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Abstract

remarkably neutralized by electroacupuncture.

cerebral ischemia.

Background: To investigate the effects and potential mechanism of electroacupuncture intervention on expressions
of Angiotensin Il and its receptors-mediated signaling pathway in experimentally induced cerebral ischemia.

Methods: Totally 126 male Wistar rats were randomly divided into control group, model group and EA group. The
latter two were further divided into ten subgroups (n = 6) following Middle Cerebral Artery Occlusion (MCAQ). Changes
in regional cerebral blood flow (rCBF) and expressions of Angiotensin Il and its receptors (AT;R, AT,R), as well as
effector proteins in phosphatidyl inositol signal pathway were monitored before and at different times after MCAQ.

Results: MCAO-induced decline of ipsilateral rCBF was partially suppressed by electroacupuncture, and contralateral
blood flow was also superior to that of model group. Angiotensin Il level was remarkably elevated immediately after
MCAO, while electroacupuncture group exhibited significantly lower levels at 1 to 3 h and the value was significantly
increased thereafter. The enhanced expression of AT;R was partially inhibited by electroacupuncture, while increased
AT,R level was further induced. Electroacupuncture stimulation attenuated and postponed the upregulated-expressions
of Gg and CaM these upregulations. ELISA results showed sharply increased expressions of DAG and IPs, which were

Conclusions: MCAO induced significant increases in expression of Angiotensin Il and its receptor-mediated signal
pathway. These enhanced expressions were significantly attenuated by electroacupuncture intervention, followed by
reduced vasoconstriction and improved blood supply in ischemic region, and ultimately conferred beneficial effects on

Background

Ischemic stroke is a devastating disease with a complex
pathophysiology, and accounts for more than 80% of over-
all strokes [1]. It often results from focal cerebral ischemia
due to occlusion of a cerebral blood vessel, and conse-
quences of blood flow reduction in a brain territory are
complex that trigger a serial of multistep pathophysiologic
events, the so-called ischemic cascade [2]. The severe
reduction of blood flow to the affected tissue results in a
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lack of oxygen and nutrient transportation, which in turn
interferes with intracellular protein synthesis and worsen
ischemic brain injury, and ultimately leads to tissue hyp-
oxia and cell death [3]. It is therefore of major important
to improve cerebral circulation in acute ischemic stage,
and promotion of angiogenesis has been supposed to be a
potential therapeutical strategy.

Electroacupuncture (EA) is a novel therapy based on trad-
itional acupuncture combined with modern electrotherapy,
and is currently being investigated as a treatment for acute
ischemic stroke. Appropriate stimulation of acupoints may
increase the blood flow, up-regulate the inherent neuropro-
tector activity, stabilize the ionic homeostasis, and balance
the intracellular survival and death signals in the ischemic
brain region. Clinically, EA has been reported to produce
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beneficial effects on stroke patients, and experimental stud-
ies also demonstrated its effective attenuation of cerebral
ischemia [4]. Recently, our study has, for the first time,
found that EA at GV26 (Shuigou) can not only significantly
stimulate endothelial cell proliferation, but also shift its pro-
liferation to an earlier time phase after MCAO, supporting
the hypothesis that EA can cause active angiogenesis after
MCAO insult and is an important driving force of angio-
genesis during cerebral ischemia [5]. However, the under-
lying mechanism is still an open question and further
investigation is required for acute treatment with EA to be
widely accepted clinically, as in the present study.

The existence of brain renin-angiotensin system (RAS)
has been reported previously, and it has been found to be
involved in the modulation of cardiovascular and fluid-
electrolyte homeostasis, as well as other brain-specific
function. Evidence suggested that RAS blockade may have
an impact on early mechanisms of vascular disease, such
as endothelial dysfunction and vascular remodeling that
underlie clinical manifestations of cardiovascular disease
[6]. As a predominate bioactive peptide in RAS, Angioten-
sin II (Angll) has been suggested to be a significant
contributor to the pathophysiology of ischemic stroke
[7-9], which, after acting on its receptor (Angll type 1
receptor, AT;R; AngllI type 2 receptor, AT,R ), can activate a
series of cell signaling pathways, including phosphatidyl in-
ositol (PI) signaling pathways that associated with vasocon-
strictor function of Ang IL

As most understood and physiologically important recep-
tors, AT|R has been demonstrated to act through second
messengers to promote downstream effects such as vasocon-
striction, inflammation, atherogenicity, cellular proliferation
and matrix production. Upon binding of the Angll to the
AT/R, a conformational change is induced and transmitted
to the intracellular C-terminus which then interacts with the
G protein. Gq, the main G protein associated with AT;R,
activates phospholipase-C 1 (PLC 1) which in turn acti-
vates protein kinase-C causing a release of Ca®* from intra-
cellular stores, increasing cell contractility [10]. In addition
to interaction with G proteins, ATR also activates intracel-
lular pathways, such as MAPK and JAK/STAT mechanisms.
Ang II binding to AT;R causes phosphorylation of PLCy
which cleaves PIP2 to produces IP3 and DAG, followed by
Ca®* mobilization and protein kinase C (PKC) activation.
These second messengers generated through AT;R then
contribute to the vasoconstrictor function of Ang II as well
as activation of downstream tyrosine and serine/threonine
kinases, which contribute to the growth-promoting and
cytokine-like actions of Ang II [11,12]. Long-term blockade
of the AT R has been reported to improve the neurological
outcome and reduce the infarct volume after experimental
focal cerebral ischemia [13].

