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Abstract
Background: Bi-directional flow of nutrients between marine and terrestrial ecosystems can
provide essential resources that structure communities in transitional habitats. On the Pacific coast
of North America, anadromous salmon (Oncorhynchus spp.) constitute a dominant nutrient subsidy
to aquatic habitats and riparian vegetation, although the contribution to terrestrial habitats is not
well established. We use a dual isotope approach of δ15N and δ13C to test for the contribution of
salmon nutrients to multiple trophic levels of litter-based terrestrial invertebrates below and above
waterfalls that act as a barrier to salmon migration on two watersheds in coastal British Columbia.

Results: Invertebrates varied predictably in δ15N with enrichment of 3–8‰ below the falls
compared with above the falls in all trophic groups on both watersheds. We observed increasing
δ15N levels in our invertebrate groups with increasing consumption of dietary protein.
Invertebrates varied in δ13C but did not always vary predictably with trophic level or habitat. From
19.4 to 71.5% of invertebrate total nitrogen was originally derived from salmon depending on taxa,
watershed, and degree of fractionation from the source.

Conclusions: Enrichment of δ15N in the invertebrate community below the falls in conjunction
with the absence of δ13C enrichment suggests that enrichment in δ15N occurs primarily through
salmon-derived nitrogen subsidies to litter, soil and vegetation N pools rather than from direct
consumption of salmon tissue or salmon tissue consumers. Salmon nutrient subsidies to terrestrial
habitats may result in shifts in invertebrate community structure, with subsequent implications for
higher vertebrate consumers, particularly the passerines.

Background
Nutrient cycling between geographically distinctive eco-
systems can produce zones of major productivity and bio-
diversity. It is generally recognized that downstream
transport of terrestrial nutrients into marine estuaries pro-
duces one of the world's most productive habitats, but re-
cent investigations suggest that the reverse flow, from
marine to terrestrial habitats, may also be exceptionally

important in structuring highly diverse coastal ecosystems
[1].

Every year in the Pacific Northwest anadromous salmon
(Oncorhynchus spp.) transport marine-derived nutrients
from the North Pacific Ocean into coastal ecosystems.
This salmon nutrient subsidy extends from aquatic habi-
tats into riparian forests, and is thought to be ecologically
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equivalent to the migration of the wildebeest on the Ser-
engeti [2]. Stable isotope studies in aquatic and terrestrial
ecosystems reveal that salmon contribute highly to yearly
protein intake for many vertebrates [1,3–5] and inverte-
brates [6,7], and provide substantial nutrient inputs to
limnetic food webs [6,8–10], and riparian vegetation
[7,11–13], emphasizing the ecological magnitude of this
keystone resource for coastal communities.

Transfer of salmon nutrients into terrestrial habitats oc-
curs primarily through bear (Ursus spp.) mediated salmon
carcass transfer [14–16] and urine deposition [12], but
can also occur as a result of flooding events [11], hypor-
heic zone transfer [5], or the activities of other scavengers
and predators [3,5]. Since nitrogen is often limiting in
coastal temperate rainforests of the Pacific Northwest
[17], this salmon nutrient pulse to riparian forests can
provide a significant proportion of plant total nitrogen
[11–13], and is thought to increase riparian primary pro-
ductivity, vegetation and litter quality, and soil nutrient
capital [13].

Studies in forest ecosystems adjacent to salmon streams
have so far been limited to vegetational use of salmon nu-
trients and have ignored other potential food web benefi-
ciaries, particularly terrestrial invertebrates. Macro-
invertebrates of coastal coniferous forests of the Pacific
Northwest, including insects, arachnids, myriapods, an-
nelid worms, isopods and gastropods, comprise the base
of the myriad of nutrient and energy pathways from pri-
mary producers through to higher vertebrate consumers,
and are highly important in many ecosystem processes in-
cluding herbivory, litter decomposition, and nutrient cy-
cling [18–20].

We use a dual isotope approach of δ15N and δ13C to as-
sess: a) the extent of utilization of salmon-derived nitro-
gen and carbon by various trophic groups in a terrestrial
invertebrate forest litter community and b) the mecha-
nism of salmon nutrient utilization by invertebrates; ei-
ther directly through salmon tissue consumption, or
indirectly through utilization of salmon nitrogen seques-
tered into riparian vegetation or soil N pools. We compare
the cycling of nutrients above and below waterfalls as a
means of examining ecological discontinuities that may
occur in litter-based macro-invertebrates between salmon
and salmon-free forest sites, and speculate on possible im-
plications to invertebrate community structure and higher
vertebrate consumers. We also discuss components of in-
vertebrate isotopic variability as it relates to microspatial
variability in δ15N, invertebrate trophic structure, and in-
vertebrate niche.

