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Abstract

Background: The prevalence of diagnosed autism has increased rapidly over the last several decades among U.S.
children. Environmental factors are thought to be driving this increase and a list of the top ten suspected
environmental toxins was published recently.

Methods: Temporal trends in autism for birth years 1970–2005 were derived from a combination of data from the
California Department of Developmental Services (CDDS) and the United States Individuals with Disabilities
Education Act (IDEA). Temporal trends in suspected toxins were derived from data compiled during an extensive
literature survey. Toxin and autism trends were compared by visual inspection and computed correlation
coefficients. Using IDEA data, autism prevalence vs. birth year trends were calculated independently from snapshots
of data from the most recent annual report, and by tracking prevalence at a constant age over many years of
reports. The ratio of the snapshot:tracking trend slopes was used to estimate the “real” fraction of the increase in
autism.

Results: The CDDS and IDEA data sets are qualitatively consistent in suggesting a strong increase in autism
prevalence over recent decades. The quantitative comparison of IDEA snapshot and constant-age tracking trend
slopes suggests that ~75-80% of the tracked increase in autism since 1988 is due to an actual increase in the
disorder rather than to changing diagnostic criteria. Most of the suspected environmental toxins examined have flat
or decreasing temporal trends that correlate poorly to the rise in autism. Some, including lead, organochlorine
pesticides and vehicular emissions, have strongly decreasing trends. Among the suspected toxins surveyed,
polybrominated diphenyl ethers, aluminum adjuvants, and the herbicide glyphosate have increasing trends that
correlate positively to the rise in autism.

Conclusions: Diagnosed autism prevalence has risen dramatically in the U.S over the last several decades and
continued to trend upward as of birth year 2005. The increase is mainly real and has occurred mostly since the late
1980s. In contrast, children’s exposure to most of the top ten toxic compounds has remained flat or decreased over
this same time frame. Environmental factors with increasing temporal trends can help suggest hypotheses for
drivers of autism that merit further investigation.
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Introduction
Autism was first described in the 1930s as a novel clinical
disorder characterized by impairment in social interaction
and communication, and restricted and stereotyped pat-
terns of interests and behaviors [1]. Today, one in every 68
children in the United States, including 1 in every 42 boys,
is diagnosed with an autism spectrum disorder (ASD) [2].
In comparison, the prevalence of diagnosed autism was
about 1 in 2,500 in the early 1970s [3]. While these num-
bers suggest a dramatic increase in ASD prevalence over
the past few decades, there is ongoing debate and uncer-
tainty over how much of the rise in autism is due to a true
increase in the condition as opposed to better and expand-
ing diagnosis [4,5].
At the biological level, autism is characterized by a

number of increasingly well-documented biochemical
imbalances. These include redox imbalance, oxidative
stress and associated mitochondrial dysfunction and de-
ficiency in glutathione [6-10]. Imbalances in gut micro-
flora are common and the likelihood of suffering from a
gastrointestinal disorder is greatly enhanced relative to
neurotypical control populations [11,12]. Autistic indi-
viduals also display proinflammatory cytokine imbal-
ances and may suffer from overactive or dysfunctional
immune systems, with chronic neuroinflammation, in-
cluding neuroglial activation in the brain, and the pres-
ence of autoantibodies to brain proteins [13-15]. Two
recent reviews have converged on immune system dys-
regulation as the core biological feature of autism
[16,17], although oxidative stress and immune function
are interrelated, with the one influencing the other in a
two-way interaction [18].
Some have argued that autism is primarily genetically

based and has always been present in the human popu-
lation at current levels [4]. From this genetic perspective,
temporal trends in autism and toxins are largely irrele-
vant. Rather, the rise in autism diagnosis reflects the suc-
cessful efforts of the public health community to better
identify children who went undiagnosed in previous gen-
erations, to promote inclusion and acceptance of those
children and to provide them with early intervention
services. Others have argued that autism is caused pri-
marily by environmental triggers acting on a genetically
susceptible subset of children and that epigenetics play
an important role in mediating how environmental
toxins affect gene expression [19]. A recent comprehen-
sive study of ASD concordance rates among dizygotic
and monozygotic twins supports the dominant influence
of environmental factors, while also confirming the im-
portance of genetic susceptibility [20]. From this alterna-
tive perspective, since genes alone do not mutate
rapidly, temporal trends in environmental toxins are
relevant and can provide valuable clues into the causes
of autism [3].
Recently, a list of the top ten environmental compounds
suspected of causing autism and learning disabilities was
published [21]. The list includes lead, methylmercury,
polychorinated biphenyls, organophosphate pesticides, or-
ganochlorine pesticides, endocrine disruptors, automotive
exhaust, polycyclic aromatic hydrocarbons, polybromi-
nated diphenyl ethers, and perfluorinated compounds.
The list was based largely on epidemiological studies
showing an increased risk of autism or related pervasive
developmental delay (PDD) with increased exposure to
the compounds [22-24]. While the top ten compounds
comprise only a small subset of the > 80,000 synthetic che-
micals developed over the past 50 years, many of which
have never been assessed for potential toxicity, they were
intended as a short list for which concentrated study has
a high potential to generate actionable results in the near
future [21].
Here, the temporal trends in the top ten environmen-

tal compounds list are systematically reviewed with the
goal of identifying those that are most and least consist-
ent with the temporal trends in autism. The analysis is
focused on autism and does not address other, in many
cases well-established harmful effects of the compounds.
The investigation is guided primarily by the top ten list,
but is expanded to include general air pollution indices
and a broad range of mercury exposures, including fish,
high fructose corn syrup, atmospheric mercury, and
vaccine-administered thimerosal. In addition, trends in
other vaccine-related indices, autoimmune disorders,
and lifestyle factors such as obesity are examined. Some
implicit assumptions are 1) that environmental expo-
sures around the time of birth (± ~1.5 years) are the
most important, since autism by definition is either
present from birth or develops within the first few years
of life [1,4,21], and 2) that the rise in autism is driven by
one or more environmental influences whose collective
temporal trend resembles the trend in autism [3].
Before embarking on the trend analysis of the sus-

pected environmental compounds, the temporal trend in
autism itself is examined. The trend is defined and visu-
alized by plotting autism prevalence vs. birth year, which
permits direct comparison with trends in environmental
factors, given assumption 1 above. A new, empirical ap-
proach is applied to test the hypothesis that autism is a
constant-prevalence condition that simply has been
underdiagnosed in the past. This approach is based on
the use of “constant-age tracking” and “age-resolved
snapshots” as two independent methods for estimating
the temporal trend in autism. The “constant-age track-
ing” method is the most common and straightforward
way to quantify the trend. It involves tracking children
of a specific age over multiple, successive years of re-
ports, e.g., 8 year-olds in the biannual Autism and De-
velopmental Disabilities Monitoring (ADDM) Network
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reports [2]. The constant-age tracking method suggests
a strong increase in the prevalence of diagnosed autism
in the U.S. over the last few decades, both in the ADDM
network and in data from the Individuals with Disabil-
ities Education Act (IDEA), which are used in the
current study.
IDEA data have the advantage that each individual

