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Abstract

Background: Bacillus anthracis, the causative agent of anthrax, is a globally distributed zoonotic pathogen that
continues to be a veterinary and human health problem in Central Asia. We used a database of anthrax outbreak
locations in Kazakhstan and a subset of genotyped isolates to model the geographic distribution and ecological
associations of B. anthracis in Kazakhstan. The aims of the study were to test the influence of soil variables on a
previous ecological niche based prediction of B. anthracis in Kazakhstan and to determine if a single sub-lineage of
B. anthracis occupies a unique ecological niche.

Results: The addition of soil variables to the previously developed ecological niche model did not appreciably alter
the limits of the predicted geographic or ecological distribution of B. anthracis in Kazakhstan. The A1.a experiment
predicted the sub-lineage to be present over a larger geographic area than did the outbreak based experiment
containing multiple lineages. Within the geographic area predicted to be suitable for B. anthracis by all ten best
subset models, the A1.a sub-lineage was associated with a wider range of ecological tolerances than the outbreak-
soil experiment. Analysis of rule types showed that logit rules predominate in the outbreak-soil experiment and
range rules in the A1.a sub-lineage experiment. Random sub-setting of locality points suggests that models of B.
anthracis distribution may be sensitive to sample size.

Conclusions: Our analysis supports careful consideration of the taxonomic resolution of data used to create
ecological niche models. Further investigations into the environmental affinities of individual lineages and sub-
lineages of B. anthracis will be useful in understanding the ecology of the disease at large and small scales. With
model based predictions serving as approximations of disease risk, these efforts will improve the efficacy of public
health interventions for anthrax prevention and control.

Background
Anthrax is a disease of wildlife, livestock and humans
that remains a public health problem throughout the
world. Bacillus anthracis, the causative agent of anthrax,
is a soil-borne, spore-forming bacterium which persists
in soil for long periods of time under appropriate condi-
tions [1]. Certain soil parameters, including pH, organic
content and calcium, may be associated with spore sur-
vival [1-5]. Anthrax outbreaks among livestock and
wildlife result from exposure to these spores and are
possibly influenced by climatic and physiological events
[6,7]. In endemic areas, human cases of anthrax primar-
ily result from contact with infected livestock during

slaughter or butchering [8,9] and control of livestock
disease through vaccination and active surveillance of
livestock and wildlife is essential for preventing human
disease [10]. However, widespread active surveillance is
costly and vaccination of every animal is not feasible. It
is far more practical to focus these efforts on areas of
high risk. To identify these it is necessary to improve
our understanding of the ecology of B. anthracis
through which animal infection occurs.
The ecology of a pathogen such as B. anthracis can be

explored using similar tools as those used for species
distribution modelling and conservation planning. For
example, ecological niche modelling (ENM) has been
used to predict the potential ecological and geographic
distribution of pathogens based on outbreak locations
[10-14], presence of disease vectors [15-17] and disease
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reservoirs [18]. The ecological niche of a pathogen, as
for other types of species, is conceptualized as the N-
dimensional hypervolume of ecological parameters
within which the species can be maintained without
immigration [19,20]. Various approaches to ENM iden-
tify non-random associations between a species’ locality
data and environmental parameters. Ecological niche
modelling experiments of B. anthracis are particularly
useful considering the potential associations between
spore survival and ecological conditions [1,5]. Results
can be used as a proxy for disease risk and integrated
into focused surveillance strategies for wildlife and live-
stock in endemic areas and into vaccination strategies
that target at risk herds before and during outbreak
events [10].
Recently, studies of disease ecology have combined

molecular genotyping techniques and ecological niche
modelling to provide evidence that genetic lineages of a
pathogen can have different environmental associations
and potential geographic distributions [12,21]. In general
B. anthracis has relatively limited global diversity. How-
ever, multiple locus variable number tandem repeat ana-
lysis (MLVA) systems for B. anthracis can differentiate
strains into distinct lineages and sub-lineages [22-24].
Analyses of a global collection of B. anthracis isolates
suggests that the A lineage is globally distributed, while
other lineages (B and C) are geographically restricted.
These findings may be explained by adaptive differences,
some of which carry fitness costs that limit abundance
and distribution of certain lineages or sub-lineages
[3,24]. The ecological niche of B. anthracis has been
modelled in the United States and Kazakhstan using
locations of reported outbreaks [10,11,25,26]. A stated
limitation of these experiments was that the outbreak
data potentially included multiple strains of B. anthracis
[10,11]. If lineages of B. anthracis do exhibit niche spe-
cialization and unique geographic distributions, then it
is plausible that current outbreak based ecological niche
models are biased toward a dominant strain in a parti-
cular landscape. It would then follow that single lineage
models may better predict presence of the pathogen at
local scales and increase the value of public health mea-
sures [10].
Kazakhstan is situated in Central Asia, a region with