Results
Invertebrate trophic groups varied predictably with re-
spect to δ15N. The nested ANOVA analysis demonstrated
that the majority of variance in δ15N was due to falls with-
in watersheds (F = 9.191; p = 0.031; R2 = 0.819) and tax-
onomic group within all other factors (F = 13.71; p <
0.001; R2 = 0.689). Variation in δ15N that occurred be-
tween watersheds or distance of collection from the
stream contributed little to total variance and was insig-
nificant in the model (See methods for violations). Inver-
tebrates were enriched by 3–8‰ along salmon spawning
reaches compared to similar groups collected above the
falls, and showed a gradient of increasing values with in-
creased trophic level at both salmon and non-salmon sites
(Figure 1). There were highly significant differences in
δ15N (t-tests: p < 0.01) above and below waterfalls for all
trophic groups at both watersheds. Multiple comparison
tests (Tukey's post hoc) revealed distinct trophic separa-
tion in δ15N between at least two invertebrate groups de-
pending on site of collection (Table 1). Millipede
detritivores had higher δ15N values than root feeding wee-
vils on all sites but only on the Clatse above the falls was
this trend significant. Carabid beetles demonstrated high-
er δ15N values than millipedes at all sites with significant
differences on the Clatse River below and above the falls
and on the Neekas River above the falls. Spider predators
were significantly more enriched than carabid beetles on
the Neekas River on both salmon and non-salmon sites,
but demonstrated only marginally higher δ15N values
than these beetles on the Clatse River. Carabid beetle om-
nivores and spider predators demonstrated significantly
higher variance in δ15N below the falls than above on
both watersheds (Carabidae Clatse: F14,6 = 14.61, p <
0.005; Carabidae Neekas: F21,6= 21.94, p < 0.001; Araneae
Clatse: F18,16 = 5.41, p < 0.002; Araneae Neekas: F17,11 =
4.94, p < 0.02) (F-ratio tests).

Invertebrate groups varied in δ13C but did not always vary
predictably with trophic level or habitat (Figure 2). Nested
ANOVA analysis using δ13C indicated significant variabil-
ity only in taxonomic groupings (F = 11.801; p < 0.001; R2

= 0.657), with all other levels insignificant. Relatively high
δ13C values were observed in millipedes from both water-
sheds in salmon and non-salmon sites, most likely a re-
flection of inorganic carbon content. Multiple
comparisons revealed trophic separation for spiders over
carabid beetles in all sites (Table 2). Spiders were enriched
over root feeders on the Clatse River above the falls and on
the Neekas below the falls. Carabids and root feeders did
not differ in their δ13C values. Carabid beetles collected
on the Neekas River were the only group to demonstrate
isotopic enrichment below the falls (p = 0.042). Spiders
on the Clatse River were found to be higher in δ13C above
the falls than below (p= 0.016).
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We examined isotopic levels in relation to distance up-
stream from the ocean. At Clatse River, δ15N declined
with increased distance upstream with the lowest levels
occurring above the waterfalls. However, at Neekas River,
δ15N levels were high but variable throughout the stream
channel below the waterfall, above which there was a
striking reduction in δ15N over short distance delineated
by the geological barrier to salmon (Figure 3).

In order to assess niche differences within and among
groups, we examined the relationships between δ15N and
δ13C. Below the falls, there were significant positive corre-
lations between δ15N and δ13C in spiders on the Clatse (R
= 0.562; p = 0.012) and on the Neekas (R = 0.741; p =
0.001), and in carabid beetles on the Clatse (R = 0.682; p
= 0.005) and on the Neekas (R = 0.538; p = 0.010) (Figure
4). None of the remaining correlations were significant in
groups collected below the falls, and there were no signif-
icant correlations between δ15N and δ13C for any group
collected above the falls.

We estimated contribution of marine-derived nitrogen to
the total nitrogen content among invertebrate groups on
both watersheds (Table 3). At Clatse River, assuming no
fractionation, values ranged from 19% in millipedes to
49% in weevils (with fractionation: 28% in millipedes to
71% in weevils). At Neekas River, assuming no fractiona-
tion, values ranged from 35% in ground beetles to 51% in
spiders (with fractionation 47% in ground beetles to 70%
in spiders).

Discussion
We demonstrate isotopic evidence for substantive incor-
poration of salmon-derived nitrogen into multiple troph-
ic levels of terrestrial litter-based invertebrates from two
salmon bearing watersheds. Enrichment in δ15N in terres-
trial invertebrates occurs through two possible pathways:
1) direct consumption of salmon tissue and/or predation
off of direct salmon consumers such as larval blowflies; or
2) indirect enrichment through δ15N enriched soil and
vegetation N pools. Here, the use of the dual isotope
method provides insight into the mechanism of salmon

Table 1: Tukey's multiple comparison post hoc tests for δ15N values in four invertebrate trophic groups collected above and below wa-
terfalls on the Clatse and Neekas Rivers, British Columbia. N/A indicates post hoc tests not possible due to low sample sizes.