year’s report gives separate autism counts for each age
between 5 and 17 years old, effectively providing a snap-
shot, resolved by age, for that year. Thus, with simple
algebra, a prevalence vs. birth year curve can be con-
structed from any individual IDEA report, providing an
independent, alternative approach to constant-age track-
ing for estimating the temporal trend in autism. This
alternative approach is referred to here as the “age-
resolved snapshot” method. A key point is that the tem-
poral trend derived from an age-resolved snapshot
should be more or less immune to the biasing influences
of better and expanding diagnosis, since these influences
in principle will affect all ages in the snapshot equally as
one moves from the IDEA reports of the early 1990s to
the most recent one in 2010. In other words, if the hy-
pothesis that autism is a constant-prevalence condition
is correct, a snapshot-based prevalence vs. birth year
plot should be essentially a flat line with equal preva-
lence at all ages – albeit a line whose absolute value rises
with each new report as diagnosis continues to improve.
A caveat to the above statement is that some of the

older children in the snapshot may remain undiagnosed
despite the increased awareness of autism in recent
years. This is possible despite the fact that all school
children with an autism diagnosis are entitled to valu-
able, publicly-funded IDEA services [4], and that an
older child is eligible for reevaluation for autism even if
he was overlooked or misdiagnosed in earlier years.
However, if the constant-prevalence hypothesis is cor-
rect, even if some of the older children remain undiag-
nosed and the snapshot-based prevalence vs. birth year
plot is not a perfect flat line, it still should have a sub-
stantially flatter slope than a constant-age-tracking-based
prevalence vs. birth year plot covering the same time
interval. This hypothesis is tested empirically below
using a self-consistent dataset and the results and their
implications are discussed.

Methods
Autism prevalence
IDEA data: constant-age tracking vs. age-resolved snapshots
Autism counts were obtained from the Individuals with
Disabilities Education Act (IDEA) database (www.ideadata.
org) for each of the 50 U.S. states plus the District of
Columbia. Autism counts for children age 6 through 17
are available in age-resolved annual reports for 1991
through 2010, while autism counts for 5 year-olds are
available starting in the 2000 report. Prevalence was calcu-
lated by dividing the IDEA autism counts by total state-
wide public school populations from the National Center
for Education Statistics (NCES) (http://nces.ed.gov/ccd/
bat/). The NCES data are resolved by grade from kinder-
garten (age 5) to 12th grade (age 17) and available in an-
nual reports from 1991 to 2010.
The temporal trend in autism for each state was derived

by plotting prevalence vs. birth year using both the “con-
stant-age tracking” and “age-resolved snapshot” methods.
Birth year was calculated according to Equation (1).

Birth Year ¼ Report Year – Age ð1Þ

In the tracking method, Age was held constant while
Report Year was varied. In the snapshot method, Report
Year was held constant while Age was varied from 5 to
17 years. Constant-age tracking trends were calculated
using the twenty available years of IDEA reports (1991–
2010) for each of the following ages: 8, 9, 10, and
11 years old. In addition, the trend among 5 year-olds
was tracked over the eleven available years of reports
(2000–2010), which enabled the examination of trends
through as late as birth year 2005. The trend in autism
also was calculated independently from age-resolved
snapshots using IDEA reports from the following indi-
vidual years: 2002, 2005 and 2010.
The slopes of the temporal trends were quantified over

7–10 year intervals for each of the 50 states + D.C. by
least squares linear regression. The errors in the trend
slopes were taken from the covariance matrix of the re-
gression. The linear regression approach assumes that
the autism prevalence vs. birth year relationship can be
represented more or less as a linear increase over short
intervals of data. The assumption of linearity is generally
not appropriate for the younger end of the age-resolved
snapshots, when the prevalence vs. birth year curves
tend to flatten out and decline due to under-ascertainment
in younger children (Figure 1 and Additional file 1:
Figure S1). To avoid bias due to under-ascertainment,
the youngest ages: 5, 6 and 7, were discarded in calculating
the snapshot trend slopes. To account for uncertainty in
the age at which under-ascertainment ceases to bias the
snapshot trend slope, a range of start ages from 8 to
11 years old was considered. Using Equation (1), with the
age 8 to 11 range in start age and the end age held con-
stant at 17, the 2005 snapshot corresponds to the birth
year interval 1988 through 1994–1997, while the 2010
snapshot corresponds to the birth year interval 1993
through 1999–2002. Constant-age-tracking trend slopes
were calculated over these same birth year intervals for
ages 8, 9, 10 and 11.
The ratio of the snapshot slope to the tracking slope

was calculated over exactly overlapping birth year

http://www.ideadata.org
http://www.ideadata.org
http://nces.ed.gov/ccd/bat/
http://nces.ed.gov/ccd/bat/


Figure 1 Autism prevalence vs. birth year for California IDEA data, derived using two independent methods: 1) Constant-age tracking
of 9 year-olds over 20 years of annual reports from 1991–2010 (red) and 2) Age-resolved snapshot from the most recent report in
2010 (blue). The slope of each curve over the same birth year interval, 1993–2001, is estimated with a least squares linear fit. The snapshot fit
(grey) spans ages 9–17 in the 2010 report. The constant-age tracking fit spans report years 2002–2010. The snapshot:tracking slope ratio over the
1993–2001 birth year interval is 0.80.
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intervals, such that the tracked age was the same as the
start age of the snapshot slope. For example, 9 year-old
tracking slopes were compared to snapshot slopes begin-
ning at age 9, while 10 year-old tracking slopes were
compared to snapshot slopes beginning at age 10 (illus-
trated in Figure 1 and Additional file 1: Figure S2a for
California for the 2010 snapshot). The snapshot:tracking
slope ratio calculations were motivated by the following
considerations: If the snapshot-based trend is a flat line
with zero slope (i.e., if autism is truly a constant-
prevalence condition, fully diagnosed at all ages in the
snapshot), the slope ratio will be 0. Conversely, if the
snapshot and tracking trends agree perfectly in showing
a strong increase over time, the slope ratio will be 1. If
the truth lies somewhere in between, the ratio of the
snapshot slope to the tracking slope can provide a quan-
titative measure of the fraction of the constant-age
tracking-based increase in autism that is “real” rather
than attributable to better or expanded diagnosis.