In contrast, AT,R-mediated signaling pathways and
function were not very well understood, but in general,
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appeared to antagonize the effects of the AT R [14]. The
AT,R has been reported to be highly expressed in fetal
tissues, and then restricted to certain locations or only
occurs in response to disease [15,16]. Biochemical and elec-
trophysiological evidence suggested that AT,R mediated
the angiogenic effect of Ang II through a mechanism that
involving bradykinin synthesis, which in turn up-regulates
endothelial nitric oxide and prostaglandin, followed by
markedly enhanced cerebral blood flow (CBF) and reduced
ischemic volume, and ultimately resulted in neuroprotec-
tion. It was therefore suggested to represent an important
endogenous repair mechanism in promotion of ischemia-
induced neovascularization [17,18].

In view of the significance of Ang II and its receptor pro-
teins in the pathophysiology of ischemic stroke, the present
study aimed to explore the potential mechanism mediating
the beneficial effects of EA from the respect of Ang II and
its receptors-mediated signal transduction pathways, and
the time-course effects of EA on experimentally induced
cerebral ischemic rats was systematically investigated within
the first 24 h.

Methods

Study subjects

A total of 126 male Wistar rats (weighing between 180
and 200 g), provided by the Animal Experimental Center
of the Medical Sciences Academy of the Chinese People’s
Liberation Army Military Academy, were used in the
study. All procedures were approved by the Animal Care
and Use Committee of Tianjin University of Traditional
Chinese Medicine and were in accordance with the insti-
tution’s Guidelines for Animal Experiments. Rats were
randomly divided into three groups: control group (n =6),
model group (n=60) and EA group (n=60). Rats in the
latter two groups were further equally subdivided into 10
groups on the basis of difference in time phases, including
1,2, 3,6,9, 12, 15, 18, 21 and 24 h groups. The laser-
Doppler examination was only performed on the model
and EA groups, with 16 rats in each group.

Middle cerebral artery occlusion (WVCAO) model

The rat MCAO model was established using the intralum-
inal suture occlusion method as described previously [19].
All animals were fasted overnight with free access to water
prior to surgery. During the procedure, room temperature
was maintained at 25°C. The animals were subjected to the
following set of procedures to induce an infarct. All rats
were anesthetized with an intraperitoneal injection of 10%
chloral hydrate (0.3 ml/100 g), and an incision was made
just in the midline of the neck. The right common carotid
artery (CCA), the external carotid artery (ECA) and internal
carotid artery (ICA) were carefully isolated, and ligated
temporarily at their origin with 6.0 silk suture. Each micro-
aneurysm clip was placed around the CCA and CEA to
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prevent bleeding during insertion of the suture. A hole of
the CCA was then made between the clips with needle
(2 ml injector), the blunted tip of a nylon suture (diameter:
0.205 mm; length: 20+2 mm) was inserted through the
hole until a mild resistance was felt. The two remaining
loose collar sutures were gently tightened, and the vessel
clips were then withdrawn. The section was sutured, and
rats were administered intravenously with gentamicin
(5 mg/kg per day) before put back in cages. Body
temperature was maintained between 37 and 37.5°C by
means of heating pad. The control group rats (n = 6) were
similarly anesthetized and received all the above mentioned
surgical procedures except for artery occlusion. All efforts
were made to minimize animal suffering.

After MCA occlusion, neurological behaviors were
evaluated with Zea Longa’s scale [20]: a score of 0, no
neurologic deficit; 1, mild focal neurologic deficit, failure
to extend left forepaw fully; 2, moderate focal neurologic
deficits, circling to the left; 3, severe focal neurological
deficits, falling to the left; 4, did not walk spontaneously
and had a depressed level of consciousness; 5, died. Rats
that scored 2—-3 were deep anesthetized by an intraperito-
neal injection of 10% chloral hydrate (0.35 ml/100 g) for
further experimentation.

EA stimulation

The EA stimulation was performed in the EA group as
described in our previous study [5]. Briefly, the traditional
Chinese acupuncture point ‘Shuigou’ (GV26, No. 26 of
the Govern Meridian) was punctured obliquely with
0.5 mm acupuncture needle, and below the GV26 about
1-2 mm, a ground electrode was located and a needle was
inserted obliquely in 2 mm depth. All rats in EA groups
were stimulated with continued 15 Hz and 1 mA electrical
stimulation for 20 minutes.

