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Treatment with a corticotrophin releasing factor 2
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and force production in aged and chronically ill
animals
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Abstract

Background: Muscle weakness is associated with a variety of chronic disorders such as emphysema (EMP) and
congestive heart failure (CHF) as well as aging. Therapies to treat muscle weakness associated with chronic disease
or aging are lacking. Corticotrophin releasing factor 2 receptor (CRF2R) agonists have been shown to maintain
skeletal muscle mass and force production in a variety of acute conditions that lead to skeletal muscle wasting.

Hypothesis: We hypothesize that treating animals with a CRF2R agonist will maintain skeletal muscle mass and
force production in animals with chronic disease and in aged animals.

Methods: We utilized animal models of aging, CHF and EMP to evaluate the potential of CRF2R agonist treatment
to maintain skeletal muscle mass and force production in aged animals and animals with CHF and EMP.

Results: In aged rats, we demonstrate that treatment with a CRF2R agonist for up to 3 months results in greater
extensor digitorum longus (EDL) force production, EDL mass, soleus mass and soleus force production compared
to age matched untreated animals. In the hamster EMP model, we demonstrate that treatment with a CRF2R
agonist for up to 5 months results in greater EDL force production in EMP hamsters when compared to vehicle
treated EMP hamsters and greater EDL mass and force in normal hamsters when compared to vehicle treated
normal hamsters. In the rat CHF model, we demonstrate that treatment with a CRF2R agonist for up to 3 months
results in greater EDL and soleus muscle mass and force production in CHF rats and normal rats when compared
to the corresponding vehicle treated animals.

Conclusions: These data demonstrate that the underlying physiological conditions associated with chronic
diseases such as CHF and emphysema in addition to aging do not reduce the potential of CRF2R agonists to
maintain skeletal muscle mass and force production.

Background
Aging and frailty
Skeletal muscle mass and function is reduced during
aging resulting in frailty and weakness in elderly indivi-
duals, thereby markedly increasing the risk of disability
and loss of functional capacity [1]. The loss of skeletal
muscle mass and function with aging results in

decreased reserves of skeletal muscle which, when com-
bined with acute illness, often results in decreased mobi-
lity and quality of life [1]. Current concepts regarding
the mechanisms that cause the loss of skeletal muscle
mass and function during aging include some combina-
tion of inactivity, nutritional imbalance, cumulative
damage, metabolic alterations resulting in increased cat-
abolism and decreased anabolism, hormone loss (includ-
ing growth hormone, IGF-1, androgens and estrogen),* Correspondence: isfort.rj@pg.com
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increased levels of cachectic cytokines and loss of mus-
cle regeneration potential [2-8].
Animals as well as humans suffer from aging related

loss of skeletal muscle function. Several animal models
of aging related muscle loss exist, with one of the most
studied models being the 24 month old aging rat model
[9-15]. Aging F344 rats demonstrate many of the hall-
marks of human aging related muscle loss and have
been used to evaluate the potential of several com-
pounds, including beta adrenergic agonists and ACE
inhibitors, to prevent or reverse aging related muscle
loss [10,12-14,16-19].

Emphysema and Muscle Function
Chronic hypercapnia is associated with a poor prognosis
in patients afflicted with chronic obstructive pulmonary
disease (COPD) [20,21]. The mechanisms leading to
chronic hypercapnia are not fully known although it is
believed that inspiratory muscle fatigue and/or weakness
leads to CO2 retention and ultimately respiratory failure.
Indeed, Roussos demonstrated that hypercapnic COPD
patients reach a critical zone of fatigue by requiring 2-3
times the transdiaphragmatic pressure that normocapnic
patients produce during breathing at rest [22]. In COPD
patients, respiratory muscle weakness and diaphragm
fiber atrophy decreases respiratory muscle reserves
increasing muscle fatigability/weakness thereby predis-
posing the patient to chronic hypercapnia [23]. The
changes in diaphragm muscle that occur during EMP
include muscle fiber shortening by loss of sarcomeres in
series [24,25], increase in cross-sectional area of type I
and II fibers [26,27], atrophy [28,29] and loss of oxida-
tive enzyme capacity [30]. While the adaptive changes in
diaphragm muscle are complex, ultimately EMP aug-
ments the energetic requirements of respiratory muscles
which, concomitant with EMP-induced reductions in
muscle mass, contributes to diaphragm weakness,
increased fatigability and overall dysfunction.
In EMP, the diaphragm is not the only skeletal muscle

to develop weakness. In humans and animals with EMP,
changes in peripheral skeletal muscles have been
described including atrophy [27,31], reduced myocyte
cross-sectional area [27,31], loss of type IIB fibers [27],
increased fatigability [32,33], lipofuscin inclusions [33]
and increased antioxidant enzyme levels [33]. Thus in
EMP, overall skeletal muscle function is altered and
therapies with the potential to improve skeletal muscle
function may have beneficial effects.