some of the highest reported human anthrax incidence
and mortality rates in the world [27,28]. The majority of
human anthrax cases in Kazakhstan are related to expo-
sure to infected livestock or handling of products
derived from infected livestock [9]. In rural areas of
Kazakhstan, veterinary care and surveillance programs
are limited by the country’s large land mass and widely
distributed rural populations. Vaccination of livestock
occurs mainly in response to detected outbreaks. In
countries such as Kazakhstan, prioritizing areas for

vaccination and surveillance are necessary for disease
control. Our group recently created a multi-variate eco-
logical niche model to characterize the broad environ-
mental conditions that support B. anthracis across
Kazakhstan [11,26]. In a parallel effort, Aikimbayev et al.
used an eight marker MLVA typing system (MLVA-8)
to describe the diversity of B. anthracis within Kazakh-
stan from 88 archival strains [22,29].
In this study, we first expanded on the previously pub-

lished outbreak based modelling experiment by adding
four soil variables (pH, calcium levels, organic content
and baseline water saturation) to the original set of
environmental variables. Despite literature suggesting a
strong relationship between soil characteristics such as
high calcium levels and alkaline pH and spore persis-
tence [1,4,5], the influence of available soil variables on
B. anthracis ENM predictions has not been compara-
tively examined [10]. We next used these twelve envir-
onmental variables and the collection of MLVA-8
genotyped samples to create an A1.a sub-lineage specific
ecological niche model for Kazakhstan.

Results
Accuracy Metrics
Ecological niche modelling was performed using the
Genetic Algorithm for Rule-Set Prediction (GARP). Four
experiments were run (outbreak-soil, A1.a sub-lineage,
small southern outbreak and large southern outbreak)
and are summarized in Table 1. All modelling processes
reached convergence of accuracy (0.01) prior to reaching
the maximum iteration setting (= 1,000). The outbreak-
soil model had an Area Under the Curve (AUC) of
0.7188 and was significantly different from a random
model. Total omission of the outbreak-soil model was
2.6% and average omission was 9.9%, indicating that
97.4% of the testing points were predicted by at least
one best subset model and 89.1% were predicted by all
models. The AUC of the A1.a sub-lineage model was
0.6964 and was also significantly different from a ran-
dom model and had a total and average omission of 0
and 13.1, respectively. Both the large and small outbreak
models had AUCs significantly different than random.
Accuracy metrics for all models are shown in Table 2.

Predicted Distributions of B. anthracis
Locations used for input into GARP are shown in Figure
1. Based on areas of agreement of a minimum of six of
the best subset models, the outbreak-soil experiment
predicted B. anthracis across much of northern Kazakh-
stan and in a narrow band of the southeast. The interior
of the country, which is primarily arid, was not pre-
dicted to be suitable for the pathogen. The results are
similar to those of the experiment without the soil vari-
ables with respect to the geographic extent of areas of
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six or more best subset model agreement (Figure 2).
The outbreak-soil experiment expanded two areas in the
north which had lower model agreement. The A1.a sub-
lineage experiment predicts a more extensive geographic
distribution than that of the outbreak experiment,
including areas in the northern interior and western
portions of the country (Figure 3). The northern pockets
of less suitable geographic areas seen in the outbreak-
soil experiment were predicted to be unsuitable based
on agreement of six or more best subset models. The
overall extents of the geographic predictions of the two
experiments were more similar in the south than in the
north. The large and small southern outbreak experi-
ments both predicted similar geographic extents as the
outbreak-soil experiment (Figure 4). All three projected
experiments (A1.a sub-lineage, large southern outbreak
and small southern outbreak) were run ten additional
times using random external data splits. The subsets of
A1.a sub-lineage and small southern outbreak experi-
ments showed greater degrees of spatial heterogeneity
than did the large southern outbreak experiment set.
(see Additional File 1: Random Subsets for illustration,
available as a PDF file, and Additional File 2: Accuracy
metrics for random subsets, available as a PDF file).
Each GARP model is composed of 50 if-then type rules