Clatse River

Below falls Above falls

Trophic grouping (1) Trophic grouping (J) Mean Difference (I-J) Significance Mean Difference (I-J) Significance

Predators Root Feeders 5.93 <0.001 8.31 <0.001
Predators Detritivores 5.81 <0.001 4.39 <0.001
Predators Omnivores 1.28 0.615 1.30 0.123
Omnivores Root Feeders 4.65 0.002 7.01 <0.001
Omnivores Detritivores 4.52 0.005 3.09 <0.001
Detritivores Root Feeders 0.13 1.000 3.92 <0.001

Neekas River

Below falls Above falls

Trophic grouping (1) Trophic grouping (J) Mean Difference (I-J) Significance Mean Difference (I-J) Significance

Predators Root Feeders 8.55 <0.001 5.33 N/A
Predators Detritivores 6.14 <0.001 5.32 <0.001
Predators Omnivores 5.84 <0.001 3.34 <0.001
Omnivores Root Feeders 2.7 0.548 1.99 N/A
Omnivores Detritivores 0.3 0.999 1.98 0.006
Detritivores Root Feeders 2.4 0.693 0.01 N/A
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Figure 1
δ15N values in four trophic groupings of litter-based invertebrates collected above and below waterfall barriers to salmon
migration on the Clatse and Neekas Rivers, British Columbia. Invertebrates are ranked (left to right) based on increasing con-
sumption of animal protein (see methods). t-test results: ** denotes p < 0.01; *** denotes p < 0.001.

Figure 2
δ13C values in four trophic groupings of litter-based invertebrates collected above and below waterfall barriers to salmon
migration on the Clatse and Neekas Rivers, British Columbia. Invertebrates are ranked (left to right) based on increasing con-
sumption of animal protein (see methods). t-test results: * denotes 0.01 < p < 0.05
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nitrogen utilization by terrestrial invertebrates. Direct
consumption of salmon, with approximate δ15N and
δ13C values of +11.2‰ [21] and -21‰ [9] respectively,
would lead to enriched signatures of δ15N and δ13C in an-
imal tissues. For example, consumption of salmon car-
casses by larval blowflies (Calliphoridae) has been
documented through the dual isotope method [7]. How-
ever, terrestrially derived carbon through C3 photosynthe-
sis dominates δ13C pools in coniferous forest soils and
salmon-derived carbon is assumed to contribute little to
total carbon in litter and soil. The process of indirect utili-
zation of salmon-derived nitrogen by animals has been
observed previously in small mammals [11], whereby in-
dividuals were enriched in δ15N but not δ13C. Because we
found little differences in δ13C in all trophic groups col-
lected above versus below the waterfalls, this suggests that
the primary mechanism of δ15N enrichment is by indirect
processes through salmon-derived nitrogen subsidies to
soil and vegetation N pools.

δ15N / δ14N ratios of forest nitrogen pools are influenced
by the isotopic values of nitrogen inputs and outputs and
fractionation that occurs during nitrogen transformations
within ecosystems [22]. Nitrogen inputs to typical Pacific
coast forest ecosystems include atmospheric deposition
and biological nitrogen fixation. In the case of forests ad-

jacent to salmon streams there is substantial evidence that
marine-derived nitrogen from salmon is transferred to for-
est ecosystems through predator activity [11,12,14–16],
flooding events [11] and hyporheic zone transfer [5], and
is incorporated into soil N pools through uptake by vege-
tation [6,7,11–13].

Vegetation δ15N values tend to parallel those in the soil
and litter across multiple sites and are typically slightly de-
pleted in δ15N relative to the soil source [22,23]. Recent
estimates for the contribution of marine-derived nitrogen
from salmon in riparian ecosystems to total plant nitro-
gen have ranged from 15.5–24% [6,12,13]. These values
may be conservative as they are based on the assumption
of no plant fractionation from the original source nitro-
gen. In the case of high nitrogen inputs from salmon, veg-
etation may preferentially assimilate isotopically light
nitrogen (even though it is also originally from salmon).
However, in nutrient rich habitats fractionation from the
source is potentially not as marked compared with nutri-
ent poor soils [23,24], making %MDN estimates challeng-
ing. %MDN estimates from hemlock (Mathewson &
Reimchen unpublished data), possibly constituting a
large percentage of litter biomass, vary from 23–34% on
the Clatse River and 49–66% on the Neekas River depend-
ing on degree of fractionation from the source. These esti-

Table 2: Tukey's multiple comparison post hoc tests for δ13C values in four invertebrate trophic groups collected above and below wa-
terfall barriers to salmon migration on the Clatse and Neekas Rivers, British Columbia. N/A indicates post hoc tests not possible due 
to low sample sizes.

Clatse River

Below falls Above falls

Trophic grouping (1) Trophic grouping (J) Mean Difference (I-J) Significance Mean Difference (I-J) Significance

Predators Root Feeders 0.77 0.555 1.17 0.004
Predators Omnivores 1.27 0.036 2.14 <0.001
Omnivores Root Feeders -0.49 0.847 -0.92 0.058

Neekas River

Below falls Above falls

Trophic grouping (1) Trophic grouping (J) Mean Difference (I-J) Significance Mean Difference (I-J) Significance

Predators Root Feeders 1.80 0.033 0.90 N/A
Predators Omnivores 2.02 <0.001 2.46 <0.001
Omnivores Root Feeders -0.22 0.984 -2.08 N/A
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mates are higher than previously reported, yet remain the
baseline for comparison with %MDN estimates in our lit-
ter-based invertebrate community.