Laser doppler detection

Laser Doppler flowmeter (LDF) (DRT4 dual channel,
Moor Instruments Ltd, Axminster, UK) was used to moni-
tor regional cerebral blood flow (rCBF) before and at
different time points after MCAO. Rats in both model
and EA groups were anesthetized with 2% diethyl ether
and, after incision of the scalp, a burr hole of 5 mm in
diameter was made over the skull at 4 mm posterior cor-
onal suture and 3 mm lateral to the sagittal suture using a
low speed dental drill. A laser probe was placed on the
dura of cerebral cortex, and the levels of the rCBF were
monitored for at least 60 s after blood flow was stabilized.
Steady state baseline values were recorded bilaterally
before MCAO and all rCBF values were expressed as
percentages of respective basal values. Occlusion was con-
firmed by a drop in LDF by more than 65% of baseline. Be-
fore MCAO, the rCBF value was obtained as the baseline,
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and the rCBF data after MCAO were the percentages of its
baseline values.

Immunohistochemistry assay

In view of the angiogenesis effects of Angll, immunohisto-
chemistry was performed to investigate the level of Angll
and its receptor proteins. After the rats were euthanized,
ischemic hemisphere tissue was fixed in 10% formalin
solution and subsequently embedded in paraffin. A series
of 4—6 mm thick sections were cut for up to four sections
per animal according to the rat stereotaxic atlas of Paxinos
and Watson [21]. Immunohistochemical staining was per-
formed employing a steptavidin- biotin complex (SABC) kit
(Wuhan Boster Biological Technology Company, China),
using the rabbit polyclonal to Angiopoietin II (1:2000;
Abcam Inc., Cambridge, MA, USA), anti-Angiotensin II
receptor typel (1:1000; Sigma, St. Louis, MO, USA), anti-
Angiotensin II receptor type2 (1:2000; Sigma, St. Louis,
MO, USA), according to the manufacturer's instructions.
The microscopic images were captured with a digital camera
(Nikon CoolPix 990, Nikon, Tokyo, Japan), and analyzed by
Image-pro plus 6.0 software. The ROD was calculated
according to the following equation: (OD of Ang II/AT R/
AT,R - OD of background)/OD of background as reported
previously [22,23].

Western blotting

All rats fulfilling the inclusion criteria were decollated, and
arterial occlusive tissues were snap frozen in liquid nitrogen
and stored at —-80°C for further use. Western blot analyses
were performed to detected concentration of CaM, Gq
proteins as described previously with some modifications
[24,25]. Briefly, samples were homogenized in cold lysis
buffer, and protein concentrations were determined using a
BCA protein assay kit (Beyotime Corporation, China). Cell
lysates were analyzed by SDS-PAGE and transferred onto
polyvinylidene difluoride (PVDF) membranes. After trans-
fer, membranes were blocked by incubating with 5% (w/v)
nonfat dry milk in PBS solution with 0.05% Tween 20 for
1 h at room temperature or overnight at 4°C. Membranes
were then incubated with the primary antibodies (anti-cal-
modulin antibody 1:1000 diluted and anti-GNAQ + GNA11
antibody 1:800 diluted), followed by secondary antibodies
(horseradish peroxidase (HRP)-conjugated goat anti-mouse
IgG-H&L and HRP-conjugated goat anti-rabbit IgG-H&L),
which were all purchased from Abcam (Cambridge, MA,
USA), and developed using the enhanced chemilumines-
cence method (Pierce). Densitometry analysis was carried
out using the Quantity One program (Biorad, Hercules,
CA, USA).

Enzyme-linked immunosorbent assay (ELISA)
ELISA was performed to evaluate expressions of the DAG
and IP3 as previously described [26]. After the animals
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were euthanized, brains were perfused with cold saline,
and tissue samples of anterior cerebral artery, distrib-
uting arteries and origin of posterior cerebral artery
were respectively separated and quickly stored at -70°C.
Samples were washed in ice-cold PBS and sonicated by a 5-s
burst for 5 times with a 90-s cooling period after each burst
using an ultrasonic homogenizer (Braun-Sonic 2,000; B.
Braun Instruments, Burlingame, Calif.) below 4°C. Samples
were then stored at —20°C for coagulation and afterwards in-
cubated in 37°C for 5 min. After the repeated freezing and
thawing for 5 times, cell lysates were centrifuged at 1000 g
for 20 min, and supernatant was stored at —20°C for ELISA
analysis using IP; and DAG ELISA kits (Wuhan EIAab
Science Co., Ltd, China).

Statistical analysis

All data were expressed as the mean + standard deviation
(SD), and statistical analyses were performed with SPSS,
version 17.0 (SPSS Inc., Chicago, IL, USA). To establish
significance, LDF data was evaluated by two-sample t-test,
and the remaining data were analyzed using a one-way
analysis of variance (ANOVA). Statistical significance was
attributed at a P value of <0.05

Results

Neuroethology assessment

Since rats regained consciousness within 3 h postoper-
atively, neurological assessment was performed from
3 h following the MCAO. As presented in Table 1,
neurological behavior scores were decreased with the
time in both the model group and EA group. There
was no significant difference in the neurological behav-
ior scores at the earlier time points after the surgery
(3 and 6 h), while the scores were significantly reduced
by EA stimulation at the later time points (9, 15, 18,
and 21 h after MCAO insult), when compared with the
model group at the same time points (p < 0.05).