(logic, range, negated range and atomic) which predict the
presence or absence of the species for each pixel. Rule
types for the ten best subset models from the outbreak-

soil and A1.a sub-lineage experiments were extracted and
are summarized in Table 3. Just over half of the outbreak-
soil experiment rules were logit and no atomic rules were
included, whereas range rules made up over 60% of the
A1.a sub-lineage experiment rule types and this experi-
ment included four atomic rules in the best subsets.
Between 6 and 13 rules defined greater than 90% of areas
predicted to be suitable for B. anthracis for each of the
best subsets. Of the 95 rules which predicted the majority
of the landscape in the outbreak-soil experiment, the
majority (83%) were presence rules and of these 62% were
range rules. The A1.a sub-lineage experiment had 99 total
rules predict the majority of the landscape; all but one of
these was a presence rule and 73% of the presence rules
were range rules. The environmental tolerances described
by the dominant rules suggest that mean NDVI, altitude,
mean temperature, minimum soil calcium and minimum
soil organic content are limiting variables for B. anthracis
in Kazakhstan (Figure 5). Median minimum values of
mean NDVI, NDVI amplitude, annual precipitation, dry
month precipitation, wet month precipitation, mean tem-
perature, altitude and soil organic content are significantly
different between the A1.a sub-lineage and the outbreak-
soil experiment using the Wilcox-Mann-Whitney test at a
95% significance level. Median maximum values of NDVI
amplitude, mean temperature, dry month precipitation,
altitude, soil base saturation and soil organic content differ
between the two experiments.

Table 1 Summary of experiments

Experiment External Data Split (%Training/%
Testing)

Area used for Model
Building

Locality Data

Outbreak-Soil 85/15 All Kazakhstan All spatially unique livestock outbreaks

A1.a Sub-lineage 80/20 Southern Polygon Spatially unique A1.a isolates in southern polygon

Small Southern
Outbreak

85/20 Southern Polygon Random sub-set of spatially unique livestock outbreaks in
southern polygon

Large Southern
Outbreak

80/15 Southern Polygon All spatially unique livestock outbreaks in southern polygon

Table 2 Sample sizes and accuracy metrics for GARP model building and evaluation Table 3

Model

Metric Outbreak-Soil A1.a sub-lineage Large Southern Outbreak Small Southern Outbreak

N to build models* 218 26 113 26

N to test models 39 13 145 147

Total Omission 2.6 0.0 0.0 0.0

Average Omission 9.9 13.1 19.1 15.5

Total Commission 32.7 19.18 12.74 17

Average Commission 58.4 66.11 49.26 56.35

AUC† 0.7188 0.6964 0.7401 0.7386

SE 0.0466 0.0817 0.2410 0.04

Z 90.94 4.4449 16.3284 16.6241

*N was divided into 50%training/50% testing for each model iteration

†AUC = area under the curve
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Values of the limiting variables were extracted from
areas of ten best subset model agreement and plotted in
two dimensional variable space. The A1.a sub-lineage
experiment showed a broader ecological envelope than
the outbreak-soil experiment based on areas of ten best
subset model agreement, despite the smaller geographic
area predicted by agreement of all ten models (Figure
6). The two A4 locations, which are distant from each
other geographically, are found within a narrow range of
mean NDVI and mean temperature, but occupy nearly
opposite ends of the range of precipitation values.
Finally, the A3.b location was associated with ecological
conditions towards the outer boundaries of the ecologi-
cal envelope predicted by the outbreak-soil experiment.

Discussion
This study assesses the addition of soil variables to a
previously developed ecological niche model for Bacillus
anthracis and is the first known to model the ecological
and geographic distribution of a single sub-lineage of B.
anthracis. Inclusion of available soil variables into our

anthrax outbreak model resulted in subtle changes in
the likelihood of the pathogen in areas of northern
Kazakhstan, but did not substantially change the extent
of geographic predictions or results of rule set analyses
[26]. The areas predicted as less suitable by the out-
break-soil model correspond to regions of locally differ-
ent values for all four soil variables (see Additional File
3: Soil Variables, available as a PDF document). How-
ever, it is not known whether these areas represent a
unique ecological region or if measurement in these
areas was affected by error or bias. The low minimum
soil calcium association found in the rule set analyses
contrasts with previous literature suggesting that B.
anthracis spore persistence is associated with high soil
calcium levels [3,30]. The results of our rule set analysis,
however, are not directly comparable to previous work
in that different units of measurement and sampling
techniques were used. In addition, the soils data avail-
able for this study had a relatively coarse resolution of 1
km and were further aggregated to 8 km to match other
climatic data for model development. As a result, fine