Ponsard and Arditi [25] observed substantial site variation
in litter and soil δ15N due to variations in soil processes
and nitrogen sources across small scales (< 1 km). Soil and
litter δ15N and δ13C values are not yet available for our
sites. However, δ15N values in litter-based terrestrial inver-
tebrates are known to parallel the δ15N values in the litter
and soil [25,26]. We suspect that because vegetation and

all invertebrates collected below the waterfall barrier to
salmon migration are enriched in δ15N, that soil and litter
δ15N are also enriched at these sites. Our data demon-
strates that terrestrial invertebrates exhibit a substantial
shift in δ15N over a sharp ecological discontinuity (ca. 250
m) in the source of nitrogen to the forest community, as a
consequence of a distinct salmon-derived nitrogen subsi-
dy to litter, soil and vegetation N pools. We estimate that
%MDN to multiple trophic levels of litter-based inverte-
brates ranges from 19–71% on the Clatse River and 34–
70% on the Neekas River depending on trophic grouping,

Figure 3
δ15N values in ground beetles (Carabidae) and spiders (Araneae) with distance of collection upstream from the estuary (m) on
the Clatse and Neekas Rivers, British Columbia.
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and on the extent of fractionation from the original source
nitrogen. These values are similar to %MDN estimates of
hemlock and indicate that salmon-derived nitrogen is cy-
cled from primary producers through multiple trophic
levels of litter-based terrestrial invertebrates.

Grouping all invertebrate samples over the entire 100 m
riparian zone may have reduced the extent of statistical
differences for δ15N in our comparisons above and below
falls. This occurs because of a potential isotopic gradient
of decreasing δ15N from salmon in terrestrial vegetation
with increasing distance from the stream over a relatively
small scale (< 100 meters) [11–13]. Nevertheless, our

%MDN estimates are higher than any other study investi-
gating salmon nutrient transfer into terrestrial ecosystems
and emphasizes the magnitude of the discontinuity that
occurs across the waterfall barrier to salmon migration in
these watersheds.

These %MDN estimates assume salmon tissue δ15N as the
marine end-member in the model. However, there are
other factors that can influence these estimates. Vertebrate
urine, particularly from bears (Ursus spp.) [12], faeces and
guano deposition may contribute highly to nitrogen in-
puts during the salmon spawning season. Despite the fact
that these inputs are ultimately from salmon tissue con-

Figure 4
δ15N and δ13C values in ground beetles (Carabidae) and spiders (Araneae) below and above waterfalls on the Clatse and
Neekas Rivers, British Columbia.
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sumption, high fractionation during multiple transforma-
tion steps prior to nitrogen availability, such as ammonia
volatilization [22], may lead to unknown shifts in the
δ15N levels of the source nitrogen. This may increase the
microspatial variability in δ15N in litter, soil, and vegeta-
tion, and subsequently invertebrates, along the salmon
spawning channel.

Variation in δ15N in carabid beetles and spiders collected
below the waterfall barrier was substantially greater than
above the falls. It was only marginally higher (non-signif-
icant) in root feeding weevils and millipede detritivores,
possibly due to low sample sizes. This may indicate higher
microspatial variability in δ15N in soil, litter and vegeta-
tion N pools, increased range of prey resources below the
falls, and/ or invertebrate dispersal from other habitats
into the zone of substantial salmon transfer.

We detected variation in δ15N at different stream reaches,
most likely as a function of abundance and species of
spawning salmon. On the Clatse River, δ15N values de-
creased with increasing distance upstream. Potentially,
this might result from a gradient in marine subsidies other
than salmon as a function of distance from the estuary
[27]. However, this trend was not observed on the Neekas
River where δ15N values remain high, even at 2 km up-
stream. The difference between these two watersheds in
the distribution of marine-derived nitrogen appears to be
due to topography and the species and distribution
spawning salmon. Clatse River is pink salmon dominated,

with the majority of spawning, and subsequent predator
activity, occurring in the lower 500 meters of the spawn-
ing channel [28] (personal observations). Above 600 me-
ters the stream narrows and the riparian profile becomes
increasingly steep on both sides. The Neekas River has
high density chum spawning to the base of the falls with
high salmon nutrient transfer and predator activity occur-
ring in this region [28] (personal observations). Chum
salmon contain twice the biomass of nitrogen than pink
salmon, and this may partly explain the higher %MDN es-
timates obtained on the Neekas River compared to the
Clatse. The distribution of δ15N in these terrestrial inver-
tebrate groups thus appears to be directly correlated to
salmon spawning density and biomass, and subsequent
predator activity, a pattern that has been observed for
δ15N in ground beetles (Carabidae) occurring between
watersheds on Vancouver Island [7].