Table 1 Neurological behaviors were evaluated with Zea
Longa’s scale after MCA occlusion

Time/h Model group EA group
3 283+047 283+047
6 2834041 267+052
9 267+052 250+ 0.84%
12 250+ 055 2334052
15 2334082 200+1.1%
18 2174098 200+ 0.89%
21 217075 183 +089%
24 2174075 1834075

MCA: Middle cerebral artery; *p <0.05 vs the model group at the same
time points.
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Laser doppler analysis of rCBF level

LDF was used to determine the rCBF levels in the
both cerebral infarction ipsilateral and contralateral to
the lesion site, results showed that rCBF values were
reduced to various degrees after MCAO insult (Table 2).

In the cerebral infarction ipsilateral tissue, a remark-
able decline in the rCBF level was observed immediately
after MCAO (0.30 + 0.170f the baseline), and level was
then slightly increased 1 to 6 h after MCAO (Table 2).
During the 18 to 24 h time phase, value was declined to
some extent, but still higher than the baseline. The same
tendency existed in EA group, where rCBF value was
declined to 0.29 + 0.16 of the baseline. However, at the
time interval from 1 to 6 h after MCAO, EA treatment
resulted in a transient and significant suppression of the
MCAO-induced decline in rCBF levels (p<0.05) As
shown in Table 2, EA treatment transiently raised the
decreased rCBF to (0.49 +0.15) of the baseline at 1 h
after MCAO, and value was then gradually increased
until 6 h time phase.

As for contralateral side, rCBF value was only reduced
by 0.22 +0.24 immediately after MCAO in both the
model and EA groups, and was slightly increased at the
time intervals from 1 to 6 h. However, after the 6 h time
phase, CBF perfusion in EA group was found to be
significantly increased and became higher than that of
control and model groups. Although there was no statis-
tical significance in the changes of rCBF levels during
the different time phases, the levels were generally
higher in EA group than that of model group, especially
at the time interval from 21 and 24 h (p < 0.05, Table 2).

Immunohistochemistry assay

As presented in Figure 1 and Table 3, a remarkable
augmentation in Angll levels was observed immedi-
ately after MCAO (p<0.05), and reached a peak at
12 h after MCAO insult. At the time phase from 21 to
24 h, the level tended to grow again. The same ten-
dency was obtained in EA group. Which, however,
exhibited a significantly lower level at 1 to 3 h time
phase when compared with model group, and the value
was significantly increased until 15 h and then slightly
reduced thereafter (p <0.05). However, it exhibited a
rising trend again at 21 to 24 h after MCAO, with the
maximal value obtained at 24 h time phase.

Changes in expression of AT;R and AT,R were also
analyzed immunohistochemically. Results showed that
MCAO induced a remarkable up-regulation of AT ;R level
in model group (p <0.05), and the value was remarkably
reduced by EA treatment at all time phases after MCAO,
when compared with the model group counterparts
(p <0.05; Figure 2 and Table 3). The maximal value of
AT R was obtained at 2 h following MCAO, and then
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Table 2 Time-course effects of EA intervention on rCBF levels in both the cerebral infarction ipsilateral and
contralateral to the lesion site

Time h Model group EA group
Ipsilateral tissue Contralateral tissue Ipsilateral tissue Contralateral tissue
Pre-operation 1.00 1.00 1.00 1.00
0 030£0.17 0.76 £0.30 029+0.16 080+0.17
1 034+0.13 0.85+0.33 049+0.15% 0.83+£0.20
2 035+0.11 093+£023 052 +025% 0824033
3 047 +0.16 1.07 £041 061 +034% 0.96+0.39
6 0.70£0.23 1.15+£049 067 £0.19 1.31£0.62
9 0.70£025 1.01£033 069+032 1.22+£040
12 0.68 £0.32 1.15+£0.33 0.82+025% 1.20£047
15 0.73+030 095+0.28 0.66 +0.25 1.15+049
18 0.75+027 091+£052 0.75+022 1.08£051
21 0.58+£0.20 098+0.28 068+0.14 124+041%
24 0.65+0.31 0.69 £0.36 061£0.27 108 +0.74%
rCBF: regional cerebral blood flow; EA: electroacupuncture; *p < 0.05 vs the corresponding model group at the same time points.
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Figure 1 Time-course effects of EA intervention on the expression of Ang Il was investigated by immunohistochemistry assay in brain
tissue after MCAO. Positive expressions of Ang Il and its receptors were generally identified in the brain tissue. After MCAO insult, a remarkable
augmentation in Ang Il level was observed immediately after MCAO, and reached a peak at 12 h following MCAO (p < 0.05). The same tendency
was obtained in EA group. Which, however, exhibited a significantly lower level at the 1 to 3 h, and after that, the value was significantly
increased and peaked at 24 h. N: Control group; M: Model group; A: EA group.
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Table 3 Time-course effects of EA intervention on the expressions of Ang Il, AT,R, and AT,R after MCAO as determined

by immunohistochemistry assay (I0D)

Time Model group EA group

h Angll AT,R AT,R Angll AT,R AT,R

1 2,139 +0.295% 2768 + 0454% 1912 + 0484 1746 +0336" 2474 +0428%" 2373 +0487"