Figure 1 Map of Kazakhstan with anthrax locality data. (A) Locations of genotyped isolates. Inset shows locations of outbreaks used for the
full outbreak model. Green points indicate training data for input into GARP and yellow points indicate independent points used to evaluate
model accuracy. Shaded area indicates southern polygon used for creating projected models.
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resolution relationships between soil and anthrax occur-
rences would likely be missed in this experiment.
Improved resolution of soil and outbreak data, such as
exact carcass locations, are likely necessary to character-
ize the role of soil parameters in promoting anthrax

spore persistence [3,31] and for better understanding
the spatio-temporal dynamics and ecology of local out-
breaks [32].
The A1.a sub-lineage experiment predicted a more

extensive geographic area of anthrax presence than did

Figure 2 Predicted distribution of Bacillus anthracis in Kazakhstan. Predicted distribution of Bacillus anthracis in Kazakhstan based on
outbreak data with and without soil variables. (A) Outbreak experiment (excluding soil variables) [26], (B) Outbreak-soil experiment (including soil
variables), (C) Differences between distributions predicted by the two experiments.
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the outbreak experiment. This is most pronounced in
the northern and central portions of the country. The
median minimum values of most variables defined by
the dominant rule sets were significantly different.
When ecological values of limiting variables were
extracted from geographic areas of best subset

agreement and plotted in two dimensional variable-
space, the A1.a sub-lineage was associated with a larger
ecological envelope than the outbreak-soil data. This
finding illustrates that analysis of dominant rule sets
alone should be interpreted with some caution. The
variable ranges derived from the dominant rule sets

Figure 3 Predicted geographic distribution of the Bacillus anthracis A1.a sub-lineage. Comparison of predicted geographic distributions of
B. anthracis. (A) distribution of B. anthracis predicted by the sub-lineage experiment, (B) difference between predicted distributions of the sub-
lineage and the outbreak-soil experiments.
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Figure 4 Predicted geographic distribution of B. anthracis based on the large southern outbreak experiment and small southern
outbreak experiment. Predicted geographic distribution of B. anthracis based on (A) large southern outbreak experiment and (B) small
southern outbreak experiment. (C) Difference between predicted geographic distributions. Green points indicate training data for input into
GARP and yellow points indicate independent points used to evaluate model accuracy.
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Table 3 Rules types from ten best models of the outbreak-soil and A1.a sub-lineage experiments. Values shown are
number of rule types in the rule set (column %)

Outbreak-Soil Rule Set

Rule Type 2 6 13 21 24 25 29 39 48 51 Total

Logit 17(34) 32(64) 34(68) 25(50) 22(44) 26(52) 36(72) 35(70) 25(50) 27(54) 279(55.8)

Negated Range 2(4) 1(2) 0(0) 0(0) 2(4) 2(4) 0(0) 1(2) 7(14) 7(14) 22(4.4)

Range 31(62) 17(34) 16(32) 25(50) 26(52) 22(44) 14(28) 14(28) 18(36) 16(32) 199(39.8)

A1.a Sub-lineage Rule Set

Rule Type 1 10 21 40 49 51 54 76 91 93 Total

Atomic 1(2) 2(4) 1(2) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 4(0.8)

Logit 15(30) 5(10) 22(44) 20(40) 30(60) 2(4) 7(14) 24(44) 22(44) 9(18) 156(31.2)

Negated Range 10(20) 0(0) 4(8) 2(4) 0(0) 0(0) 0(0) 7(14) 0(0) 0(0) 23(5.6)

Range 24(48) 43(86) 23(46) 28(56) 20(40) 48(96) 43(86) 19(38) 28(56) 41(82) 317(63.4)

Figure 5 Median ranges of environmental variables predicting B. anthracis presence by the outbreak-soil experiment. O = Outbreak-Soil
Experiment; A = A1.a sub-lineage experiment.
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summarize approximately only one-fifth (or fewer) of
the total number of rules generated by GARP in the ten
best subsets. The values extracted from predicted areas
on the landscape are derived from all 500 rules con-
tained in the 10 best subsests and represent the spec-
trum of complex interactions between variables and the
landscape. Because geographic areas of model agreement
can be thought of as representative of all sub-sampled
regions or populations [33], the finding of a larger eco-
logical envelope for the A1.a sub-lineage experiment
lends support to the hypothesis that the A1.a sub-

lineage of B. anthracis may have broad environmental
tolerances that influence its broad geographic distribu-
tion [3,24].
The A lineage is more widely distributed globally than