Differences in the variance of isotopic signatures within a
population provide insight as to the range of diet availa-
ble to the individual. For example, this has been found in
stable isotope studies of marine mammals and chimpan-
zees [29,30]. In the case of carabid beetles and spiders,
high variability in δ15N along the salmon-spawning chan-
nel compared to above the falls, may indicate higher prey
variability in this region. Variance in isotopic signatures
can also indicate mobility between habitats [31,32]. Cara-
bid beetles, particularly on the Neekas River, exhibited
high variance in signatures. The carabid beetle species col-
lected, although brachypterous, can move freely between

Table 3: % Marine-derived nitrogen (MDN) estimates in invertebrates collected above and below waterfall barriers to salmon migration 
on the Clatse and Neekas Rivers, British Columbia. Estimates of % MDN were made under conditions of no fractionation from the 
source and maximum fractionation of 4‰ from the source nitrogen by primary producers.

Clatse River

Invertebrate family(ies) % MDN (No Fractionation) %MDN (Max Fractionation)

Curculionidae 49.1% 71.5%
Parajulidae 19.4% 28.2%
Carabidae 30.6% 44.6%

Agelenidae/Antrodiaetidae 30.4% 44.3%
Neekas River

Invertebrate family(ies) %MDN (No Fractionation) %MDN (Max Fractionation)

Parajulidae 45.8% 62.3%
Carabidae 34.8% 47.3%

Agelenidae/Antrodiaetidae 51.2% 69.6%
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habitats [33], and captured individuals may not have ob-
tained their nutrition along the salmon spawning channel
for their entire life history.

Correlations between δ15N and δ13C values provide fur-
ther resolution into individual niche variability. We ob-
served a significant positive correlation between δ15N and
δ13C values in carabid beetles and spiders below water-
falls, with access to salmon nutrients, but not above falls.
Both groups feed on a diverse array of prey including pri-
mary and secondary consumers, and in the case of the
ground beetles, vegetative matter as well. Individuals
within each group that fed at a higher average trophic level
would be expected to exhibit more enrichment for δ15N
and δ13C [34,35]. Alternatively, individuals that fed on
salmon directly or on prey that fed on salmon would also
demonstrate isotopic enrichment in both isotopes [3–7].
Positive relationships in δ15N and δ13C below the falls
and the absence of that relationship above the falls hints
that direct consumption of salmon or salmon consumers
below the falls may be a factor for some individuals of
these species. However, increased range of food resources
below the falls would also be consistent with this finding.
Furthermore, smaller sample sizes above the falls may
have reduced our ability to detect relationships. For the
majority of the spiders and ground beetles, direct uptake
of the marine isotopes most likely contributes only a mi-
nor component to yearly protein intake, as uptake of ma-
rine-derived nitrogen occurs by indirect means. The use of
dual isotope model becomes most relevant when investi-
gating terrestrial organisms that use salmon protein as a
major contributor to diet. This is the case for several terres-
trial necrophages including flies (Diptera: Calliphoridae,
Scathophagidae, Anthomyiidae), and beetles (Coleop-
tera: Silphidae, Leiodidae, Staphylinidae) [7] (Hocking
unpublished data).

Animals are isotopically enriched in δ15N and δ13C rela-
tive to their dietary intake as a consequence of preferential
excretion of the lighter isotope in metabolism [36], and
this allows insight into relative trophic position within a
community. Isotopic enrichment varies widely by body
tissue, but there is an approximate stepwise enrichment of
3.4 ± 1.1‰ for δ15N [35,37] and 0.4 ± 1.4‰ for δ13C
[34,38] for each sequential trophic level. Ponsard & Arditi
[25] suggest that there are on average two trophic levels
within litter-based invertebrate communities. We also
find general evidence for two general trophic levels within
the litter-based community at Clatse and Neekas Rivers
usually consisting of: 1) root feeders and detritivores
(weevils and millipedes) as primary consumers of plant
material, and 2) predators (carabid beetles and spiders)
that feed on these and other presumed plant feeders with-
in the litter community. Our data, however, provides sub-
stantial evidence for a gradient in trophic level among our

litter-based invertebrates rather than two distinct trophic
groupings, a finding that coincides with that of Scheu &
Faica [26]. Millipedes, for instance, were often found to be
enriched in δ15N compared to root feeders, a finding that
suggests that either weevils (Curculionidae) feed on roots
that are somewhat depleted in δ15N compared to litter, or
that millipede detritivores utilize some δ15N enriched
protein food sources such as bacteria in their guts, or both
[25]. Spiders were enriched in δ15N in all cases over those
in carabid beetles, and below the falls on the Neekas this
constituted a mean difference greater than a single trophic
level. Evidence for omnivory is emerging in the carabid
beetles [33,39–42] and the observed discrepancy between
spiders and carabid beetles is most likely a result of the
purely predaceous versus omnivorous life histories of
these groups. Spiders also demonstrated trophic enrich-
ment in δ13C over carabid beetles at all sites. However,
spiders were not consistently enriched over root feeders at
each site and carabid beetles exhibited the lowest δ13C
values. We conclude that, in general, carbon is a poor
trophic level indicator [25]. Overall, this suggests that in-
creased trophic and individual niche resolution in stable
isotope studies will more likely extend from a detailed tax-
onomic separation rather than with guild analyses [26].