CDDS data
In addition to IDEA data, autism prevalence data for
birth years 1970–1997 were obtained from the California
Department of Developmental Services (CDDS) [3]. The
CDDS data are effectively a 2002 age-resolved snapshot
of individuals 5 years of age or older receiving services
for autism [25]. The CDDS data are one of the most reli-
able, long-term U.S. autism records available, although
they are limited to California. CDDS data include only
verified cases of full-syndrome autistic disorder (AD),
the most severe and unambiguous ASD.
Additional CDDS autism prevalence data tracking

5 year-olds from 1995–2006, corresponding to birth
years 1990–2001, were obtained [26]. The CDDS track-
ing data set overlaps with California IDEA data tracking
5 year-olds for birth years 1995–2001, providing a means
for assessing whether the IDEA definition of autism has
expanded from the CDDS definition to include milder
ASDs. Since children in private schools are included in
IDEA autism counts but not in NCES total public school
population data, the IDEA/NCES ratio will tend to over-
estimate autism prevalence, by underestimating the de-
nominator. To correct for this effect in all figures in
which CDDS and California IDEA data are combined,
the NCES total populations for California were revised
upward by 14% based on available U.S. census data.

California IDEA and CDDS composite trend
To guide the eye in evaluating trends in suspected envir-
onmental toxins, a monotonic “composite” curve was
constructed by combining CDDS 2002 snapshot data for
birth years 1970–1994 with California IDEA 5 year-old
tracking data for birth years 1995–2005. These datasets
blend continuously, albeit for somewhat fortuitous rea-
sons, described in the Results section below. The primary
motive for combining them is to allow examination of
concurrent trends in toxins and autism over the longest
birth year window possible, 1970–2005 (Figure 2). The



Figure 2 Temporal trends in CDDS autistic disorder (blue) and California IDEA autism data (red). For both CDDS and IDEA, age-resolved
snapshots for 2002 (squares) and constant-age tracking data for 5 year-olds (triangles) are shown. Trends slopes (symbol b, in units of autism
count per 104 per year) are approximated using least squares linear regression over birth year intervals 1988–1995 (for 2002 snapshots) and
1995–2001 (for 5 year-old tracking).
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California data were assumed to be broadly representative
of the rest of the United States, an assumption supported
below by the results in Table 1.
The composite curve and the temporal trend in each

of the suspected causal agents were compared by visual
inspection. The correlation coefficient also was com-
puted between the temporal trend in each suspected
agent and the composite autism prevalence curve using
the longest overlapping time period possible (Additional
Table 1 Comparison of snapshot and constant-age tracking t
beginning in birth years 1988 (interval 1) and 1993 (interval

Interval 1 (snapshot based on 2005 report) Interval 2

bsnap btrack
bsnap
btrack

% Birth N bsnap

10−4 y−1 10−4 y−1 Year 10−4 y−1

Span

4.1 ± 1.5 5.3 ± 2.1 78 ± 8 1988-1997 24 6.3 ± 2.1

4.4 5.4 82 1 6.8

4.2 ± 1.6 5.6 ± 2.2 77 ± 8 1988-1996 22 6.2 ± 2.2

4.5 5.5 81 1 6.9

4.6 ± 1.6 6.0 ± 2.2 78 ± 7 1988-1995 21 6.6 ± 2.3

4.7 5.7 81 1 7.0

5.2 ± 1.8 6.7 ± 2.4 77 ± 8 1988-1994 17 7.5 ± 2.9

4.8 6.0 81 1 7.0

Snapshot slopes for interval 1 and 2 are based on the 2005 and 2010 IDEA reports,
least squares linear regression. The bottom line (N = 1) in each age pair shows resu
states (N = 11 to 24) for which the error in the constant-age tracking slope is < 10%
is reported as a quantitative estimate of the fraction (in%) of the constant-age track
range of tracking ages from 8 to 11 is considered.
file 1: Table S1). However, these quantitative statistics
are not emphasized in the Results and Discussion, due
to the multiple uncertainties involved in defining the
long-term trend in autism, discussed below.

Suspected environmental factors
Guided by the recently published top ten list, an exten-
sive literature and data search was conducted of avail-
able trends in each suspected environmental agent over
rends in IDEA autism prevalence for 7 to 10-year intervals
2)

(snapshot based on 2010 report)

btrack
bsnap
btrack

% Birth N Track Min.

10−4 y−1 Year Age Snap

Span Age

8.6 ± 2.6 73 ± 8 1993-2002 19 8 8

8.7 78 1

8.5 ± 2.7 73 ± 8 1993-2001 22 9 9

8.7 80 1

9.0 ± 2.9 74 ± 8 1993-2000 18 10 10

8.8 80 1

9.8 ± 3.4 76 ± 8 1993-1999 11 11 11

8.6 81 1

respectively. Slopes (symbol b, in units of # 10−4 y−1) are estimated based on
lts for California. The top line shows the mean and standard deviation for all
and the error in the snapshot slope is < 15%. The snapshot:tracking slope ratio
ing slope that is “real” rather than due to better and expanding diagnosis. A
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the relevant time period overlapping with the CDDS and
IDEA autism data. Priority was given to datasets with
high temporal resolution that measured levels of suspect
chemicals directly in bodily fluids or tissue (blood, urine,
breastmilk and adipose tissue) of American women or
young children. Data from the National Health and Nu-
trition Examination Survey (NHANES) were favored in
particular. NHANES is an ongoing survey of chemicals
in bodily tissues and fluids that is designed to reflect a
nationally representative sample of the U.S. population
over a number of years using a consistent sample design
and consistent methods of measurement. NHANES data
were found for lead, total blood Hg, BPA, phthalates and
PFCs [27-30]. Bodily fluid or tissue data from other
North American surveys and literature compilations
were found for the organochlorine pesticide DDT and
for dioxins, whose trends may offer some insight into
PCB trends since dioxins were created largely as a
byproduct of PCB manufacture [31,32]. In cases where
human bodily fluids were not available or applicable,
other data sources were used, including concentrations
in fish, product consumption records, pollutant emission
estimates, atmospheric measurements, and historical vac-
cine schedules (http://www.cdc.gov/vaccines/schedules/
past.html#prior-childhood) cross-matched to data on the
mercury and aluminum content of each vaccine [33-35].
In the case of PFCs and endocrine disruptors, the limited
available U.S. data were supplemented with more exten-
sive data from Germany and Sweden [36-38], although the
European trends were not necessarily assumed to repre-
sent U.S. trends. Finally, while not strictly speaking a toxin
related to the top 10 list, obesity among American women
of childbearing age [39] was also included in the trend
analysis. All data sources are described in detail in the
Additional file 1.