2 2200+0.177% 2777 £0222% 1.952 + 0505 1928 +0.268" 2317 +0409%” 2501 +0449%”
3 2259 +0215% 2496 +0.145% 2455 +0.297% 2003+0287 2191 +0553%" 2.780 +0.339%"
6 2330+0.528% 2425+ 0396 2526+ 0632% 2634 +0474%" 1956 +0366%" 2.885+0.583%"
9 2667 +0.383% 2379 + 0496 2.599 + 0454% 2,901 +0.344%" 2,057 +0438%" 3117 £ 0412%"
12 2.889 +0.257% 2595 +0.281% 2484 +0533% 3.108 +£0.193%" 2351 +0.193%" 3.155 +0443%™
15 2773 +0344% 2,604 +0.262% 2661 +0428% 3226 +0210% 2337 +£0475% 3.346 +0.295%"
18 2.754 +0.245% 2,657 +0.280% 2539 +0618% 3.012+0308%" 2448 +0.366%" 2,997 +0.594%"
21 2376 +0.542% 2744 + 0436 2400 + 0.623% 2669 +0479%" 2526 +0.257% 2882 +0.588%"
24 2474 +0463% 2697 +0321% 2445 +0494% 3233+0335%" 2365 +0400%" 2817+0513%

EA: Electroacupuncture; Ang lI: Angiotensin II; AT;R: Ang Il type 1 receptor; AT,R: Ang Il type 2 receptor; '*'p < 0.05 vs the control group (values were 1.872 +0.331
for Angll, 2.037 + 0307 for AT;R, and 2.091 +0.451 for AT5R), 'p < 0.05, “p < 0.01 vs model group at the same time points.

gradually decreased until 12 h. However, the value tended
to increase again after the 15 h time phase.

Figure 3 and Table 3 showed changes in AT,R
expression at different time phases after MCAO. Expres-
sion of AT,R was reduced to some extent during the
time interval from 1 to 2 h, and then increased sharply
thereafter (p <0.05). In EA group, however, AT,R level

was found to be always higher than that of control and
model groups (p < 0.05).

Western blotting analysis of CaM and Gq expressions

Western Blotting assay showed that CaM level was signifi-
cantly higher at all the time phases after MCAO (Figure 4).
EA treatment induced a significant decline in CaM level

I h after MCAO|. #.*

12 h after MCAO

2 h after MCAO

o 15 h after MCAO

3 h after MCAO

18 h after MCAO

6 h after MCAO

21 h after MCAO

9 h after MCAO

group; M: Model group; A: EA group.

* 124 h after MCAO

Figure 2 Time-course effects of EA intervention on the expression of AT1R was investigated by immunohistochemistry assay in brain
tissue after MCAO. MCAQ induced significant increase in protein level of ATTR, and the effect was partially inhibited by EA treatment. N: Control
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Figure 3 Time-course effects of EA intervention on the expression of AT2R was investigated by immunohistochemistry assay in brain
tissue after MCAO. MCAO induced transient decrease in protein level of AT,R, while AT,R expression was found to be significantly elevated after

at 1, 2, 3, 6, 9, 12, 15 and 21 h time phase following
MCAO when compared with the model group, although
it was still higher than the control (p < 0.05; Table 4).
Expression of Gq was also increased after MCAO when
compared with the control group, however, the tendency
was quite different from that of the CAM. A robust eleva-
tion in Gq protein levels was observed 1-3 h following
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Figure 4 Time-course effects of EA intervention on the CaM
and Gq expressions. Western blotting results showed that MCAO
induced significant increases in CaM levels, and this effect was
significantly suppressed by EA intervention. While, MCAO insult
induced a transient increase in expression of Gg, and EA stimulation
not only attenuated these MCAO-induced up-regulations to varying
degrees, but also shifted these upregulations to the later

time phases.

MCAO insult (p<0.01; Table 4). The value was signifi-
cantly higher in model group than that in EA group at the
1,2, 3, 6, and 9 h time phase, and after that, there was no
statistical difference in the Gq expression. Although Gq
level was elevated in EA group when compared with the
control group, it was delayed and blunted when compared

Table 4 Time-course effects of EA intervention on the
expressions of CaM and Gq as determined by western

blot assay
Time h Model group EA group
CaM Gq CaM Gq

1 067+003% 086+005%% 058+006"  049+027"
2 074+009%% 133+040%% 059+007"  053+017"
3 078 £021%* 150+£041%%  063+012" 090+0.12%*"
6 082+016%% 142+034%% 070+010%  102+030%*"
9  088+020%% 096+022%* 072+017%"  065+021"
12 095+008%*  064+006 075+0.12%"  064+036
15 094+009%*%  059+0.15 076+0.15%*"  063+008
18 089+005%% 053+018 082+0.18%%  053+0.12
21 092+009%*  050+009 078+0.19%*"  042+007
24 088+005%% 058+029 081+011%*  053+0.12

EA: Electroacupuncture; Gq: Gq protein; CAM: Calcium/calmodulin-dependent
protein; *p < 0.05, **p < 0.01 vs control group (values were 0.55 + 0.07 for

CaM and 0.44 +0.10 for Gq), "p < 0.05, “p < 0.01 vs model group at the same
time points.
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with the model group. Gq level of the 1 and 2 h after
MCAO was consistent with that of control group (p > 0.05),
and only during the 3 and 6 h time phases it was increased
to some extent and then decreased thereafter.