CHF and muscle wasting
Skeletal muscle wasting associated with congestive heart
failure is part of a general wasting syndrome associated
with CHF known as cardiac cachexia [34]. Cardiac
cachexia typically affects about 20% of CHF patients

with the cachectic CHF patients showing reduced mus-
cle mass and strength resulting in reduced exercise
capacity and impaired activities of daily living when
compared to noncachectic CHF patients [34]. The
mechanism(s) responsible for CHF associated skeletal
muscle wasting are at present unknown although it has
been proposed that alterations in catabolic cytokines/
hormones such as TNF-a, IL-6 and cortisol result in
CHF mediate skeletal muscle wasting [34-36]. In order
to study CHF associated skeletal muscle wasting, rodent
CHF models have been extensively utilized with one of
the most relevant model being the experimental infarct
model [37-45]. Clinical and animal studies have demon-
strated that various pharmacological agents such as
human growth hormone, angiotensin II receptor antago-
nists and ghrelin can reduce the level of muscle wasting
associated with CHF [37-39]. Thus, pharmacologically-
induced increases in skeletal muscle mass and strength
in CHF patients with skeletal muscle wasting may
improve skeletal muscle strength and function.

CRF2R activation and muscle function
Recently, we have demonstrated that activation of the
CRF2R reduces acute skeletal muscle atrophy resulting
from disuse, nerve damage, corticosteroid treatment and
causes hypertrophy of non-atrophying skeletal muscle in
healthy animals [46-48]. CRF2R activation also reduces
skeletal muscle wasting associated with two chronic dis-
ease conditions, cancer and muscular dystrophy [49-51].
We have not yet investigated if activation of the CRF2R
will maintain skeletal muscle mass and force production
in animals that have an underlying chronic condition
that results in muscle wasting. Therefore, we have uti-
lized the aging rat model, the emphysematous hamster
model and the rat CHF model to determine if activation
of the CRF2R will maintain skeletal muscle mass and
force production in chronically ill and aged animals.
The results of these investigations are presented in this
report.

Methods
The CRF2R selective agonist PG873637 was synthesized
at Procter & Gamble as described previously [52].
Twenty eight day rat osmotic minipumps were pur-
chased from Alza Corporation (Palo Alto, CA).
PG873637 was administered using twenty eight day
osmotic minipumps at a dose of 100 ug/kg/d, which we
have shown provides maximal CRF2R agonist activity
over the 28 day dosing period (unpublished data). All
animal studies described in this report were conducted
in compliance with the US Animal Welfare Act, the
rules and regulations of the State of Ohio Departments
of Health, Procter & Gamble’s policy on research invol-
ving animals with strict oversight for care and welfare
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and were approved by the Procter & Gamble Institu-
tional Animal Care and Use Committee. In addition, the
protocols used in the hamster emphysema studies were
approved by the Gustavus Adolphus College and the
Kansas State University Institutional Animal Care and
Use Committees. In all respects, they conform to the
Guide for the Care and Use of Laboratory Animals pub-
lished by the US National Institutes of Health (NIH
Publication No. 8523, revised 1985).

Aging rat model
Between 8 (time 0 and 1 month treatment) and 16 (3
months treatment) 24 month old F344 female rats per
treatment group, purchased from the Harlan (Indiana-
polis, IN), were double-housed and acclimatized to the
conditions of the facility for approximately 1 week
before use. Rats had access to lab chow and water ad
libitum and were subjected to standard conditions of
humidity, temperature and a 12 hour light cycle. Rats
were divided into five treatment groups: Time 0 - 24
months old rats prior to treatment; 1 month vehicle -
24 month old rats at initiation of treatment and treated
with vehicle for 1 month (25 months old at time of har-
vest); 1 month PG873637 - 24 month old rats at initia-
tion of treatment and treated with 100 ug/kg/day
PG873637 for 1 month (25 months old at time of har-
vest); 3 month vehicle - 24 month old rats at initiation
of treatment and treated with vehicle for 3 months (27
months old at time of harvest); 3 month PG873637 - 24
month old rats at initiation of treatment and treated
with 100 ug/kg/day PG873637 for 3 months (27 months
old at time of harvest). A larger number of rats were
included in the 3 month treatment group (compared to
time 0 and 1 month) since loss of rats due to their
extreme age was anticipated. Rats were anesthetized
with isoflurane and Alza 28-day rat minipumps contain-
ing either vehicle or PG873637 were implanted subcuta-
neously in the midscapular region of the back. Pumps
were replaced every 28 days until the end of the study.
At the specified times, rats were sacrificed and leg mus-
cles were removed and evaluated.

Hamster emphysema model
Male 3 month old Syrian Golden hamsters (120-130 g)
were purchased from Harlan (Indianapolis, IN) and
were housed using standard conditions including ad libi-
tum access to lab chow/water, standard conditions of
humidity/temperature and a 12 hour light cycle. Ham-
sters were divided randomly into sham (n = 14) and
emphysema (EMP) conditions (n = 24). Under deep
ketamine/xylazine anesthesia (150/7.5 mg/kg im), either
saline (0.3 ml/100 g body wt) (Sham) or porcine elastase
(25 IU/100 g body wt in 0.3 ml of normal saline, Sigma
Chemical, St. Louis, MO) (EMP) was instilled

intratracheally as described previously (Mattson and
Poole, 1998). Four months following instillation, ham-
sters were assigned randomly to the following experi-
mental groups: (6 Sham-Vehicle + 13 EMP-Vehicle) +
(6 Sham-Treatment + 12 EMP-Treatment). The CRF2R
selective agonist (PG873637) (Treatment) or physiologi-
cal saline (Vehicle) was delivered (100 μg/kg/d) via 28-
day osmotic mini-pumps implanted in the midscapular
region starting at month 4 and changed monthly for 5
months. Following 5 months of treatment, the lungs,
heart, costal diaphragm and EDL muscle were removed
and evaluated. To determine disease severity, a saline
displacement technique was used to measure excised
lung volume and the right ventricle (RV) was dissected
and weighed as described previously [53].