Results
Temporal trend in U.S. autism
The slope ratios for the California IDEA age-resolved
snapshot and constant-age tracking trends suggest that
about 80% of the tracked increase in California autism is
“real” as opposed to due to better diagnosis, both for
birth year intervals 1988 to 1994–1997 and 1993 to
1999–2002 (Figure 1). These results are relatively in-
sensitive to the choice of tracking age, within the range
of 8 to 11 (Additional file 1: Figure S2a, Table 1). The
California results are similar to and within the standard
deviation of the mean results across the United States
(Table 1). The latter suggest that 77 ± 8% of the tracked
increase over birth years 1988 to 1994–1997 is real and
that about 74 ± 8% of the tracked increase over birth
years 1993 to 1999–2002 is real.
In the above calculations, the birth year period from

1988 to 1994–1997 was the earliest interval used to
derive a linear trend. Attempts were made to calculate
linear tracking slopes beginning as early as 1985, but the
error in those slopes exceeded 10% for all but a few
states, suggesting that temporal trend could not be ap-
proximated well with a linear fit. This problem was
traced back to an upward inflection in the IDEA
constant-age tracking data around birth year 1988 (evi-
dent in Figure 1 for California and in many other states
in Additional file 1: Figure S1). This inflection is also
evident in the 2002 age-resolved snapshot for California
and a number of states (Additional file 1: Figure S1).
However, the slope errors of the snapshot-based trends
for most states were less sensitive to the use of 1985 in-
stead of 1988 as a start year than were the slope errors
of the constant-age tracking trends. The snapshot data
were more variable in general, and for this reason a
slightly looser standard (slope error < 15%) was applied
to them for inclusion in Table 1. The slope errors of <
10% (tracking) and < 15% (snapshot) were used as cri-
teria to filter out states with erratic data and to identify
those for which the temporal trend could be approxi-
mated well as a linear slope.
Comparison of the slopes of the 2002 age-resolved

snapshots for CDDS and California IDEA data shows
that IDEA has a steeper trend than CDDS (3.4 vs. 2.6
per 104 yr−1) over the overlapping 1988–1995 birth year
interval (Figure 2). The absolute IDEA numbers are also
about 40% higher on average than CDDS. Comparison
of the CDDS and IDEA 5 year-old tracking slopes over
the overlapping1995-2001 birth year interval shows that
the IDEA trend is more than 50% larger than the CDDS
trend (6.4 vs. 4.1 per 104 per year) and that the absolute
IDEA prevalence is again about 40% higher on average
than CDDS prevalence. Comparison of the two CDDS
curves in Figure 2 for the overlapping 1990–1995 birth
year interval shows that the CDDS 2002 snapshot data
are about 40% higher on average than the CDDS 5 year-
old tracking data, suggesting under-ascertainment among
the 5 year-olds. Under-ascertainment among 5 year-olds
relative to 10 year-olds is also evident in IDEA constant-age
tracking data for all states in Additional file 1: Figure S1.

Trends in suspected environmental factors
Most of the suspected environmental factors examined
have flat, decreasing, or mixed but recently decreasing
trends. A relative few stand out as having increasing
trends that are positively correlated to varying degrees to
the rise in autism. A summary of the temporal trends
over the 1970–2005 time frame of the autism data is as
follows:

Trends decreasing
Lead, PCBs, dioxins, organochlorine pesticides, vehicular
emissions, air pollution, PAHs.

http://www.cdc.gov/vaccines/schedules/past.html#prior-childhood
http://www.cdc.gov/vaccines/schedules/past.html#prior-childhood
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Trends mixed but recently decreasing
Organophosphate pesticides, PFCs, postnatal vaccine
thimerosal. These compounds increased during the early
part of the 1970–2005 period but began decreasing at
some point during the later period.

Trends flat
Phthalates, atmospheric Hg, total blood Hg. These com-
pounds have relatively flat temporal trends over the time
period of available data (dating back only to the early to
late 1990s for the U.S.).

Trends inconclusive
BPA. For BPA, German data suggest a decreasing trend
since about 1997 but U.S. data are only available since 2003
and were therefore considered inconclusive (Additional
file 1: Figure S15).

Trends increasing
Polybrominated diphenyl ethers (PBDEs), cumulative
aluminum adjuvants, cumulative total immunizations,
glyphosate, maternal obesity.
Additional file 1: Table S1 presents the correlation co-

efficients for the temporal trends in the suspect environ-
mental factors vs. the composite 1970–2005 CDDS +
IDEA record as well as the 1970–1997 CDDS-only rec-
ord. Figures 3, 4, 5, 6 show dual Y-axis plots of the tem-
poral trends in autism juxtaposed against the trends in
lead, highway emissions, aluminum adjuvants and glypho-
sate, respectively. Plots for all the remaining environmen-
tal factors are shown in the Additional file 1. Several
of the suspected environmental factors, including
Figure 3 Temporal trend in blood lead (Pb) concentration in U.S. chil
a composite of CDDS 2002 snapshot data (covering birth years 1970–
1995–2005 (see Section Methods for details).
vehicular emissions/air pollution, mercury and vaccines,
and organophosphate pesticides, are discussed below in
more detail.

Discussion
Temporal trend in autism
This paper is built around the premise that the sharp in-
crease in autism seen in constant-age tracking data over
recent decades logically must be driven by a correspond-
ing increase either in a single environmental exposure or
in the collective influence of multiple environmental ex-
posures. Critical to this whole premise is the following
question: is the tracked increase in autism prevalence
real or is it simply the result of better and expanding
diagnosis? This question was addressed empirically by
comparing autism trend slopes derived by tracking chil-
dren of a constant age across multiple, successive annual
IDEA reports to trend slopes derived from age-resolved
snapshots from individual, recent IDEA reports in 2005
and 2010. It was assumed that by the time the recent re-
ports were published, the greater awareness and expand-
ing diagnosis of autism would have been retroactively
applied to older children, who are still entitled until age
21 under IDEA to valuable educational services [40].
Given this assumption, it was hypothesized that a
snapshot-based prevalence vs. birth year curve would
have a flatter slope than a constant-age tracking curve
and conceivably would be a completely flat line if autism
is truly a constant-prevalence condition.
The comparison of snapshot and constant-age tracking

slopes in the Results section provides partial support for the
above hypothesis. In nearly all states, the snapshot slopes
dren compared to the temporal trend in autism, constructed from
1997) and California IDEA 5 year-old tracking data for birth years