ELISA assay of expressions of DAG and IP3

Expression of DAG and IP3 was analyzed by using
ELISA assay, results showed that during the 1 to 12 h
time interval, MCAO induced a sharp increase in DAG
level in model group, with the peak value reached at 12 h
after MCAO (p<0.05; Table 5). While EA treatment
partially neutralized this increase, only the 9 h DAG level
was significantly higher than that of the control group
(p <0.05), and after that, the value was declined and dur-
ing the 15 to 24 h time phase, it was significantly lower
than that of control and model groups (p < 0.05).

In model group, expression level of IP; was also sig-
nificantly increased immediately after MCAO (p < 0.05),
and reached the peak value at 12 h, coincident in time
with that of DAG expression (Table 5). The same ten-
dency existed in EA group, where, however, the IP; value
was significantly reduced by EA treatment at all time
phases when compared with model group counterparts
(p <0.05).

Discussion

Animal modeling of ischemic stroke serves as an indispens-
able tool first to investigate mechanisms of ischemic cerebral
injury. As an ideal subject for mimicking human stroke, rat
has been largely used in molecular pathophysiology of
stroke. However, some studies have demonstrated that
certain rat strains are more suitable to use in stroke models,
for instance low deformity rates at the cerebrovascular differ-
entiation make Wistar rats more suitable for suture MCAO
than SD rats, while Wistar rats weighing between 180 and
200 g showed comparatively low deformity rates. Besides,
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female rats have been suggested to sustain smaller infarcts
after MCAO compared with male rats and this gender
difference may be affected by female hormone [27]. Put
these all together, male Wistar rats weighing between 180
and 200 g were selected in the present study.

The extent of postischemic injury depends not only on
the degree and duration of arterial occlusion, but also on
the adequacy of collateral circulation. After cerebral in-
farction, improvement in collateral circulation generally
includes two aspects, early vasodilation (initial of collateral
circulation) and subsequent angiogenesis (collateral circu-
lation reconstruction). Our recent study showed that EA
stimulation can significantly increase the endothelial cell
proliferation at the acute stage of the cerebral infarction
(first 6 h after MCAQO), when compared with model
group. Meanwhile, the initial proliferation was reported to
shift from 24 h in model group to an earlier time of 12 h
in EA group. With that, we believed that vasodilation-
dependent improvement in collateral circulation alone
may sustain to 24 h after MCAO, and hence, the present
study was systematically performed at 1, 2, 3, 6, 9, 12, 15,
18, 21 and 24 h time phases after MCAO insult.

EA treatment could induce protective effects on ischemic
patients, but there are some characters defining the protect-
ive effect of EA treatment, especially the electrical stimula-
tion parameters and the acupoint specificity. Acupoint
selection is the determining factor of EA treatment, different
acupoints has been employed previously to investigate the
acupoint-specific beneficial effects [28]. Based on meridian
theory, an acupoint is relatively specific to certain functions
or certain organs, and different effects occur when different
acupoints are stimulated. As the traditional Chinese acu-
puncture point, GV26 was specific for enhancement of
CCA blood flow [14], and stimulation at GV26 supposed
to improve the functions of CBF vessel via nerve reflex
pathway [29].

Table 5 Time-course effects of EA intervention on the expressions of DAG and IP3 as determined by ELISA assay

Time h Model group EA group
DAG(ng/mL) IP3(ng/mL) DAG(ng/mL) IP3(ng/mL)

1 1903 +0.122% 2045 +0.097% 0956 +0.192" 0857+0.117"
2 2.160 + 0.274% 2,144 +0096* 0.787+0.185" 1078 0061
3 2304+0.177% 2420 +0.094% 1524 +024%" 1,082+ 0.079%"
6 2480 +0.194% 2489+0.131% 1500+ 0.13%" 1162 + 0.094%”
9 3.096 +0.186™ 2760+0.151% 1332+0463% 1203+0.196%"
12 3662 +0.157% 3309+0.126% 1741 +£0188% 1317 +0.093%"
15 101740128 2387 +£0.123% 0614+ 0.04%" 1.185+0.100%”
18 1.11040.136 2244 +0052% 0562+ 0.08*” 0.855 +0.09%™
21 0924 + 0,047 1.801 +0.040* 0506 +0.085%" 0708 +0.139"
24 0813 +0029 1784+0.162% 0276 +0.12%" 055340035

EA: Electroacupuncture; ELISA: Enzyme-linked immuno sorbent assay: DAG:

Diacylglycerol; IP5: Inositol 1, 4, 5-trisphosphate; *p < 0.05 vs control group (values were 0.982 + 0.134 for DAG and 0.721 +0.081 for IP5), "p < 0.05, "p < 0.01 vs

model group at the same time points.
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Previous studies showed evidence suggested that electric
stimulation of different parameters may have different
effects on some body functions [30]. According to the
nested design study on EA combined with our earlier
research [30], stimulation parameters, with a stimulation
rate of 15 Hz and an electrical current amplitude of 1 mA
for 20 minutes, was adopted in this study.