Rat CHF model
Myocardial infarction (MI) surgery
Surgically-induced myocardial infarctions were per-
formed as described previously [54]. Male 3 month old
Lewis rats were purchased from the Charles River
Laboratories and double-housed and acclimatized to the
conditions of the facility for approximately 1 week
before use. Rats had access to lab chow and water ad
libitum and were subjected to standard conditions of
humidity, temperature and a 12 hour light cycle. Rats
were administered an injection of an analgesic [bupre-
norphine, 0.05 mg/kg, intramuscular (im)] and an anti-
biotic (amoxicillin, 125 mg/kg, sc) prior to surgery. Rats
were then anesthetized with 2-5% isoflurane. Once
anesthetized, an endotracheal tube was placed in the
trachea of each rat and a respirator used to mechanically
ventilate the rat and control the flow of isoflurane. Next,
electrocardiogram (ECG) electrodes were attached and
the ECG monitored. Animals were then injected with
lidocaine 2% (0.1 ml/rat, im) to stabilize heart rhythm.
The surgical site was prepared by shaving the left thor-
acic area, disinfecting the skin with surgical scrub, and
wiping with 70% isopropanol. A left thoracotomy was
performed at the fifth intercostal space to the left of the
sternum, the heart carefully exposed, the pericardium
opened, and the left anterior descending coronary artery
(LAD) located. One or more 5-0 ligatures were perma-
nently tied around the LAD, and the heart replaced in
the chest. The heart rate and rhythm was monitored for
approximately 10 minutes, and supplemental lidocaine
administered as needed. Once cardiac rhythm stabilized,
the lungs were maximally inflated and the incision
closed with suture. Mechanical ventilation was discon-
tinued when the animal was able to breathe unassisted.
The endotracheal tube was removed when the animal
exhibited a swallow reflex. Animals were then allowed
to recover from anesthesia in heated cages and visually
monitored for signs of distress for approximately
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1 hour. Rats received additional doses of buprenorphine
(0.05 mg/kg, im) daily for 2 days following surgery.
Echocardiography evaluation
Previously infarcted male Lewis rats were anesthetized
with isoflurane. The chest was shaved, and short-axis
and long-axis views of the left ventricle were captured.
Mitral and aortic Doppler flows were also taken to esti-
mate cardiac output and LV compliance. After the
examination, the animals were returned to their cages to
recover from anesthesia.
Infarct screening by echocardiography
Myocardial infarct size was determined by echocardio-
graphy. Approximately 1-2 weeks post-ligation, rats
were screened for infarct size. Rats were grouped based
on clinical presentation as follows: group 1 - small
infarct, scar area circumference of 25% or less and a
FAC < 30%; group 2 - medium to large infarct, scar area
circumference of >33%, FAC < 30%, mitral regurgitation
and LV dilation; group 3 - very large infarct, scar area
circumference of >40%, FAC < 30%. Rats were rando-
mized into treatment groups based on infarct size; only
rats having a large myocardial infarct (40% or greater)
were used that met the following inclusion criteria -
large scar, diastolic dilation and decreased fractional
area contraction (FAC) as follows. Sham surgery con-
sisted of the same surgery without ligation of the coron-
ary artery. Drug treatment (vehicle or active) was started
6 weeks post surgery for both myocardial infarcted and
sham surgery rats.
Post-mortem infarct analysis
The intact LV myocardium and scar were splayed,
pressed between 2 pieces of plastic and traced on clear
vinyl. The tracings were scanned into image files, and
analyzed for infarct size as a percent of the intact LV
using a custom Alpheion macro by T. DuFresne, Procter
& Gamble.
Osmotic minipump implantation
Between 7 (sham) and 10 (myocardial infarcted) rats per
treatment group were anesthetized with isoflurane and
Alza 28 day rat minipumps were implanted in the mid-
scapular region. A larger number of rats were included
in the myocardial infracted group since loss of rats due
to their congestive heart failure was anticipated. Pumps
were replaced every 28 days until the end of the study.
PG873637 was administered at a dose of 100 ug/kg/d.