Figure 4 Temporal trend in autism compared to trends in highway sector emissions of direct PM2.5 and indirect PM2.5 and ozone
precursor species. Emissions are normalized to the 1970 values for CO (=163 Mtons), NOx (=13 Mtons), and VOCs (=17 Mtons) and to the 1990
values for SO2 (=0.5 Mtons), and direct PM2.5 (=0.3 Mtons).
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are flatter than the tracking slopes, indicating an on-
going, retroactive expansion in the diagnosis of autism
among older students who were not identified as youn-
ger children (Figure 1, Additional file 1: Figure S1). This
ongoing expansion is also evident in plots following spe-
cific birth year cohorts as they age (Additional file 1:
Figure S2b). Overall, however, the IDEA data do not
support the hypothesis that autism is a constant-
Figure 5 Temporal trend in autism compared to temporal trend in cu
to U.S. children by 18 months of age. Red circles are years with publishe
Additional file 1) for details) in gap years without published schedules. The
will likely follow the 1995 schedule.
prevalence condition, since both the age-resolved snap-
shots and the constant-age tracking data show a strong
and largely consistent upward trend (Figure 1). On aver-
age across the United States, the snapshot:tracking slope
ratios suggest that about 75-80% of the tracked increase
in autism starting in the late 1980s is real (Table 1).
Another important result, derived by comparing

California IDEA and CDDS data, is that California
mulative amount of postnatal aluminum adjuvant administered
d immunization schedules. Red triangles reflect educated guesses (see
red curve is lagged 1 year because 18 month-olds born, e.g., in 1994



Figure 6 Temporal trend in autism compared to temporal trend in U.S. application of glyphosate to genetically-modified corn and soy
crops, as estimated from US Department of Agriculture data (see Additional file 1).
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probably includes at least some milder ASDs in its IDEA
autism category, despite reports to the contrary [40].
This result indicates that the IDEA definition of autism
in California has expanded from full syndrome Autistic
Disorder (the only ASD covered by CDDS) to include
some milder ASDs and that the expanded definition
leads to a stronger temporal trend. This finding for
California raises questions about whether some of the
other 30 states that in principle are ASD-exclusive also
in practice may include milder ASDs under IDEA.
On the other hand, the IDEA data do not appear to in-

clude all ASDs. This can be inferred by comparing IDEA
autism prevalence for 8 year-olds born in 2002 to re-
cently published ADDM autism prevalence data for the
same birth cohort [2]. ADDM data include the full
spectrum of ASDs, including Asperger’s. Among the 11
ADDM sites reporting, the ADDM prevalence [2] is on
average 74% higher than the IDEA prevalence calculated
here (Additional file 1: Figure S2c). For example, the
prevalence values for Utah and New Jersey are 0.7% and
1.3%, respectively, for IDEA compared to 1.9% and 2.2%
for ADDM [2]. While these differences may occur in
part because ADDM sampled only selected urban coun-
ties within these states whereas IDEA surveyed the en-
tire state, it is also probable that the IDEA counts
exclude some of the milder ASD cases. Due to the un-
certainty over which milder ASDs are included in IDEA
data and how this varies in different states, this paper is
deliberately vague in its use of the term “autism” when
discussing IDEA data.
The quantitative analysis of trends in IDEA autism

presented here can be compared to two other published
analyses, both of which were based on CDDS data. First,
a recent examination of CDDS constant-age tracking
data concluded that the upward trend in autistic dis-
order (AD) for birth years 1990–2003 was at least partly
real, although likely also due in part to changing diag-
nostic criteria and younger age at diagnosis [5]. The
quantitative details of that study imply that more than
half (i.e., a fraction 4.2/7 to 4.2/8 or 52-60%) of the
tracked increase in AD in CDDS data may not be “real”
but rather due to changes in diagnostic criteria, the in-
clusion of milder cases, and an earlier age at diagnosis.
Those factors were found to account for 2.2, 1.56, and
1.24-fold increases, respectively, or a combined 4.2-fold
increase, which in turn was divided by the 7 to 8-fold
tracked increase in AD from 1990–2003. However, the
factor 1.56 due to inclusion of milder cases was, in that
study’s own words, a “worst case” scenario that actually
may be closer to 1 [5]. Similarly, the factor 2.2 ascribed
to changes in diagnostic criteria was based on a Finnish
study comparing diagnoses using the Diagnostic and
Statistical Manual of Mental Disorders (DSM) IV versus
the original Kanner definition [5], whereas the relevant
comparison for the time frame in question arguably is
between DSM IV and DSM III-R. DSM IV, published in
1994, introduced Asperger’s syndrome and the concept
of autism as “spectrum” of disorders (ASDs), which in-
clude AD, PPD-NOS and Asperger's, but actually re-
stricted the definition of AD relative to DSM III-R
(published in 1987) [4]. From this perspective, the factor
2.2 might actually be closer to 1 or even less than 1.
Thus, the remaining “non-real” fraction of the increase
in AD, due to younger age at diagnosis, may be only
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1.24/7 to 1.24/8 (16% to 18%), suggesting that up to 82-
84% of the increase is real. This latter value is consistent
with the analysis of California IDEA data presented here,
which suggests that about 80% of the tracked increase
among 8 to 11 year-olds over a similar time frame
(1988–2002) is probably real. It also should be noted
that the 80% real fraction deduced here for California
may be an upper limit, since it is possible that some of
the older children in the 2005 and 2010 IDEA age-
resolved snapshots were never reevaluated for autism
and thus remained undiagnosed despite the increased
awareness in recent years.
Second, a recent mathematical analysis of the CDDS

2002 snapshot data identified 1988–1989 as the inflec-
tion point in the curve when autism prevalence started
its sharp rise [3]. (Notably, CDDS prevalence already
had been rising more gradually since about 1980,
doubling from 5 to 10 per 10,000 by 1988 [3].) The
1988–1989 inflection point is consistent with the current
analysis of IDEA data, which found relatively large slope
errors when trying to fit a linear trend to IDEA data be-
ginning prior to about birth year 1988. While proving
the 1988–1989 change point is beyond the scope of the
current study, the existence of an identifiable inflection
point in the autism trend data is important, because it
would tend to argue against diffuse intergenerational
epigenetic explanations and would suggest instead that
the temporal drivers of autism may be fairly specific. Al-
though many different toxic exposures may contribute
to oxidative stress and inflammation and thus may be
identified as statistically significant risk factors for aut-
ism in epidemiological studies, the existence of an inflec-
tion point would suggest the value of considering which
environmental factors could be driving a steep and on-
going increase in autism prevalence beginning circa
1988–1989.