Implications
With the use of stable isotopes (δ15N and δ13C), spawn-
ing salmon have been shown to provide substantial nutri-
ent inputs to limnetic food webs [6,8–10], with
implications for stream primary productivity and subse-
quent juvenile salmonid survivorship. Young salmon may
in fact derive a large proportion of their required nitrogen
and carbon from the death and decomposition of their
parents, through food web utilization of salmon nutrients
by algae and aquatic invertebrates.

Other than inputs to terrestrial vegetation, salmon nutri-
ent effects in forest food webs are poorly known. Input of
salmon-derived nitrogen contributes to total available N
in the soil and thereby increases forest primary productiv-
ity and vegetation and litter quality [11–13]. Nutrient sub-
sidies (other than salmon) to terrestrial invertebrate
communities can result in shifts in invertebrate communi-
ty structure and abundance as a consequence of bottom-
up ecosystem effects [27,43,44]. Soils in coniferous forests
of low nutrient status are typically dominated by fungi as
the primary decomposers of organic material, and thick
humus layers quickly accumulate due to slow rates of nu-
trient turnover [45]. In nutrient-rich conditions, fungi are
replaced by bacteria and invertebrates as the dominant de-
composers, resulting in higher net rates of nitrogen min-
eralization and total available nitrogen [44,45]. Shifts in
invertebrate community structure and abundance due to
a nutrient subsidy may have further implications for high-
er invertebrate and vertebrate consumers such as preda-
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ceous beetles, spiders, hymenopteran parasitoids, small
mammals, amphibians and passerines. For example, in
another form of marine subsidy, spider densities have
been reported to be 4–5 times higher on islands with ma-
rine bird colonies than those without [46]. Furthermore,
avian populations in boreal forests have been observed to
respond to experimental nitrogen fertilization [47], a pat-
tern that also may well be true in the case of nutrient in-
puts to forest communities along salmon streams [48].
Shifts in litter-based invertebrate community structure
and abundance could have particular benefits for ground
foraging birds such as the resident and migratory spar-
rows, thrushes and wrens. The widespread enrichment in
salmon derived nitrogen among multiple trophic levels
also hints at an ecosystem level effect that has further im-
plications for shrub and canopy level invertebrate com-
munities and their various vertebrate consumers [1,5,48].

Conclusions
The increasing evidence for the coast-wide decline in
salmon abundance on the Pacific coast of North America
[49] may have substantially more ecological implications
to terrestrial forest food webs than previously recognized
[5]. We present evidence for major uptake of salmon-de-
rived nitrogen into a terrestrial invertebrate food web,
with a sharp reduction in uptake across a waterfall barrier
to salmon migration. These results supplement the con-
clusions of a diversity of recent contributions that have fo-
cused on the ecological consequences of the decline of
salmon on the west coast of North America [1,2,5–13,48].

Methods
Site Description
Two salmon bearing streams were investigated – the
Clatse (52° 20.6'N; 127° 50.3'W) and Neekas Rivers (52°
28.4'N; 128° 8.0'W), on the mid-coast of British Colum-
bia, near Bella Bella, Canada. Both watersheds occur in
the Coastal Western Hemlock Biogeoclimatic Zone along
the boundary between the central very wet hyper-mari-
time (CWHvh2) and sub-montane very-wet maritime
(CWHvm1) subzones [50]. Climate is considered cool
and wet with mean annual temperature of approximately
8°C, and mean annual precipitation above 4000 mm (En-
vironment Canada 2001). Dominant tree species include
Western Hemlock (Tsuga heterophylla), Sitka spruce (Picea
sitchensis), Amabilis fir (Abies amabilis), Western redcedar
(Thuja plicata), and Red alder (Alnus rubra). Common un-
derstory species include Alaskan blueberry (Yaccinium
alaskaense), red huckleberry (V. parvifolium), false azalea
(Menziesia feruginea), deer fern (Blechnum spicant), bunch-
berry (Cornus canadensis), lanky moss (Rhytidiadelphus
loreus), step moss (Hylocomium splendens), and common
green sphagnum (Sphagnum girgensohnii) on zonal sites,
and salmonberry (Rubus spectabilis), red elderberry (Sam-
bucus racemosa), stink current (Ribies bracteosum), and

spiny-wood fern (Dryopteris expansa) on nutrient rich sites.
Deep acidic soils predominate with high organic matter
content due to low rates of decomposition. Soil deposits
are typically alluvial or glacial in origin, are heavily
leached, and often contain iron deposits in the B layer.
Mor humus types are most common with a thick layer of
moss, but moder/mull humus forms occur in nutrient rich
sites along the salmon spawning channel.