Leg muscle function analysis
At the end of each of the studies, animals were anesthe-
tized using isoflurane, the right leg was shaved, and the
right extensor digitorum longus (EDL) and/or soleus
muscles exposed. Silk sutures were tied to the proximal
and distal tendons of the EDL and/or soleus muscles and
the EDL and/or soleus muscles were removed, tendon-
to-tendon. The muscles were placed into a plexiglass

chamber filled with Ringer solution (137 mM sodium
chloride, 24 mM sodium bicarbonate, 11 mM glucose,
5 mM potassium chloride, 1 mM magnesium sulfate,
1 mM sodium phosphate, 0.025 mM tubocurarine - all at
pH 7.4, constantly oxygenated with 95% oxygen/5% car-
bon dioxide) and maintained at 25°C. Muscle were
aligned horizontally between a servomotor lever arm and
a stainless steel fixed-post (Aurora Scientific Inc., model
6650LR) and field stimulated by pulses transmitted
between two platinum electrodes placed longitudinally
on either side of the muscle. Square wave pulses (0.2 ms
duration) generated by a personal computer with a Lab-
view board (Model PCI-MIO-16E-4, Labview Inc., Aus-
tin, TX, USA) were amplified (Acurus Power Amplifier
Model A250, Dobbs Ferry, NY, USA) to increase and sus-
tain current intensity to a sufficient level to produce a
maximum isometric tetanic contraction. Stimulation vol-
tage and muscle length (Lo) were adjusted to obtain max-
imum isometric twitch force. Maximum tetanic force
production (Po) was determined from the plateau of a
frequency-force relationship

Statistical analysis
Statistical analysis was performed using an ANCOVA
model with treatment effect and starting weight as the
covariates. Pair wise comparisons for all end-points
were generated using least-square means (SAS, Cary,
North Carolina), adjusted for unequal sample sizes and
starting weight.

Results
Aging rat model
Evaluation of muscle mass and Po following CRF2R agonist
treatment
Evaluation of absolute EDL muscle mass and force in 24,
25 and 27 month old female F344 rats did not show a sig-
nificant difference in absolute EDL mass with age but did
demonstrate a significant decrease in absolute force (Po)
at 27 months of age (13% decrease compared to 24
months of age) (Table 1). There were no statistically sig-
nificant aging-related differences in absolute soleus mus-
cle mass or Po (Table 1). An evaluation of aging related
differences in the relative EDL and soleus muscle mass
and Po demonstrated greater relative EDL and soleus
muscle mass with age; there were no differences in rela-
tive EDL Po with age while relative soleus Po was greater
at 25 months of age compared to 24 months of age but
this difference was not observed at 27 months of age.
The difference in relative muscle mass/Po compared to
absolute muscle mass/Po is mainly driven by the decrease
in body mass observed with aging.
Evaluation of age-matched CRF2R agonist (PG873637)

treated versus vehicle treated rats resulted in greater abso-
lute EDL mass (+14%/+13%) and Po (+12%/+14%p = 0.06)
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and relative EDL mass (+18%/+14%) and Po (+17%/+15%)
with 1 and 3 months of PG873637 treatment when
compared to the appropriate vehicle control (data
given as 1 month PG873637 over vehicle % increase/3
months PG873637 over vehicle % increase). Absolute
soleus mass was greater (+8%/+9%) although this dif-
ference was not statistically significant; absolute soleus
Po was greater (+9%/+13%) although only the 1 month
difference was statistically significant. Relative soleus
mass (+12%/+9%p = 0.06) and Po (+14%/+15% p = 0.06)
was greater with 1 and 3 months (respectively) of
PG873637 treatment when compared to the appropri-
ate vehicle control (Table 1).

Hamster emphysema model
EMP induction
As can be seen in Table 2, a large increase in lung
volume for both vehicle and PG873637 treated EMP
hamsters [EMP-vehicle (+141%) and EMP-PG873637
(+113%)] was observed relative to the vehicle and
PG873637 treated non-emphysemic control (Sham)
hamsters; lung volume-to-body weight ratios demon-
strated a similar change [EMP-vehicle (+136%) and
EMP-PG873637 (+154%)]. Lung volume was similar
within the EMP and Sham groups with and without
PG873637 treatment. Analysis of the heart indicated
that right ventricle weight was similar in both vehicle
and PG873637 treated EMP hamsters [EMP-vehicle
(+26%) and EMP-PG873637 (+46%)] when compared to
the vehicle and PG873637 treated Sham hamsters; RV

mass-to-body weight ratios demonstrated a similar dif-
ference [EMP-vehicle (+28%) and EMP-PG873637
(+67%)]. RV mass was similar within the EMP and
Sham groups with and without PG873637 treatment.
Evaluation of muscle mass and Po following CRF2R agonist
treatment
As can be seen in Table 2, absolute (+41%) and relative
(+31%) EDL mass was significantly greater in Sham-
PG873637 compared to Sham-vehicle animals while
only relative EDL mass was significantly greater (+15%)
in EMP-PG873637 compared to EMP-vehicle animals.
Absolute (+48%) and relative (+38%) EDL Po was signif-
icantly greater in Sham-PG873637 compared Sham-
vehicle animals. Absolute (+26%) and relative (+32%)
EDL Po was significantly greater in EMP-PG873637
compared to EMP-vehicle animals. There was no signifi-
cant difference in absolute and relative diaphragm mass
in PG873637 treated compared to vehicle treated Sham
animals. Relative (+12%) diaphragm mass was signifi-
cantly greater in PG873637 treated compared to vehicle
treated EMP animals.

