculated using method of disks and indexed for body surface area. The presence or absence of LGE was determined. Diastolic dysfunction (DD) was identified based on echocardiographic measurements including tissue Doppler (age adjusted E/A ratio) and left atrial volumes.

Results

SCD patients had preserved LVEF with enlarged biventricular and LA volumes. DD was present in 15 (48%). LGE

© 2011 Homaa et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

	All Study Patients (n=31)	No LGE (n=24)	Positive LGE (n=7)	p-value
LV EF (%)	58.3 ± 7	58.4 ± 5	58.9 ± 12	0.92
LVEDV (mL)	224.8 ± 61	217 ± 57	251.1 ± 62	0.25
LVEDV Index (mL/m ²)	124.2 ± 29	118.9 ± 27	142.6 ± 25	0.07
LV mass (g)	141.1 ± 40	135.6 38	159.9 ± 36	0.18
LV mass Index (g/m ²)	78.1 ± 20	74.3 ± 18	91.3 ± 17	0.06
RVEDV (mL)	227.2 ± 59	222.3 ± 60	244.3 ± 50	0.38
RVEDV Index (mL/m ²)	125.5 ± 27	121.4 ± 27	139.4 ± 22	0.12
LA volume (mL)	117.1 ± 34	112.2 ± 33	134 ± 26	0.11
T2* Myocardial Iron (msec)	42.2 ± 13	45 ± 11	34 ± 16	0.18
T2* Hepatic Iton (msec)	17.9 ± 14	21.7 ± 13	4.9 ± 3	<0.01

Table 1

was noted in 7 (23%), myocardial iron overload in 2 (7%) and hepatic iron overload in 16 (52%). (Figure 1) Those with LGE had significantly lower hepatic T2* (p<0.01) and a trend towards having a larger LVEDV index, LV mass index, RVEDV index, and LA volumes. (Table 1) Woman with LGE (versus women without LGE) had significantly larger LVEDV index 133.4±9 versus 108.4±25 (p= 0.01), RVEDV 230.3±13 versus 193.9±41 (p= 0.02), and LA volume 146.7±15 versus 94.2±20 (p=0.01).

Conclusion

SCD patients had significant chamber dilation, DD, and LGE. Those with LGE had significantly more hepatic iron overload suggesting a greater disease severity requiring more blood transfusions. Women with LGE demonstrated more severe adverse remodeling. Myocardial iron overload was rare.

Author details

¹University of Chicago Medical Center, Chicago, IL, USA. ²University of Illinois at Chicago, Chicago, IL, USA. ³Loyola Medical Center, Chicago, IL, USA.

Published: 2 February 2011

doi:10.1186/1532-429X-13-S1-P334

Cite this article as: Homaa *et al.*: **Left ventricular function, morphology,** and myocardial tissue characterization in Sickle Cell Disease: a multimodality imaging study. *Journal of Cardiovascular Magnetic Resonance* 2011 **13**(Suppl 1):P334.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

BioMed Central