Stenosis and occlusion of the MCA was supposed to be
the most important factors responsible for intracranial
ischemic lesions, and hemodynamic lesions in acute cere-
bral infarction area were primarily characterized by decline
in the CBF and cerebral blood volume (CBV) [31]. Cerebral
blood vessel has been reported to exhibit self-regulation
effects, when the CBF perfusion pressure was fluctuated
within a certain range, CBF level was maintained by the
compensatory expansion or contraction of the small artery
and blood capillary smooth muscle. However, when the col-
lateral circulation and small blood vessels expansion were
above a certain limit, CBF level began to fall and further
developed into malignant perfusion lesions despite of
normal or slightly elevated CBV. Where cerebrovascular
reserve capacity was evidently disturbed on the occluded
side, followed by the significantly reduced CBF and CBV
values, and ultimately developed into stroke [32]. Previous
researches showed that rats with the rCBF reduction to less
than 45% of the threshold level had a higher possibility
(80%) of development into the medium-sized infarcts, while
reduction less than 55% would inevitably resulted in the
small-sized infarcts [33]. Cerebral infarction posed serious
obstacle to cerebrovascular function and morphology, and
stimulation at GV26 was suggested to promote dias-
tolic blood vessel, reduce the cerebrovascular spasm,
improve cerebrovascular self-discipline and energy metab-
olism, and thereby promote the contralateral CBF to the in-
farction side to provide timely and effectively compensate
for blood flow.

Based on the above mentioned principle, the effects of
EA intervention on Ang II and its receptor-mediated
signal pathway were systematically evaluated in this
study. LDF analysis of the rCBF showed that MCAO
induced a significant decline in rCBF level of the infarct
hemisphere when compared with the contralateral side
(p <0.05), with the rCBF level reduced to the (0.30 +
0.17) and (0.29+0.16) of the baseline, respectively.
While EA treatment resulted in a transient and signifi-
cant up-regulation of rCBF level at the acute stage of
cerebral infarction, especially at 1 h (0.49 + 0.15), when
compared with model group (p <0.05). After that, there
was no significant difference in rCBF levels between
model and EA groups, although they were still lower
than that of the control group (p<0.05). Our results
indicated that stimulation at GV26 can rapidly increase
rCBF level to up to 45% of the threshold, and therefore
improve rCBF perfusion promptly and efficiently, resulting
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in the reduction or totally avoid of ischemia or infarction
in the affected area.

Activation of the RAS has been linked with an in-
creased risk of myocardial infarction and stroke [34,35],
and increasing amount of data showed that Ang II may
be involved in the initiation and regulation of processes
occurring in brain ischemia either in animal models of
cerebral ischemia [36] or in stroke patient [37]. The vast
majority of physiological and pathophysiological effects of
Ang II occurred via the AT R, and they were widely dis-
tributed in the brain tissue. In contrast, the AT,R is highly
and ubiquitously expressed in certain cerebral tissue, and
its re-expression only occurs in response to disease [15].
In the present study, the positive expression of AT,R has
been found in ischemic core and penumbra regions, corrob-
orating the results reported by Makino I [38].

Previous studies on the expression of Angll and its recep-
tors mainly focused on the 24, 48 and 72 h time phases after
MCAO [39], and systemic evaluation of their expression
within the first 24 h is scarce. Therefore, in this study, a con-
tinuous and dynamic evaluation of changes in the first 24 h
following MCAO was established. The result showed that at
the time intervals from 1 to 24 h after MCAO, AnglI level
was significantly higher than that of control. The values was
significantly higher in EA group after 6 h time phase when
compared with model group, and peak values were
reached at 12 and 24 h in model and EA group, re-
spectively. It may suggest that ischemia and hypoxia
can stimulate the up-regulation of Angll, but this self-
regulation is relatively limited without external intervention.

In our opinion, this phenomenon revealed that animal
organism has an ability of self-restoration in hypoxic—is-
chemic state, but this ability only has limited benefit to
cerebral ischemia as described in our experiment. With
the development of ischemic process, disturbed protein
synthesis and cell degeneration or necrosis would inevit-
ably result in the above-mentioned phenomenon.