Rat CHF model
CHF induction
As can be seen in Table 3, all rats with a myocardial
infarction demonstrate significant differences in frac-
tional area contractions (66% decrease MI vehicle versus
sham vehicle, 60% decrease MI PG873637 versus sham
PG873637); ejection fraction (63% decrease MI vehicle
versus sham vehicle, 58% decrease MI PG873637 versus

Table 1 Effects of 1 month or 3 months of treatment with either vehicle or PG873637 on female 24 month old F344
rat body mass, muscle mass, muscle absolute force (Po)

Time 0 1 month vehicle 1 month PG873637 3 month vehicle 3 month PG873637

Number of animals 8 8 7 14 16

Final body mass
(grams)

281.6
(8.1)

269.4
(5.0)

252.0#
(4.2)

256.9#
(6.7)

252.0#
(5.1)

EDL mass
(milligrams)

91.9
(1.0)

89.0
(1.9)

101.2*#
(2.1)

89.4
(1.5)

101.3*#
(4.2)

EDL mass/body mass
(milligram/gram)

0.33
(0.00)

0.34
(0.01)

0.40*#
(0.01)

0.35#
(0.01)

0.40*#
(0.01)

EDL Po
(milliNewtons)

2025.2
(18.7)

1965.6
(36.6)

2199.3*#
(59.3)

1761.4#
(56.3)

2004.6(*p = 0.06)

(114.2)

EDL Po/body mass
(milliNewton/gram)

7.23
(0.09)

7.42
(0.11)

8.68*#
(0.30)

6.86
(0.19)

7.86*
(0.40)

Soleus mass
(milligrams)

79.8
(2.2)

82.6
(2.1)

89.0#
(3.2)

81.3
(2.0)

88.3
(4.0)

Soleus mass/body mass
(milligram/gram)

0.28
(0.01)

0.31#
(0.01)

0.35*#
(0.01)

0.32#
(0.01)

0.35(*p = 0.06)#
(0.01)

Soleus Po
(milliNewtons)

1188.3
(24.6)

1244.5
(28.6)

1362.5*#
(45.3)

1128.1
(45.2)

1278.2
(81.3)

Soleus Po/body mass
(milliNewton/gram)

4.25
(0.08)

4.71#
(0.10)

5.37*#
(0.20)

4.39
(0.16)

5.03(*p = 0.06)#
(0.29)

All data are given as the mean with the standard error of the mean in parenthesis. * - statistically significant difference (p < 0.05) versus the appropriate vehicle
control; # - statistically significant difference (p < 0.05) versus Time 0.
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sham PG873637); left ventricular systolic area (368%
increase MI vehicle versus sham vehicle, 305% increase
MI PG873637 versus sham PG873637); left ventricular
systolic volume (465% increase MI vehicle versus sham
vehicle, 447% increase MI PG873637 versus vehicle
PG873637); left ventricular diastolic area (118% increase
MI vehicle versus sham vehicle, 90% increase MI
PG873637 versus sham PG873637); left ventricular dia-
stolic volume (147% increase MI vehicle versus sham
vehicle, 118% increase MI PG873637 versus sham
PG873637); and lung weight (84% increase MI vehicle
versus sham vehicle, 50% increase MI PG873637 versus
sham PG873637) when compared to the appropriate
sham operated rats. All differences were consistent with
CHF including the greater lung weights. There were no
major differences between rats treated with vehicle or
the CRF2R agonist, PG873637, in any of the cardiac
parameters.
Evaluation of muscle mass and Po following CRF2R agonist
treatment
Results of the analysis of EDL and soleus muscle mass
and Po in sham and CHF rats treated with either vehicle
or PG873637 are shown in Table 3. Analysis of the EDL
muscle did not demonstrate a significant difference in
either absolute or relative mass between the sham and
MI vehicle treated rats; a statistically significant greater

absolute and relative EDL mass was observed in both
the sham (20% increase in absolute mass and 15%
increase in relative mass) and MI (20% increase in abso-
lute mass and 18% increase in relative mass) rats treated
with PG873637 when compared to the appropriate vehi-
cle control. Analysis of absolute and relative EDL mus-
cle Po demonstrated a statistically significant lower Po
in MI vehicle treated rats when compared to sham vehi-
cle treated rats; absolute and relative EDL Po was signif-
icantly greater with PG873637 treatment in both sham
(17% increase in absolute Po and 13% increase in rela-
tive Po) and MI (28% increase in absolute Po and 27%
increase in relative Po) rats when compared to vehicle
treatment. Analysis of absolute and relative soleus mus-
cle mass demonstrated no difference between MI and
sham vehicle treated animals; absolute and relative
soleus mass was greater with PG873637 treatment in
both sham (18% increase in absolute mass and 15%
increase in relative mass) and MI (13% increase in abso-
lute mass and 10% increase in relative mass) animals
when compared to vehicle control. Analysis of absolute
and relative soleus Po demonstrated a significantly
greater absolute Po in MI vehicle treated rats compared
to sham vehicle treated rats; treatment with PG873637
resulted in a significantly greater absolute and relative
sham (19% increase in absolute Po and 14% increase in

Table 2 Effect of 5 months of treatment with either vehicle or PG873637 on female sham or emphysemic (EMP)
hamster final body mass, lung volume, right ventricular (RV) mass, muscle mass and muscle absolute force (Po)

Sham vehicle Sham PG873637 EMP vehicle EMP PG873637

Number of animals 6 6 9 11

Final body mass (grams) 148.7
(7.6)

162.3
(9.0)

149.8
(4.1)

142.2
(4.4)

Lung volume
(milliliter)

2.3
(0.2)

2.4
(0.2)

5.4#
(0.4)