Air pollution
Recent epidemiological studies have found that autism is
associated with ambient exposure to ozone and PM2.5
during pregnancy [41] as well as with birth residence
proximity to freeways but not major roads [23]. This lat-
ter result suggests a connection to large diesel trucks,
which travel more often on freeways than surface streets.
It may also implicate ultrafine or nanoparticles, whose
number concentration is high near freeway traffic, but
falls off exponentially away from the freeway due to at-
mospheric dilution, coagulation and other loss mecha-
nisms [42,43]. While large diesel truck miles traveled
have increased 4-fold from 1970 to 2005 [44], the in-
crease in miles appears to be overwhelmed by larger re-
ductions in emissions per mile for key pollutants [45].
Estimated vehicular emissions of the carcinogenic PAH
benzene α pyrene (BaP) show a strongly decreasing
trend that is anticorrelated to trends in autism (Additional
file 1: Figure S16a). The emission factors for 8 other PAHs,
as well as for CO, VOCs and particulate organic carbon,
show a similar decreasing temporal trend [45]. These de-
creases are supported by United States Environmental
Protection Agency (USEPA) estimates of highway emis-
sions of 5 major pollutants contributing either directly or
indirectly to PM2.5 and ozone formation (Figure 4), which
have decreased by ~50-75% from their reference values,
available from either 1970 or 1990 [46]. The trends in
highway emissions parallel decreasing trends in total emis-
sions of these pollutants from all sectors [46,47].
The large drop in vehicular emissions occurred mainly

by the 1980s and is attributed to the introduction of
catalytic converters in the 1970s and ongoing improve-
ments in fuel and emissions technology. Emissions of
black carbon, which are closely associated with diesel
fuel combustion and large trucks, also appear to be
dropping significantly, thanks to improved technology
such as diesel particle filters [48]. However, a counter
trend toward increasing emissions of nanoparticles, a
subset of PM2.5 that generally is not resolved by routine
measurement techniques [42], cannot be ruled out, al-
though a literature search turned up no articles indicat-
ing such a trend.
Direct measurements of air pollution provide an inte-

grated metric of the effect of vehicular and other emis-
sions on the atmosphere. Ozone and PM2.5 are two of
the most widely monitored air pollutants and both re-
cently have been linked to higher rates of autism in Los
Angeles [41]. However, EPA 8-hour ozone standard vio-
lations in Los Angeles as well as 10 other major U.S. cit-
ies show flat or downward trends that correlate poorly
to the rise in autism (Additional file 1: Figure S17). Simi-
larly, PM2.5 levels in Los Angeles and 3 other major cit-
ies in states with some of the highest ASD prevalence
also show flat or downward trends (Additional file 1:
Figure S18). While the ozone violation and PM2.5 time
series shown in these figures are available only from
1995 and 2000, respectively, studies taking a longer view
confirm that the U.S. has achieved significant reductions
in ozone since the U.S. Clean Air Act was established in
1970. Across the United States on average, ozone has
decreased by 28% since 1980 [47]. In the Los Angeles
basin, maximum 8-hour average ozone levels have de-
creased by a factor of 3 between 1973 and 2010 [49].
In summary, there is no obvious evidence to suggest

that trends in estimated vehicular emissions or directly
measured air pollution are consistent with the sharp
temporal increase in U.S. autism. It is therefore intri-
guing that vehicular emissions and air pollution have
been associated with autism in multiple epidemiological
or ecological studies [23,41,50-52]. While air pollution,
and nanoparticles in particular, can create metabolic
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conditions that are consistent with some of the bio-
chemical imbalances seen in autism [53-55], the inverse
trend relationship suggests the need for a coherent the-
ory of how air pollution may interact with as yet uniden-
tified temporal drivers to explain the increase in U.S.
autism.

Mercury and vaccines
It has been hypothesized that autism is a form of mer-
cury poisoning, based on the similarities between known
symptoms of mercury poisoning and the behavior traits
and biological abnormalities of autistic children [56-58].
In the original hypothesis, the vaccine preservative thi-
merosal was suggested as the main relevant route of ex-
posure [56]. Additional file 1: Figure S6 shows that the
expansion of thimerosal exposure in the late 1980s and
early 1990s coincides closely with the rise in autism
around that time. However, as noted by others [26], the
temporal trends in autism and thimerosal following the
childhood vaccine thimerosal phaseout are incompatible.
Postnatal thimerosal therefore seems unlikely to be driv-
ing the ongoing increase in autism in the 2000s, al-
though a recent reported decrease in the severity of
ASD among younger birth cohorts may coincide with
the thimerosal phaseout [2].
A possible confounding factor in the postnatal thimer-

osal analysis is the administration of flu shots to preg-
nant women, which increased in the late 1990s/early
2000s around the same time that thimerosal was being
phased out of children’s vaccines. Many flu shots still
contain 25 μg Hg and thus may be leading to increased
prenatal exposure. Anti-D Immune Globulin products,
which contained up to 65 μg Hg per dose in the 1990s,
were another prenatal source of thimerosal. Beginning in
1991, these shots were recommended routinely for RH-
pregnant women (about 11% of the population), who
often received two or more doses during their pregnancy
[59]. However, thimerosal was removed from these im-
mune globulin products around 2001, creating a com-
peting trend in prenatal exposure from that due to flu
shots. An additional complication is that the relative im-
pact of prenatal and postnatal thimerosal is difficult to
compare quantitatively, due to uncertainties in the de-
gree of protection provided by the mother and in the
sensitivity in the timing of fetal development to Hg [60].
Other vaccine indices, including cumulative aluminum

adjuvants and cumulative total number of immuniza-
tions, continue to correlate strongly with autism trends
(Figure 5, Additional file 1: Figure S7-S8). Aluminum is
a demonstrated neurotoxin that can induce neuroim-
mune disorders and cellular oxidative stress [61,62]. Sev-
eral recent studies have described biological mechanisms
by which aluminum could contribute to autism and have
emphasized the need to consider the interaction of
aluminum and vaccines with other pharmaceuticals, in-
cluding antibiotics and the antipyretic acetaminophen
[34,63-66]. The upward trend in aluminum adjuvant ex-
posure is also notable in that very young infants have ex-
perienced the largest relative increases from the early
1980s to 2005. Newborns have seen essentially an infin-
ite increase due to the hepatitis B birth dose, the receipt
of which has been linked epidemiologically to increased
autism risk [67], while 2 month-olds have seen about a
3-fold increase in aluminum adjuvant exposure (range
2.5 to 5.7, depending on the Al content assumed for
DPT and DTaP, which varies widely among different
manufacturers [33]) (Additional file 1: Figure S7b). How-
ever, with the exception noted above, most epidemio-
logical studies have found no correlation between
vaccines and autism, although these studies have focused
specifically on either thimerosal or the MMR vaccine ra-
ther than on aluminum [35,68,69].
The remaining Hg trend investigations below focus on