The previous results on AT;R expression were controver-
sial [9,40,41], although the underlying reason was still un-
known, it may be because of different observation time and
places. After the systematic evaluation of AT/R level at the
cerebral cortex (both brain parenchyma and blood vessels)
during the first 24 h after MCAO, present study showed
that ATR level was significantly higher in the model group,
and peaked at 2 h time phase. The value was declined
to some extent during the 3 to 12 h, and then tended
to increase again. It may be resulted from the self-
regulation and stimulation effects of the Angllon AT R
expression. Previous studies showed that expression of
the AT,R mRNA level was up-regulated at the 3 and 24 h
after cerebral infarction. However, a remarkable upregu-
lation of the AT,R level, starting at 3 h and peaking at
15 h after MCAO insult, was observed in the present
study (p < 0.05).
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Early cerebral infarction is generally characterized by
vasospasm, with less blood vessels on the brain surface.
AT R was widely present in the brain, and was suggested to
mediate the vasoconstriction and endothelial cell injury
effects of Angllthrough stimulation of the IP; signal trans-
duction pathway [4]. Recently identified effects of the AT R
include production and release of reactive oxygen species,
stimulation of inflammatory and thrombotic processes,
which contribute to Ang II-mediated inflammation and
atherogenesis [42,43]. Our findings presented here indi-
cated that EA at GV26 can down-regulated the expres-
sion of AT R, which in turn promote vasodilatation,
followed by improved CBF and ultimately resulted in
the neuroprotective effect of EA. On the other hand, the
results revealed that AT R levels increased during 1 to
6 h following MCAO, and minimum expression was at
6 h, suggesting that beneficial effects of EA treatment
may exhibit a time response. The findings of our study
may therefore provide certain scientific basis for the
future clinical treatment.

Antagonism to the function AT;R, AT,R was supposed
to mediated the angiogenic effect of Ang II through a
mechanism that involves bradykinin [17,18], followed by
up-regulation of endothelial NO and prostaglandin, which
in turn markedly enhanced CBF and reduced ischemic
volume, and ultimately resulted in neuroprotection after
MCAO. The data in this study showed that up-regulation
of AT,R expression was presented in both model and EA
treated animals. However, the value was significantly
higher in EA group, and this up-regulation was also
observed to start earlier (2 h after MCAQ) when com-
pared with model group (3 h after MCAO), indicating that
stimulation at GV26 can not only up-regulate expression
of AT,R, but also shift its up-regulation to an earlier time.

Put these all together we can see that Angllexhibited a
vasoconstriction effect via ATR, the primary characteris-
tic of early cerebral infarction. EA treatment at GV26
inhibited Angllexpression, which in turn reduced its com-
bination with AT;R and thereby alleviated vasoconstric-
tion. With the development of ischemia, the damage
factors such as peroxide and oxygen free radicals were
accumulated in the brain, along with the enhanced expres-
sion of AT,R, which in turn promoted its combination
with the upregulated Angll, and ultimately improved the
cerebral ischemia.

However, this regulation effect only had the limited
benefit, and EA treatment can not reverse cerebral ische-
mia. With the development of the ischemia and increase
in cells degeneration or necrosis, Anglllevel would inevit-
ably decline. Whereas the value tended to increase again
at the 24 h time phase, it may be because that EA treat-
ment can promote the growth of glial cells, which not only
replaced the necrotic cells, but also acted as the primary
synthetic cells that stimulating Angllexpression. Our results
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suggested that stimulation at GV26 can regulate the expres-
sion of Angllto exert beneficial effects on cerebral infarction.

Angll, when bound to AT;R, would initiate mechanisms
that would increase heart contractile force, vascular tone,
and constriction of vessels [7]. AT|R was suggested to act
through second messengers to promote downstream effects
such as vasoconstriction, atherogenicity, cellular prolifera-
tion and matrix production, while AT,R expression was
supposed to be restricted to certain locations or only
occurred in response to disease [15,16].

Therefore, in addition to evaluation of changes in
Anglland its receptors levels, expression of the effector
proteins in the Angllreceptor mediated IP; signal transduc-
tion pathway were also determined in this study. Western
blotting results showed that MCAO induced a significant
increase in Gq and CaM expressions, although different
tendencies could been seen between the two values. Briefly,
CaM level was significantly higher at all time phases after
MCAO, and EA treatment induced a pronounced suppres-
sion of CaM expression, although it was still higher than
control (p<0.05). By contrast, a robust elevation in Gq
level was observed mainly at 1 to 3 h following MCAO in-
sult, EA treatment not only attenuated the MCAO-induced
enhancement of Gq expression, but also shifted it to a later
time at 6 h after MCAO (p<0.05). ELISA assay was
performed to determine the amounts of DAG and IP3 pro-
duced after MCAOQ, results showed that expression levels
of DAG and IP3 were sharply increase 1-12 h following
MCAO, and peak expression was at 12 h (p < 0.05). After
EA treatment, however, these increases were remarkably
neutralized when compared with model group. The results
presented here suggested that MCAO induced a sharp
increase in expression of the effector proteins in Angll
receptor mediated IP signal transduction pathway. These
enhanced expressions were significantly suppressed by EA
treatment, followed by the reduction of the MCAO-induced
vasoconstriction, which in turn improved blood supply in
the ischemic region, and ultimately exerted beneficial effects
on cerebral ischemia.

Conclusions

Stimulation at GV26 may prove to be useful in partially
reverse the MCAO-induced up-regulations of Angll and
its receptor mediated IP3 signal transduction pathway,
followed by reduced vasoconstriction and improved
blood supply in ischemic region, and ultimately con-
ferred beneficial effects on cerebral ischemia.
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