5.2#
(0.6)

Lung volume/body mass
(milliliter/gram)

0.02
(0.00)

0.02
(0.00)

0.04#
(0.00)

0.04#
(0.01)

RV mass
(milligrams)

115.7
(4.1)

109.6
(4.0)

145.5#
(6.3)

159.7#
(9.7)

RV mass/body mass
(milligram/gram)

0.78
(0.06)

0.69
(0.02)

0.99#
(0.06)

1.15#
(0.08)

EDL mass
(milligrams)

32.6
(2.2)

46.0*
(3.8)

33.0
(1.5)

35.7
(1.4)

EDL mass/body mass
(milligram/gram)

0.22
(0.01)

0.28*
(0.02)

0.22
(0.01)

0.25*
(0.01)

EDL Po
(milliNewtons)

832.5
(45.1)

1229.2*
(36.1)

837.6
(29.0)

1057.2*
(40.8)

EDL Po/body mass
(milliNewtons/gram)

5.57
(0.19)

7.70*
(0.35)

5.63
(0.13)

7.44*
(0.14)

Costal diaphragm mass
(milligrams)

252.2
(15.8)

290.5
(16.8)

242.9
(5.8)

260.9
(10.6)

Costal diaphragm mass/body mass
(milligrams/grams)

1.70
(0.09)

1.80
(0.05)

1.64
(0.03)

1.84*
(0.04)

All data are given as the mean with the standard error of the mean in parenthesis. * - statistically significant difference (p < 0.05) versus the appropriate vehicle
control; # - statistically significant difference (p < 0.05) versus control animals (non-emphysemic).
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relative Po) and MI (12% increase in absolute Po and
12% increase in relative Po) soleus muscle Po compared
to vehicle treated rats.

Discussion
In this report we demonstrate for the first time that
long term treatment with a CRF2R agonist maintains
skeletal muscle mass and force production in animals
with chronic disease (emphysematous hamsters and rats
with CHF) and in aged rats.

Aging Rat Model
Previously, we demonstrated that activation of the
CRF2R can increase skeletal muscle mass and force

production in young mice and rats [46-48]. In the pre-
sent report we demonstrate that old rats, like young
rats, respond to pharmacological activation of the
CRF2R with greater absolute and/or relative skeletal
muscle mass and force production when compared to
age matched untreated rats. Thus, CRF2R functionality
is maintained throughout the aging process. Interest-
ingly, we observed that the aging-related loss of muscle
mass and force was greater in the EDL muscle (predo-
minantly Type II, fast twitch) than in the soleus muscle
(predominantly Type I, slow twitch). This is similar to
what has been observed by others [12,55,56]. The pre-
servation of both Type I and Type II muscle CRF2R
functionality in aged muscle indicates that in an aging

Table 3 Effects of three months of treatment with either vehicle or PG873637 on sham operated or myocardial
infracted rat body mass, fractional area contraction, ejection fraction, systolic area, systolic volume, diastolic area,
diastolic volume, scar weight, lung weight, muscle mass and muscle absolute force (Po).

Sham Vehicle 3 month Sham PG873637 3 month MI Vehicle 3 month MI PG873637 3 month

Number of animals 7 7 10 9

Final body mass
(grams)

482.8
(6.8)

476.8
(12.4)

480.5
(6.1)

487.4#
(7.6)

Final Fractional Area Contractions
(%)

63.4
(7.6)

65.2
(6.5)

21.7#
(6.9)

26.0#
(3.2)

Final Ejection Fraction
(%)

68.2
(8.6)

72.6
(4.9)

25.3#
(7.5)

30.5#
(3.6)

Final LV Systolic Area
(centimeters2)

18.5
(4.1)

17.7
(3.8)

86.7#
(15.2)

71.8#
(13.1)

Final LV Systolic Volume
(milliliters)

0.2
(0.1)

0.2
(0.1)

1.3#
(0.3)

1.0#
(0.3)

Final LV Diastolic Area
(millimeters2)

50.7
(5.0)

51.1
(5.2)

110.4#
(14.7)

97.3#
(18.5)

Final LV Diastolic Volume
(milliliters)

0.7
(0.1)

0.7
(0.1)

1.7#
(0.3)

1.5#
(0.3)

Final Scar Weight
(grams)

NA NA 0.1
(0.0)

0.1
(0.0)

Final Lung Weight
(grams)

1.5
(0.1)

1.5
(0.1)

2.8#
(0.9)

2.2#
(1.0)

EDL mass
(milligrams)

189.9
(3.7)

228.6*
(6.5)

191.0
(1.9)

230.0*
(5.8)

EDL mass/body mass
(milligram/gram)

0.41
(0.01)

0.47*
(0.01)

0.40
(0.01)

0.47*
(0.01)

EDL Po
(milliNewtons)

3348.7
(78.9)

3909.9*
(71.7)

3073.3#
(96.3)

3927.7*
(52.6)

EDL Po/body mass
(milliNewton/gram)

7.16
(0.13)

8.09*
(0.18)

6.41#
(0.24)

8.12*
(0.13)

Soleus mass
(milligrams)

188.9
(3.2)

222.4*
(7.9)

197.0
(2.6)

222.4*
(7.9)

Soleus mass/body mass
(milligram/gram)

0.40
(0.01)