prenatal exposure, since mercury is known to be particu-
larly harmful to the developing fetus and to concentrate
by about a factor of 2 in cord blood relative to maternal
blood [70]. Total blood Hg provides a direct, integrated
measure of recent mercury exposure from a variety of
influences including diet, dental amalgams, thimerosal
and atmospheric pollution. Within the time frame of
available U.S. data (1999-present), the blood Hg trend is
flat and shows little evidence of a sharp increase in re-
cent years among women of reproductive age. At a mean
value of 0.8 μg/L, U.S. women’s blood Hg levels are also
relatively low compared to other countries such as
Japan, South Korea and Sweden [71-73]. A final notable
feature of the U.S. blood data is the tendency toward in-
creasing Hg levels with advancing age (Additional file 1:
Figure S3) [27].
Since the available blood Hg data were limited to the

final seven years of the autism record, additional data
sources were explored to try to reconstruct earlier
trends. Consumption records of seafood and high fruc-
tose corn syrup provide some indication of trends in
dietary Hg exposure. However, they are weaker indices
than direct blood measurements, since exposure also de-
pends on trends in the Hg content of these products,
which this study was unable to resolve.
Seafood is one of the most important sources of hu-

man Hg exposure, since MeHg can bioaccumulate in
higher trophic level fish. Fish are also a good source of
poly-unsaturated fatty acids, selenium and Vitamin D, all
of which have beneficial effects on neurological function
that may help counter the harmful effects of mercury
[74,75]. Total U.S. seafood consumption has increased
40% since 1970, but consumption of pelagic fish, includ-
ing tuna and large fish with highest MeHg content, has
declined since 1990 (Additional file 1: Figure S4). The
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above results appear consistent with previous findings
that women may be shifting away from high MeHg spe-
cies even as their total fish intake increases [76], suggest-
ing a relatively flat tend in MeHg exposure.
High fructose corn syrup (HFCS) is another source of

dietary mercury, with an upward trend in consumption
that was moderately well correlated to trends in autism
during the 1980s and 1990s, although current Hg exposure
through HFCS is declining (Additional file 1: Figure S5).
Using high-end Hg content estimates, the mean consump-
tion of 12 μg Hg/day via HFCS in 2005 corresponds to a
substantial annual intake of 4400 μg Hg/year. This is com-
parable to the amount of MeHg ingested via seafood at
the U.S. per capita consumption rate of about 24 kg/yr, as-
suming a mean content of ~ 0.2 ppm. Unlike fish, which
contain mitigating nutrients, HFCS is associated with
highly processed, nutrient-poor diets that can contribute
to autism risk factors such as zinc deficiency and obesity
[17,75,77]. However, the wide range of uncertainty in the
Hg content of HFCS makes it difficult to quantify the
exact temporal trend in mercury exposure.
Atmospheric Hg is an additional exposure that has

been linked to autism [50-52] and is essentially a ubiqui-
tous, unavoidable source. Gaseous Hg(0), the dominant
form of atmospheric mercury, is considered toxic if in-
haled because it can directly enter the blood stream
from the lungs. However the concentration of Hg(0) in
air is low [78] at about 1.5-2 ng/m3, such that the typical
amount inhaled is about 0.02 μg Hg/day for U.S. adults.
This a factor of 103-104 less than the MeHg ingested in
a single serving of tuna. Further, in Europe and North
America, improved emissions controls on coal plants
and other major emitters have led to substantial declines
in anthropogenic Hg emissions in recent years. In re-
sponse, atmospheric Hg concentrations and deposition
rates have stabilized over the U.S. in the last two de-
cades, although they have not actively declined [79,80]
(Additional file 1: Figure S9a). Meanwhile, atmospheric
concentrations appear to be declining at several remote
monitoring sites [78] (Additional file 1: Figure S9b).
These trends may reflect competing influences from the
ongoing expansion of coal combustion in Asia, improved
emissions controls in Europe and North America, and
changes in natural and “legacy” emissions from the large
reservoir of anthropogenically mobilized Hg now resid-
ing in the earth’s crust and surface ocean [81]. Consider-
ing the flat trends and small doses described above, it
seems unlikely that atmospheric Hg can be driving the
U.S. increase in autism.

Organophosphate pesticides
Epidemiology has linked ASD and PDD in children to
both prenatal and postnatal exposure to cholinesterase-
inhibiting organophosphate (OP) insecticides [24,82].
Further, the biological plausibility of these insecticides as
a cause of autism has been described and wheat and
corn have been identified as the most important sources
of OP exposure among U.S. children [19]. However, the
temporal trend in total OP insecticide use does not cor-
relate well to the trend in autism. According to USEPA
and USDA data, total agricultural use of OP insecticides
on 5 major crops (including corn, wheat, potatoes, cot-
ton and soy) declined about 30% between 1995 and 2005
(Additional file 1: Figure S12a) [83]. An important rea-
son for the decline in OP insecticide application to corn,
cotton and potatoes was the adoption of crops genetic-
ally modified to produce Bt toxin, which repels targeted
insect pests, thus reducing the need for external insecti-
cides. However, the combined 5-crop dataset does not
resolve how the shift to GM crops has affected OP in-
secticide application specifically to wheat over the 1970–
2005 time frame.
In addition to the 5 major crops, USEPA data showing

declines of ~50-75% in organophosphate residues on ap-
ples, grapes, carrots and tomatoes from 1998–2000 to
2007–2009 suggest that use is also declining on fresh
fruit and vegetable crops [29]. The reasons for the de-
cline in fruit and vegetable residues are not stated in the
USEPA report, and the substitution of other pesticides
for OP cannot be ruled out. Along with the decline in
agricultural use, chlorpyrifos, an OP insecticide com-
monly used in household applications, was banned for
residential use by the USEPA in 2001. Chlorpyrifos con-
centrations have subsequently declined in urban streams
and rivers in the northeastern and midwestern United
States [84]. However, other OPs continue to be used in
household applications, e.g., as pet flea products, with
temporal trends that are not resolved by this study.
Total insecticide use and herbicide use appear to have
flat or slightly declining trends from about 1980 through
2006 [85] (Additional file 1: Figure S12b,c).
An exception to the overall modest decline in U.S.