other subtypes, perhaps reflecting a greater level of fit-
ness as compared to other lineages [24]. This finding
has been shown on a local scale as well. Isolates of the
A lineage in Kruger National Park, South Africa, as
defined by MLVA-8 typing, were more diffusely distrib-
uted and showed a distinctly different spatial cluster pat-
tern than those of the B lineage. Furthermore, the B
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Figure 6 Distribution of B. anthracis in ecological space. Predicted distribution of B. anthracis in ecological space based on areas of ten best
subset model agreement. Red points = outbreak locations, blue points = A1.a isolate locations, black triangles = A4 locations, black circle = A3.b
location.
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lineage isolates occupied a narrow range of available
ecological conditions within those occupied by the A
lineage isolates [3]. In the experiments reported here,
the A1.a sub-lineage locations were associated with
lower pH values than the outbreak locations and this
could provisionally support the findings from Kruger
National Park [3]. It follows that that a B. anthracis line-
age and/or sub-lineage other than A1.a may predomi-
nate in the northern regions of Kazakhstan and is
driving the narrower geographic and ecological predic-
tion of the outbreak-soil experiment. Genotyping of
additional isolates from northern Kazakhstan is neces-
sary to evaluate this hypothesis. Locations of outbreaks
of the A4 lineage in geographical and ecological space
suggests that this genotype may also have a relatively
broad distribution, which is consistent with the A4 sub-
lineage being found across the Middle East and China
[29,34]. Although we cannot make inferences regarding
the environmental affinities of the single A3.b isolate,
we note it is located on the far eastern border of
Kazakhstan in an area predicted to be unsuitable for
anthrax by the outbreak-soil experiment. The A3.b sub-
lineage has been isolated from geographically limited
areas, most notably northern China and Texas, and the
presence of this genotype is likely a result of historical
trade routes [24,34,35].
The genetic diversity of B. anthracis isolates in south-

ern Kazakhstan is not surprising given the location of
this area along the historic Silk Road [29], but this
diversity also implies that this region is supportive of
spore persistence. Associations between genotypes of B.
anthracis, environment, virulence or host species have
not yet been fully explored and it is unknown whether
genotype influences epidemiological characteristics of
outbreaks. Understanding these relationships will
improve our understanding of anthrax disease ecology,
help focus surveillance and efficiently direct proactive
vaccination. Furthermore, this knowledge can help dis-
tinguish between naturally occurring outbreaks, contam-
ination and potential bioterrorism, and greatly enhance
epidemiological trace back (tracing outbreaks to source)
efforts during outbreaks.
Few studies using GARP have quantified and exam-

ined rule types. GARP begins creating rule sets by
choosing the first rule type at random and successful
rules are carried forward into subsequent rule sets.
Thus, the first rule type chosen at random will often
predominate in the final rule sets. Blackburn and Joyner
et. al. both presented summaries and distribution of the
dominant rule types predicting B. anthracis in the conti-
nental United States and Kazakhstan, respectively
[26,32]. Blackburn noted a predominance of range rules
among a total of 63 rules predicting greater than 90% of
the landscape [32]. Joyner et al divided Kazakhstan into

northern and southern halves and modelled the two sec-
tions separately [11]. A greater percentage of range rules
described the northern half of the country, whereas logit
rules predominantly described the southern half of the
country. Here, logit rules dominated in the out-break
soil experiment and range rules in the A1.a sub-lineage
experiment. Further work is required to tease out
whether dominant rule types result from the stochastic
nature of GARP or are related to complex interactions
between the organism and environmental variables.
Additional future work should also explore how rule
sets and ecological values found over predicted areas of
the landscape can be used to enhance our understand-
ing of the ecology of an organism.
Several authors have noted that ENM-based predic-

tions of species with widespread distributions show
reduced model accuracy which can be improved by
dividing species or the range into sub-units [33,36-39].
One explanation for the apparent poor accuracy of
models of widespread species is the use of AUC. The
AUC is sensitive to the area predicted to be suitable for
a species relative to the total land area analyzed [33,40].
Other considerations include non-uniformity of pre-
sence locations (geographical bias), and biological fac-
tors such as local ecological adaptations and genetic
diversity [33,37-39]. For example, modelling of Franci-
sella tularensis genotypes in the US yielded overlapping,
yet different, geographic predictions and ecological asso-
ciations [12]. Interestingly, this difference was apparent
at intermediate, as opposed to coarse, phylogenetic
levels. Similarly, Fisher et. al. showed that three geno-
type categories of the broadly distributed pathogenic
fungus Penicillium marneffei correlated with environ-
mental heterogeneity across Vietnam [21]. Using GARP,
the genotypes classes were predicted to occupy three
non-overlapping geographic areas. As a consequence of
B. anthracis being a widely distributed species, models
of anthrax outbreaks are subject to similar limitations in
accuracy. Genotype specific models may therefore have
improved accuracy and predictive power, and should be
explored at multiple phylogenetic levels.
It is worthwhile to evaluate modelling limitations