0.46*
(0.01)

0.41
(0.01)

0.45*
(0.01)

Soleus Po
(milliNewtons)

2033.6
(26.9)

2420.9*
(88.1)

2177.5#
(46.0)

2444.7*
(68.8)

Soleus Po/body mass
(milliNewton/gram)

4.38
(0.08)

4.99*
(0.15)

4.53
(0.09)

5.06*
(0.14)

All data given with standard error of the mean in paranthesis. * - statistically significant (p < 0.05) versus appropriate vehicle control: # - statistically significant
(p < 0.05) versus appropriate sham control.
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associated physiological background, the CRF2R is func-
tional and capable of maintaining muscle mass.
Together, these data demonstrate that activation of the
CRF2R can maintain muscle mass and force production
and this is independent of aging associated physiological
dysfunction such as nutritional imbalance, cumulative
muscle damage, metabolic imbalance, alterations in hor-
mones/cytokines and loss of regenerative potential
[2-8],. A similar effect has been observed following
treatment of aged F344 rats with the b2-adrenergic ago-
nist, fenoterol [12]. Thus, treatment with a CRF2R ago-
nist may be useful in combating the muscle weakness
and frailty associated with aging.

Hamster emphysema model
The purpose of this investigation was to determine
whether the administration of a CRF2R selective agonist
would maintain skeletal mass and force in animals with
chronic EMP. The results of this investigation demon-
strate that 5 months of treatment of EMP animals with
a CRF2R selective agonist results in greater absolute and
relative EDL force when compared to vehicle treated
EMP animals. We did not see a difference in absolute
EDL or diaphragm muscle mass in emphysemic animals
treated with a CRF2R agonist when compared to vehicle
treated EMP animals, although relative EDL and dia-
phragm mass were greater when compared to vehicle
treated EMP animals.
Diaphragm atrophy
Similar to locomotory muscles the diaphragm is adapta-
ble. It is well established that the diaphragm can adapt
biochemically and structurally in response to alterations
in metabolic load secondary to lung hyperinflation
[24,28,33]. Specifically, EMP-induced increases in
respiratory muscle metabolic demands [57] result in ele-
vated oxidative enzyme capacity [24,28,33]. Moreover,
EMP-induced diaphragm capillary proliferation is
thought to be important for enhancing O2 diffusion and
extraction [25]. In addition, the diaphragm muscle fibers
shorten chronically which acts to re-establish a favorable
position on the diaphragm length-tension curve [24,25].
In contrast, reports on EMP-induced diaphragm fiber
cross-sectional changes are mixed. As discussed earlier,
diaphragm fiber hypertrophy, atrophy, or no change has
been reported in animal models of EMP. Respiratory
muscle weakness is well documented in COPD patients
and can lead to hypercapnia [23,58-61]. Thus, if respira-
tory muscle weakness contributes to chronic hypercap-
nia and ultimately increased mortality in COPD
patients, it is of the utmost importance to find therapeu-
tic interventions aimed at preventing this negative out-
come. In this investigation, we did not observe
significant changes in diaphragm muscle mass in EMP

animals although significant changes in lung and right
ventricles did occur. Nor did we observe significant
changes in EDL muscle mass or force production in
EMP animals compared to control animals. Importantly,
treatment with a CRF2R agonist resulted in a directional
increase in diaphragm muscle mass in both normal and
EMP animals and a significant increase in EDL force
production in normal and EMP animals. Interestingly,
EDL muscle mass increased with CRF2R agonist treat-
ment in normal animals but not in EMP animals. At
present we do not understand the significance of the
disconnect between EDL mass and force in EMP ani-
mals but future studies will focus on understanding this
observation.
Mechanical ventilation
Acute respiratory failure (ARF) in COPD patients is a
common cause of hospital admissions [62]. Mechanical
ventilation (MV) is often administered if conservative
treatment fails [63,64]. However, mortality rates rise
from 10% for conservative treatment up to 50% if MV is
required [65]. Moreover, weaning from MV is clinically
challenging, with up to 67% failure rate in COPD
patients with respiratory muscle weakness and/or dys-
function [66-69]. Those patients that do survive spend a
longer time weaning in comparison to most other
pathological conditions [70]. Extubation failure from
MV occurs in other conditions, with up to 20% of all
patients on prolonged MV experience weaning difficul-
ties [71]. Although the mechanisms for these difficulties
are not fully understood, respiratory muscle dysfunction
contributes to this problem [72,73]. Indeed, diaphragm
fatigue has been demonstrated as a major factor affect-
ing weaning failure [74,75]. For example, Le Bourdelles
et al. demonstrated that mechanically-ventilated animals
have reductions in diaphragm isometric force and mass
[76]. Furthermore, Powers and coworkers have extended
this work by demonstrating prolonged MV promotes
increased diaphragm protein degradation, reduced pro-
tein synthesis, increased oxidative stress, and impair-
ment of antioxidant defenses [72,77,78]. Therefore,
conservation of respiratory muscle mass may reduce
MV treatment length and weaning difficulties. The
results of this investigation provide suggestive evidence
that CRF2R agonist may increase diaphragm muscle
mass. This together with the observation that treatment
with a CRF2R agonist is effective in preventing loss of
non-actively contracting skeletal muscle [46,48] suggest
that treatment with a CRF2R agonist may be an impor-
tant therapeutic intervention for ameliorating the dele-
terious effects of MV on diaphragm mass and function.
More work will be needed before we fully understand
the potential of CRF2R agonist in treating MV weaning
failure.
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Rat CHF model
In this report we have evaluated the effect of CRF2R
agonist treatment on skeletal muscle mass and function
in rats with ongoing CHF. Treatment with a CRF2R
agonist resulted in greater EDL (fast twitch) and soleus
(slow twitch) absolute and relative skeletal muscle mass
and force production in rats with and without chronic
CHF when compared to the appropriate vehicle treated
animals. Interestingly, the EDL muscle demonstrated
lower absolute force production in CHF rats when com-
pared to sham rats without a significant difference in
mass; no difference in absolute force production or
mass was observed in the soleus muscle from CHF rats.
Even with this deficit in EDL function, the CRF2R
mediated difference in mass and force production was
similar in both normal and CHF rats when compared to
vehicle treated normal and CHF rats, indicating that
CRF2R functionality was not compromised by the
changes that cause a loss in force. The observation that
oxidative muscles are more resistant than glycolytic
muscles to loss of function in CHF has been observed
previously in mice [79,80]. In addition, the loss of skele-
tal muscle force but not mass has been described pre-
viously both in animals and humans with CHF, although
there is model and species specificity in the type of
muscle fiber that is affected [44].
CHF results in major physiological dysfunction at both