pesticide use is the rapidly increasing application of gly-
phosate, the active ingredient in the herbicide Roundup®
(Figure 6). Glyphosate is applied widely to genetically
modified crops, including corn, soybean, cotton, canola,
sugar beets and alfalfa. While glyphosate has the basic
chemical structure of an organophosphate pesticide, it is
not a conventional cholinesterase-inhibiting insecticide.
Rather, its mechanism of toxicity involves the disruption
of the shikimate pathway needed in the synthesis of es-
sential aromatic amino acids in plants. This pathway is
used by human gut bacteria, which play an important
role in the immune system and are often compromised
in autistic children [86]. An additional biochemical con-
nection is that the metabolism of glyphosphate depends
on glutathione, which is significantly depleted in autistic
individuals [87,88].
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From a temporal trends perspective, glyphosate was
first created in the 1970s, whereas the first reported
cases of autism occurred in the 1930s [1]. Further, its
widespread use did not begin until the mid 1990s, well
after the beginning of the surge in autism diagnoses in
the late 1980s. In recent years, however, its temporal
trend closely tracks the ongoing increase in autism.
Based purely on these timing considerations, it appears
that glyphosate cannot be responsible for the first autism
cases in the 1930s and is unlikely to have caused the late
1980s uptick, but could be interacting in recent years
with other toxins to drive up the prevalence of U.S.
autism.

Final thoughts and considerations
Correspondence between temporal trends in autism and
environmental factors is a useful method for identifying
possible triggers of autism to help focus future research.
However, it must be emphasized that the correlation in
temporal trends between autism and PBDEs, cumulative
aluminum adjuvants, and glyphosate shown here is not
proof of causation, especially given the ecological nature
of this study, in which the exposure data were aggregated
at the group level. Only application of a comprehensive
set of criteria for assessing causation [89] combined with a
deeper understanding of the underlying biology and
epidemiological evidence correlating individual-level expo-
sures and outcomes can prove whether a suspect com-
pound or trigger is a likely cause. On the other hand, the
strongly incompatible temporal trends in some named
suspects, particularly those banned or sharply curtailed in
the 1970s, such as lead, PCBs, and organochlorine pesti-
cides, make these compounds less likely drivers of the
rapid increase in autism since the late 1980s. However, this
study only examined the trends in a small subset of the
thousands of environmental chemicals in current use and
cannot rule out that the sheer volume of all these toxins is
converging to drive the autism increase.
It is also possible that the drivers of the temporal trend

in autism are tied into the factors responsible for the rise
in other autoimmune or hyperimmune system diseases
such as asthma, Crohn’s disease, lupus, and type 1 dia-
betes. All of these diseases have increased in recent de-
cades in the U.S as well as in many other countries. The
rise in these autoimmune conditions has been attributed
to increased systemic inflammation, driven in large part
by changes in the intestinal biome in the postindustrial
era and the loss of microorganisms that helped regulate
the human immune system in our evolutionary past
[90]. Modern, western-style, high calorie/low nutrient di-
ets and related obesity also can alter gut microbiota and
contribute to chronic inflammation and oxidative stress,
creating an upward temporal trend in the metabolic condi-
tions that increase vulnerability to immune/inflammatory
response [91,92]. These conditions can affect fetal devel-
opment and, indeed, maternal obesity has been associ-
ated with increased risk of autism [77]. Notably, Additional
file 1: Figure S21 shows that the time trend in obesity
among U.S. women correlates well to that of autism, sug-
gesting maternal obesity may be a direct influence or a co-
morbid consequence of the dietary factors contributing to
autism, or both.
A literature survey of trends in other autoimmune

conditions suggests that they do not appear to be rising
at the same rapid rate as autism. For example, asthma
prevalence among U.S. children increased more or less
linearly by (only) about a factor of 2 from 3.6% in 1980–
1981 to 6.9% in 1995–1996 [93] and (using an altered
metric) from 8.7 to 9.4% from 2001 to 2010[29]. Simi-
larly, the rate of hospitalization in the U.S. for Crohn’s
disease increased by a factor of 2 from 1990 to 2003
[94]. Finally, type 1 diabetes incidence among children
in Colorado stayed flat at around 14.8 per 100,000 from
1978–1988, then increased by less than a factor of 2 to
23.9 per 100,000 by 2002–2004 [95]. In comparison, the
composite trend constructed from CDDS and California
IDEA data, suggests a more than 20-fold increase in aut-
ism prevalence between birth years 1970 and 2005, most
(~80%) of which is probably real. Thus, while lifestyle
factors related to modern diet and hygiene may be con-
tributing to the rise in prevalence, autism stands out
from the above auto and hyperimmune conditions in the
strength of its temporal trend.

Summary
Temporal trends in autism were constructed both by
tracking prevalence at a constant age in a series of his-
torical IDEA reports and by computing prevalence from
age-resolved snapshots in individual, recent IDEA re-
ports. Both the snapshot and tracking approaches sug-
gest a strong increase in autism that took off in the late
1980s and was ongoing as of birth year 2005. The ratio
of the snapshot:tracking slopes suggests that among
states with the most reliable data, about 75 to 80% of
the tracked increase in IDEA autism since 1988 is due to
a real increase in the disorder rather than just to better
or expanded diagnosis. The trend in California IDEA
autism prevalence was shown to be broadly representa-
tive of the mean United States trend and was extended
to span birth years 1970–2005 using a composite CDDS
plus IDEA dataset. The composite dataset, which shows
that a more gradual increase in autism had begun
already by 1980, was compared to the corresponding
trends in a list of suspected toxins and environmental
influences. Several of these influences, including poly-
brominated diphenyl ethers, aluminum adjuvants, the
herbicide glyphosate, and obesity among U.S. women,
have increasing trends that are positively correlated to



Nevison Environmental Health 2014, 13:73 Page 14 of 16
http://www.ehjournal.net/content/13/1/73
the rise in autism. However, most of the toxins surveyed,
including lead, PCBs, organochlorine pesticides, vehicu-
lar emissions and air pollution, have flat or declining
trends, making it less likely that they can be driving the
increase in diagnosed autism seen over the 35-year
period of the composite data set.

Additional file

Additional file 1: Figure S1. shows temporal trends in IDEA autism
prevalence in all 50 states plus D.C. For each state, data tracking 5 and
10-year olds are compared to age-resolved snapshots for 2002 and 2010.
Figure S2. shows auxiliary information on the IDEA trend analysis. A text
description of each suspected environmental influence is provided and
the temporal trend is shown in a dual Y-axis plot juxtaposed against the
trend in autism in Figures S3-S21. Table S1. summarizes the data used
to construct the temporal trend in each environmental factor and its
correlation with the autism trend.
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