which could potentially explain differences between
experiments. Despite studies showing GARP to be
robust when predicting new landscapes [14,25,41], our
use of a projected modelling strategy may wrongly pre-
dict geographic and ecological distribution given the
large geographic area in question. However, projected
models created using southern outbreak points show
similar geographic predictions as the outbreak-soil
experiment, supporting that the broader geographic A1.
a sub-lineage prediction is not simply an artefact of the
modelling technique. That the large and small southern
outbreak experiments showed a lesser degree of model
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agreement than the outbreak-soil experiment and that
the large outbreak subsetting procedure had improved
spatial homogeneity over the small southern outbreaks
subsetting indicates that projected models may be sensi-
tive to issues of sample size and clustering. Issues relat-
ing to sample size appear to be important in our study.
The predicted geographic distribution of B. anthracis
varied among the 10 random data splits for both the Al.
a sub-lineage and small southern outbreak experiments.
In contrast, the same random data splitting procedure
performed with the large southern outbreak and the
outbreak-soil experiments showed spatial homogeneity
among models [26]. Although Stockwell and Peterson
and Hernandez found that as few as 10 presence points
are adequate for accurate GARP models [36,39], addi-
tional work has shown that certain species or geographic
scenarios are more sensitive to sample size than others
and that model accuracy can be sensitive to both sample
size and extent of the species’ range [42]. Here, any
effect of sample size is likely exaggerated by projection
onto a large geographic area and the relatively limited
resolution the data [36,42].
Some additional limitations apply to our findings. The

A1.a sub-lineage isolate collection was derived from mul-
tiple species, including livestock and humans, and from
soil samples. The outbreak data, however, were derived
from livestock only. The impact of this on model com-
parisons is unknown since associations between host,
genotype and environment are as yet unexplored. We are
limiting our modelled area by political boundaries as
opposed to biogeographic limits. Finally, the genotyped
isolate collection is geographically biased towards the
southeast portion of Kazakhstan and spans a relatively
long period of time [29]. Sampling bias is common in
niche models using historical collections and can create
artificial patterns in the data, although GARP is arguably
less sensitive than other modelling algorithms to spatial
bias [10,37,43,44]. Future genotyping of additional iso-
lates from under-sampled portions of the country, parti-
cularly the northern oblasts, will be essential to better
characterize the genetic diversity and ecology of anthrax
in Kazakhstan, allowing the construction of more refined
predictive models.

Conclusions
The inclusion of available soil variables resulted in
subtle changes in the predicted geographic distribution
of anthrax in Kazakhstan, but the experiment is limited
by the nature of available soil variables. Standardized
soil variables and finer resolution data will be essential
to characterizing the importance of soil parameters in B.
anthracis persistence. The A1.a sub-lineage experiment
showed a larger geographic and ecological distribution
than the outbreak based experiment. Understanding

genetic-environmental associations will be essential to
accurate modelling of anthrax for use in disease preven-
tion and control in Kazakhstan

Methods
Anthrax occurrence data
Presence points for outbreak-based models were taken
from the database created by Joyner et.al. [26]. Briefly,
historical records were used to construct a database of
3,947 anthrax outbreaks reported in Kazakhstan between
1937 and 2006. The data were sequentially filtered to
create a dataset containing the latitude and longitude of
outbreaks in cattle, sheep and goats which occurred
between 1960 and 2000. This time period reflects the
implementation of mass vaccination and corresponds to
the averaged data from both the WorldClim and soils
data sets [45,46]. The final dataset contained 258 spa-
tially unique points, meaning that only one outbreak
point occurred in each 8 km2 pixel. An 8 km2 resolution
was chosen because outbreaks were mapped to the near-
est village and some outbreaks occurred greater than 1
km from the village coordinates. This data set is here-
after referred to as the full outbreak dataset.
A second dataset was constructed using outbreak iso-