the organismal and tissue levels including cardiac
cachexia. These changes are believed to result from
decreased tissue oxygenation and increased levels of
stress hormones and cytokines including TNF-a, IL-6
and cortisol [34-36]. Even though these catabolic cyto-
kines/hormones are present, activation of the CRF2R in
CHF rats resulted in increased muscle mass and force
production, indicating that the CRF2R pathway is able
to override these catabolic signals. Thus, treating CHF
patients with a CRF2R agonist may be a useful thera-
peutic option to improve strength and muscle function
in patients suffering from cardiac cachexia.

Overall Significance
Together the findings described in this report provide
support for the concept that pharmacological activation
of the CRF2R may prove useful in improving muscle
function in individuals experiencing weakness associated
with chronic disorders and aging. The most consistent
finding amongst all three models is the observation that
CRF2R agonist treatment results in greater muscle force
production compared to vehicle treatment. The change
in force production observed with CRF2R agonist treat-
ment was often, but not always, associated with a
change in muscle mass - the exception being emphyse-
mic hamsters (although when the change in muscle
mass is normalized to body mass a significant change is

observed). The reason for this discontinuity is at present
unclear since in our previous investigations of acute and
chronic atrophy (cancer cachexia and disuse atrophy),
we consistently observed parallel increases in absolute
muscle mass and force production following CRF2R
activation [46-51]. Additional work is necessary to deter-
mine if this exception is significant or an experimental
artifact.
An interesting observation from this work is that even

though skeletal muscle weights were increased following
CRF2R activation, increases in absolute body mass were
not consistently observed. This is puzzling since skeletal
muscle accounts for a significant portion of absolute
body mass. This inconsistency can be explained by the
known effects of CRF2R activation on another major
component of absolute body mass, adipose tissue.
Recent reports have shown that the CRF2R has a major
role, via both central and peripheral action, in modulat-
ing body mass [81-84]. Importantly for this report, it
has been observed that peripherally administered CRF2R
agonists both increases skeletal muscle mass as well as
decreases adipose tissue mass in normal rats [81], most
likely by direct activation of CRF2Rs in skeletal muscle
and adipose tissue. Thus, the net effect of CRF2R activa-
tion on absolute body mass depends on the relative
amounts of skeletal muscle and adipose tissue in an ani-
mal. We have observed that when skeletal muscle makes
a greater contribution to absolute body mass than adi-
pose tissue (such as in lean young animals), CRF2R acti-
vation results in an increase in body mass; we have also
observed a decrease in body mass following CRF2R acti-
vation when the adipose tissue content of an animal is
high (obese animals) and the resulting loss of adipose
tissue mass more than offsets the gain in skeletal muscle
mass (RJI, unpublished observations).
Finally, we believe the most significant aspect of this

work is the observed robustness of the effect of CRF2R
activation on skeletal muscle mass and force production.
The findings in this study, when combined with our
previous findings, demonstrate that activation of the
CRF2R results in greater skeletal muscle mass and force
production compared to vehicle treatment and that the
CRF2R mediated changes are independent of specie,
physiological condition, treatment length and dosing
paradigm [46-51]. In addition, the observation that
chronic administration of a CRF2R agonist maintains
muscle mass and force production during the entire
treatment period demonstrates that down regulation of
the CRF2R does not occur with continuous stimulation.
This provides evidence that chronic administration of a
CRF2R agonist will result in long term maintenance of
muscle function in patients suffering from chronic dis-
ease. Collectively, these studies provide the rationale for
considering CRF2R agonists as potential therapeutics for
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the treatment of both acute and chronic muscle wasting
disorders in humans.

Conclusion
We found that treatment of aged animals and animals
with a chronic disease with a CRF2R agonist resulted in
maintenance of skeletal muscle mass and force produc-
tion when compared to vehicle treatment.
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