Both the Clatse and Neekas watersheds are dominated by
high-density returns of pink (Oncorhynchus gorbuscha) and
chum (O. keta) salmon, with minor runs of coho (O. kis-
utch) and the occasional sockeye (O. nerka). In the last ten
years, pink and chum salmon returns on the Clatse River
average 17000 and 5000 individuals respectively. Chum
salmon constitute the majority of spawning biomass on
the Neekas (mean = 30000). Mean pink salmon returns
on the Neekas River vary from an average of 33000 on
even years to an average of 2700 on odd years (Depart-
ment of Fisheries and Oceans Escapement data: 1990–
1999). Suitable spawning habitat extends for 2.1 km on
the Neekas River, roughly twice that of the Clatse (1 km),
whereby both are interrupted by waterfalls that act as a
barrier to salmon migration [28].

Invertebrate samples
In August of 2000 terrestrial macro-invertebrates were col-
lected in each watershed through passive pitfall trapping
and hand collection from the soil and course woody de-
bris. Invertebrate sampling occurred above and below the
waterfall barrier and up to 100 meters from the stream.
On the Clatse River, main invertebrate sampling occurred
from 200 to 800 meters upstream from the mouth, and
again above the falls at 1200 and 1600 meters. The major-
ity of invertebrate trapping on the Neekas occurred at 1
km, and again at 2 km, just below the falls. Control sam-
ples from the Neekas were collected just above the falls
from 2250 to 2400 meters upstream from the mouth.

Pitfall arrays were arranged in a three-way branching fash-
ion. This included a central 10 cm diameter pitfall con-
nected via three 24-inch by 6-inch aluminium drift fences
(separated by 120°) to a perimeter pitfall at the end of
each fence [7]. Pitfall arrays were cleared from four to five
days after initial set-up, and to prevent rotting of inverte-
brate tissue 70% ethanol was used as a field preservative
within each pitfall cup. Hand collection of invertebrates
occurred more randomly as individuals were discovered
in the riparian area. All specimens were stored in 70% eth-
anol prior to identification and isotopic analysis.

Stable Isotope Analysis
Whole invertebrate specimens were dried at 60°C for at
least 48 hours and ground into a fine powder with a Wig-
L-Bug grinder (Crescent Dental Co., Chicago, 111). Ap-
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proximately 1 mg dry weight per ground specimen was
then sub-sampled for continuous-flow isotope ratio mass
spectrometry (CF-IRMS) analysis of nitrogen and carbon.
Mass spectrometry analysis of δ15N and δ13C was con-
ducted at the stable isotope facility, University of Sas-
katchewan, Saskatoon, Canada using a Europa Scientific
ANCA NT gas/solid/liquid preparation module coupled
to a Europa Scientific Tracer/ 20 mass spectrometer.

Isotopic contents are expressed in 'δ' (delta) notation rep-
resenting the difference between the isotopic content of
the sample and known isotopic standards (atmospheric
N2 for nitrogen and PeeDee Belemnite (PDB) limestone
for carbon). This is expressed in parts per thousand (‰)
according to the formula (1):

1) δ15N Or δ13C (‰) = (Rsample / Rstandard - 1) * 1000

where R is the ratio of the heavy isotope (15N or 13C) /
light isotope (14N or 12C).

Data Analysis
Individual terrestrial macro-invertebrates processed for
δ15N or δ13C were separated into four main groups based
on taxonomic similarity and ranked according to degree
of animal protein consumption, thus providing a proxy
for relative trophic level within the litter based food chain:
1) Root feeders (Coleoptera: Curculionidae) [18,51]; 2)
Detritivores (Julida: Parajulidae) [25,52]; 3) Omnivores
(Coleoptera: Carabidae) [33,39–42]; 4) Predators (Arane-
ae: Agelenidae, Antrodiaetidae) [53,54] (Table 4).

Curculionid beetles of the genus Steremnius feed as larvae
and adults on the roots and slash of conifers and are as-
signed the lowest trophic rank, as there is no current evi-
dence that these beetles utilize animal protein [18,51].
Millipedes are detritivores, feeding primarily on dead
plant material and fragments of organic matter. This po-
tentially includes small amounts of animal protein from
faeces, dead animals or microorganisms that occur on the
litter material [25,52]. The Parajulidae are indigenous to
the forest ecosystems of the Pacific Northwest but are

poorly known at the species level [55]. A priori, we as-
sume here that the parajulid millipedes include minor
contributions of organic matter derived from animal pro-
tein in diet. Carabid beetles of the genera Pterostichus,
Scaphinotus and Zacotus are generalist forest floor preda-
tors on a variety of soil invertebrates including snails and
slugs (Gastropoda), millipedes (Diplopoda), isopods
(Isopoda), worms (Oligochaeta) and springtails (Collem-
bola) [33,40,56]. However, documented observations of
carabids feeding on plant material including seeds and
fruit suggest that these beetles may be omnivorous rather
than purely predaceous [39,41,42]. Arachnids of the gen-
era Cybaeus and Antrodiaetus are known to be funnel-web
[54] and trap-door spiders [53] respectively, feeding ex-
clusively on animals including various insects, myriapods,
isopods, other spiders and even small vertebrates [57].