lates genotyped by Aikimbayev et.al. [29]. Isolates were
grouped into the A1.a (n = 78), A3.b (n = 6) and A4 (n
= 4) sub-lineages using unweighted pair group method
with arithmetic mean (UPGMA) cluster analysis and the
89 B. anthracis genotypes identified by Keim et.al. [22].
This was filtered to contain only spatially unique points
at a resolution of 8 km2 resulting in 42 spatially unique
points, of which 39 were A1.a, two were A4 and 1 was
A3 b. Locality data are mapped in Figure 1. Only the
A1.a sub-lineage had an adequate number of spatially
unique points for modelling. The A1.a locations were
geographically biased towards the south-eastern portion
of the country. To reduce the problem of largely
unsampled areas being considered as absence points, we
created a polygon encompassing southeast Kazakhstan
using latitude 48 N and 60 E as the northern and wes-
tern boundaries, respectively, and the country’s political
boundaries in the south and east. The boundaries of this
southern polygon were derived from examination of the
locations of the A1.a isolates and from the different
northern and southern ecological associations noted by
Joyner [26]. The southern polygon was used to clip the
A1.a locality points in ArcMap and this set of southern
A1.a locations was used for the sub-lineage experiment.
The same procedure was used to create a southern out-
break dataset.

Environmental Data
We used six environmental coverages downloaded from
the WorldClim website http://www.worldclim.org[46].
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The WorldClim variables are calculated from interpola-
tion of monthly temperature and precipitation measure-
ments recorded at stations located worldwide between
1961 and 2000. Monthly values are transformed by
WorldClim into 19 bioclimatic variable grids that
describe annual trends, seasonality and potentially limit-
ing ecological parameters such as temperature of the
coldest and warmest months. Two satellite-derived
environmental variables describing temperature and
vegetation measures were obtained from the Trypanoso-
miasis and Land Use in Africa (TALA) research group
(Oxford, United Kingdom) [47].
We added four soil variables to the set of eight envir-

onmental layers used in the previous study to test the
influence of soil parameters on the outbreak model. Soil
variables were derived from the Harmonized World Soil
Database and were available at 1 km2 resolution [45].
All coverages were re-sampled to 8 km2 and clipped to
the boundaries of Kazakhstan in ArcView 3.3. (Environ-
mental Systems Research institute, Redlands, CA). An
identical set of coverages was clipped to the southern
polygon. The final set of coverages is given in Table 4.

Ecological Niche Modelling
This study used the Genetic Algorithm for Rule-Set Pre-
diction (GARP) to perform the ecological niche model-
ling [48]. Models were developed in Desktop GARP
v.1.1.3, which gives the user the option to write out the
rule sets for each model. Briefly, GARP is a presence
only modelling technique that detects non-random asso-
ciations between species localities and specific environ-
mental variables. Through an iterative process,
relationships are expressed as a series of logic state-
ments, or rules, of which there are four types: (1) logit -
based on logistic regression; (2) atomic - single value for

a given variable that predicts presence; (3) range - a
range of values of a given variable that predicts pre-
sence; and (4) negated range - a range of values outside
of which presence is predicted. Each individual GARP
model is a set of 50 rules that are randomly generated,
tested and modified. The user sets a maximum number
of models to be created in a single experiment. A best
subsets procedure within GARP then selects a set of
optimal models based on user defined omission and
commission criteria [48]. The algorithm is a two-step
process, where first relationships are defined in variable
space through a random walk and then applied to the
geographic landscape where those conditions are met
[25]. GARP therefore has the benefit of being able to
project rule sets onto the environmental layers of a dif-
ferent landscape and has been shown to be robust in
this application [25,41].

Model building and evaluation
To test the effect of soils on the outbreak experiment
we used the full outbreak dataset as locality points and
the twelve environmental variables described in Table 3.
The 258 spatially unique points were randomly divided
into an 85% (n = 218) training set used for model build-
ing and a 15% (n = 39) testing set for model evaluation.
The 32 southern A1.a points were divided into an 80%
(n = 26) training set and a 20% (n = 6) testing set in
order to maximize points available for testing [33,39,42].
The A1.a training set was input into GARP with the set
of environmental coverages clipped to the southern
polygon for model development. Rules from this south-
ern A1.a experiment were projected onto the entire
landscape of Kazakhstan. In order to test the robustness
of the A1.a model projections given the relatively small
sample size and issues of transferability, two experi-
ments using the southern outbreak data were per-
formed. The first utilized all 142 southern outbreak
points and is referred to as the large southern outbreak
experiment. For the second, 32 points were randomly
selected from the southern outbreak dataset (small
southern outbreak experiment). For these experiments
an 85%/15% and 80%/20%, respectively, external data
split was performed and the experiments conducted as
for the sub-lineage. The four experiments are summar-
ized in Table 4.
For all niche modelling experiments, we specified 200

models with a maximum of 1,000 iterations and a con-
vergence limit of 0.01. The training data were input into
GARP with a 50% training/50% testing internal data par-
tition. The best subset procedure selected the best 20
models under a 10% hard omission threshold and a 50%
commission threshold. The resulting ten best subset
models were imported in ArcGIS and summated using
the raster calculator function of the Spatial Analyst

Table 4 Environmental coverages used for GARP models

Environmental Variable (unit) Name Source

Elevation (m) Altitude WorldClim*

Annual Temperature Range (°C) BIO7 WorldClim

Annual Mean Temperature (°C) BIO1 WorldClim

Precipitation of Driest Month (mm) BIO14 WorldClim

Precipitation of Wettest Month (mm) BIO13 WorldClim

Annual Precipitation (mm) BIO12 WorldClim

NDVI Amplitude (no units) wd1014 a1 TALA†

Mean NDVI (no units) wd1014 a0 TALA

Soil pH (-log(H⁺)) HWSD‡

Topsoil Calcium (% weight) HWSD

Topsoil Organic Content (% weight) HWSD

Subsoil Base Saturation (%) HWSD

*http://www.worldclim.org[46]

† Trypanosomiasis and Land Use in Africa (TALA) research group [47]

‡Harmonized World Soil Database [45]
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extension. This created a single cumulative raster file of
model agreement for B. anthracis presence ranging
from 0 (all models predict absence) to 10 (all models
predict presence). The more models that predict pre-
sence for a given pixel, the higher the likelihood that
the pixel can support B. anthracis.
Rule types from the ten best models of the outbreak-

soil experiment and the A1.a sub-lineage experiment
were extracted with a python script (K.M. McNyset, US
NOAA) and summarized to illustrate the relative num-
bers of each rule type. Dominant rules, or the subset of
rules that together predict over 90% of the landscape,
for each model were identified. We extracted the mini-
mum and maximum values of range rules using the
python script. When logit rules were identified, we
extracted the range of values across the pixels predicted
by that rule using the “Extract Values to Points” routine
of the Spatial Analyst extension in ArcMap. Median
minimum and maximum values for each variable were
calculated in SAS (SAS 9.2, Cary, N.C.) and plotted as a
bar graph. Differences in median and maximum values
between experiments were assessed using Wilcoxon-
Mann_Whitney test in SAS.
Predictive performance of the best subset models was

evaluated with an area under the curve (AUC) in a
receiver operating characteristic (ROC) analysis using
the independent test data withheld from the original
datasets [40]. For the projected models, testing points
included presence points outside the southern polygon
in addition to points withheld from within the southern
polygon. Values of AUC, which range from 0.5 (no dif-
ferent from random) to 1 (a perfect model), are derived
from measures of sensitivity (absence of omission error)
and specificity (absence of commission error). The cal-
culated value is compared to that of a random model
using a z-test. In addition, measures of omission and
commission were calculated using the summed ten best
subset models. Total and average omission values evalu-
ate how well GARP predicts the presence of known
locality points not included in the model building data.
Total and average commission is the percent of pixels
predicted as presence by the summated model and the
average of this value for all ten best subset models,
respectively. Large variation between the two measures
of commission suggests substantial variation between
the proportions of the landscape predicted present by
each of the ten best subset models [33].
Environmental values of 5,000 randomly chosen points

from areas predicted by all 10 of the best subset models
were extracted using the “Extract Values to Points” rou-
tine of the Spatial Analyst extension in ArcMap. Values
of each environmental variable at each presence point
and at 5,000 random points representing the total avail-
able environmental space (background) were similarly

extracted. Specific environmental values appearing to be
limiting factors for prediction of B. anthracis were cho-
sen based on the rule set evaluation (Figure 5) and
visualized in 2-dimensional ecological space against the
background of available environmental conditions using
R 2.1.1 http://www.R-project.org.

Additional material

Additional file 1: Random Subsets. Predicted geographic distribution
of B. anthracis based on 10 random subsets of input locality points for
the Aa.1 sub-lineage, large southern outbreak and small southern
outbreak experiments.

Additional file 2: Accuracy metrics for random subsets. Accuracy
metrics of 10 random subsets of input locality points for the Aa.1 sub-
lineage, large southern outbreak and small southern outbreak
experiments

Additional file 3: Soil Variables. Mapped values of the four soil
variables (minimum soil pH, minimum soil organic content, minimum soil
calcium and minimum soil base saturation).
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