Independent sample t-tests (two-tailed) were used to test
for differences between invertebrate groups collected
above and below the falls for δ15N and δ13C on each wa-
tershed (equal variances not assumed in all tests). All in-
vertebrates collected within 100 meters of the stream were
pooled for the analysis, and those collected less than 200
meters from the estuary were removed since these were as-
sumed to possess ambiguous isotopic signatures where
marine incursions other than salmon input may particu-
larly obscure soil N pools [27]. F-ratio tests (two-tailed)
were conducted for δ15N between invertebrate groups col-
lected above versus below the falls under the null hypoth-
esis of equal variances. We also performed separate
Nested ANOVA's on δ15N and δ13C to examine the effects
of trophic group, distance from the stream, above and be-
low falls and watershed [model: watershed, water-
shed(falls), watershed(falls(distance)), watershed(falls
(distance (invertebrate group)))]. However, assumptions
of normality and homoscedasticity were not met and as
such, we place more emphasis on the t-test comparisons.
Tukey HSD multiple comparison post hoc tests were per-
formed for δ15N and δ13C within sites under the null hy-
pothesis that all invertebrate groups were isotopically
indistinct. Since inorganic carbon in the form of CaCO3,
present in the exoskeleton of our millipedes [52], is en-

Table 4: Family and species level designations by trophic grouping for invertebrates collected on the Clatse and Neekas Rivers, British 
Columbia, in August 2000.

Trophic grouping Family Species

1) Root Feeders Curculionidae Steremnius carinatus Boh. Steremnius tuberosus Gyll.
2) Detritivores Parajulidae Unknown
3) Omnivores Carabidae Pterostichus crenicollis LeC. Scaphinotus angusticollis Mann. Zacotus matthewsii LeC.
4) Predators Agelenidae Antrodiaetidae Cybaeus reticulatus Simon Antrodiaetus pacificus Simon
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riched in δ13C relative to organic forms [25], we removed
millipedes from the post hoc analysis of δ13C among feed-
ing groups. Pearson's Correlation Coefficients were used
to examine the relationships between δ15N and δ13C
within trophic groups at different sites to investigate the
individual niche variability.

Estimating % MDN
δ15N values in animals are influenced by the δ15N value
of the principal N sources, and fractionation during nitro-
gen transformations within ecosystems. Principal N
sources to riparian ecosystems include atmospheric N2
with a δ15N value of 0‰ [36], and salmon N with a δ15N
value of approximately 11.2 ± 1.0‰ [21]. Variations in
δ15N with trophic level appear to be relatively predictable
such that biota are enriched by 3.4 ± 1.1‰ more than
their food [37], a pattern that seems to hold true for soil
macro-invertebrates [25,26]. Estimates for % marine-de-
rived nitrogen (MDN) in our litter-based macro-inverte-
brate food chain were obtained based on a combination
of a limnetic trophic model proposed by Kline et al.[8]
and a terrestrial vegetation model utilized by Helfield and
Naiman [13] and is expressed mathematically by (2):

2) %MDN = [(Obs - TEM) / (MEMTL - TEM) ] * 100%

where Obs is the observed δ15N value of a particular taxa
below the waterfall barrier to salmon, TEM is the terrestri-
al end-member (the isotopic value obtained for the same
taxa above the falls in absence of salmon input), MEM is
the marine end-member (δ15N value of salmon of 11.2‰
[21] which should equal maximum vegetation δ15N val-
ues), and TL refers to the trophic level correction factor
that applies to the marine end-member in the model.
Since variability in utilization of MDN by the various in-
vertebrate groups below the falls might obscure relative
trophic level, we used invertebrate δ15N values above the
falls on each watershed to provide an indication of rela-
tive trophic position. The trophic level correction factor
was thus calculated by subtracting mean δ15N values in
hemlock above the falls, (Mathewson & Reimchen un-
published data: Clatse mean δ15N = -1.55‰; Neekas
mean δ15N = -3.93‰) from mean δ15N values in each in-
vertebrate group above the falls on each watershed. This
simplifies the above equation to (3):

3) % MDN = [(Obs - TEM) / (MEM - VEGabv) ] * 100%

where MEM equals salmon tissue [21] and VEGabv equals
mean vegetation δ15N values above the falls. We also cal-
culated %MDN for vegetation below the falls (Mathews-
on & Reimchen unpublished data: Clatse mean δ15N =
+1.43‰; Neekas mean δ15N = +3.44‰) as a benchmark
comparison to our invertebrate estimates. We were not
able to assess the extent of fractionation occurring in the

situation of 100% MDN at the level of primary producers
(See assumptions in [13]). As such, we calculated two
%MDN estimates based on no fractionation (MEM =
11.2‰) and maximum fractionation of 4‰ (MEM =
7.2‰), which is a typical maximum level of fractionation
in vegetation from atmospheric N2 that is observed in the
Clatse-Neekas non-salmon habitats (Mathewson & Reim-
chen unpublished data). This model assumes that inverte-
brate trophic level does not differ above and below the
falls and that the marine end-member for vegetation δ15N
values is represented by salmon tissue.
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