
BioMed CentralBMC Cancer

ss
Open AcceResearch article
Highly variable response to cytotoxic chemotherapy in 
carcinoma-associated fibroblasts (CAFs) from lung and breast
Maike Sonnenberg1, Heiko van der Kuip*1, Silke Haubeiß1, Peter Fritz2, 
Werner Schroth1, Godehard Friedel3, Wolfgang Simon4, Thomas E Mürdter1 
and Walter E Aulitzky5

Address: 1Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Auerbachstr. 112, 70376 Stuttgart, 
Germany, 2Department of Diagnostic Medicine, Pathology, Robert Bosch Hospital, Auerbachstr. 110 70376 Stuttgart, Germany, 3Klinik 
Schillerhöhe, Department of Thoracic Surgery, Gerlingen, Germany, 4Department of Gynecology, Robert Bosch Hospital, Auerbachstr 110, 70376 
Stuttgart, Germany and 52nd Department of Internal Medicine, Oncology and Hematology, Robert Bosch Hospital, Auerbachstr. 110, 70376 
Stuttgart, Germany

Email: Maike Sonnenberg - maike.sonnenberg@ikp-stuttgart.de; Heiko van der Kuip* - heiko.van-der-kuip@ikp-stuttgart.de; 
Silke Haubeiß - silke.haubeiss@ikp-stuttgart.de; Peter Fritz - peter.fritz@rbk.de; Werner Schroth - werner.schroth@ikp-stuttgart.de; 
Godehard Friedel - friedel@klinik-schillerhoehe.de; Wolfgang Simon - wolfgang.simon@rbk.de; Thomas E Mürdter - thomas.muerdter@ikp-
stuttgart.de; Walter E Aulitzky - walter.aulitzky@rbk.de

* Corresponding author    

Abstract
Background: Carcinoma-associated fibroblasts (CAFs) can promote carcinogenesis and tumor progression. Only
limited data on the response of CAFs to chemotherapy and their potential impact on therapy outcome are available. This
study was undertaken to analyze the influence of chemotherapy on carcinoma-associated fibroblasts (CAFs) in vitro and
in vivo.

Methods: The in vivo response of stromal cells to chemotherapy was investigated in 22 neoadjuvant treated breast
tumors on tissue sections before and after chemotherapy. Response to chemotherapy was analyzed in vitro in primary
cultures of isolated CAFs from 28 human lung and 9 breast cancer tissues. The response was correlated to Mdm2, ERCC1
and TP53 polymorphisms and TP53 mutation status. Additionally, the cytotoxic effects were evaluated in an ex vivo
experiment using cultured tissue slices from 16 lung and 17 breast cancer specimens.

Results: Nine of 22 tumors showed a therapy-dependent reduction of stromal activity. Pathological response of tumor
or stroma cells did not correlate with clinical response. Isolated CAFs showed little sensitivity to paclitaxel. In contrast,
sensitivity of CAFs to cisplatinum was highly variable with a GI50 ranging from 2.8 to 29.0 μM which is comparable to
the range observed in tumor cell lines. No somatic TP53 mutation was detected in any of the 28 CAFs from lung cancer
tissue. In addition, response to cisplatinum was not significantly associated with the genotype of TP53 nor Mdm2 and
ERCC1 polymorphisms. However, we observed a non-significant trend towards decreased sensitivity in the presence of
TP53 variant genotype. In contrast to the results obtained in isolated cell culture, in tissue slice culture breast cancer
CAFs responded to paclitaxel within their microenvironment in the majority of cases (9/14). The opposite was observed
in lung cancer tissues: only few CAFs were sensitive to cisplatinum within their microenvironment (2/15) whereas a
higher proportion responded to cisplatinum in isolated culture.

Conclusion: Similar to cancer cells, CAF response to chemotherapy is highly variable. Beside significant individual/
intrinsic differences the sensitivity of CAFs seems to depend also on the cancer type as well as the microenvironment.
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Background
Carcinomas are complex tissues in which cancer cells
interact with their surrounding stromal compartment
composed of fibroblasts, infiltrating immune cells, vascu-
lar network, and extracellular matrix (ECM) molecules.
Cancer cells actively influence their adjacent stroma by
producing stroma-modulating growth factors such as
platelet-derived growth factor (PDGF), vascular endothe-
lial growth factor (VEGF), basic fibroblast growth factor
(bFGF), interleukins, and tumor growth factor beta (TGF-
beta) [1,2]. Once activated, tumor fibroblasts (also
termed "carcinoma-associated fibroblasts", CAFs) differ
from normal fibroblasts [1] and exhibit a distinct gene
expression pattern [3]. Various studies have shown that
CAFs express a range of growth factors and extracellular
matrix remodeling enzymes that modulate proliferation
and invasion of tumor cells and tumor angiogenesis [4-7].
In xenograft models it has been demonstrated that CAFs
are much more competent in promoting tumor growth
than normal fibroblasts [7]. Importantly, these tumor
promoting properties of CAFs appear to be partially inde-
pendent of the presence of tumor cells and are maintained
in vitro even in the absence of the epithelial cells [7,8].
Both genetic and epigenetic alterations underlying this
stable tumor supporting phenotype of CAFs have been
suggested [9-12].

The functional activity of CAFs appears to be an important
determinant for the clinical behavior of tumors. Chang et
al. analyzed expression profiles of serum-activated fibrob-
lasts as models for wound healing fibroblasts and com-
pared them with profiles obtained from different tumors
[13]. They identified gene expression patterns similar to
that of activated fibroblasts within the gene expression
signature of tumors. This "wound healing signature" was
predictive for poor overall survival and increased risk of
metastasis in breast, lung, and gastric cancers [13,14]. The
importance of the functional state of the stromal cell com-
partment was further supported by a recent work pub-
lished by Finak et al. [15]. They analyzed the expression
profiles of microdissection-purified tumor stroma from
51 primary breast tumors and identified a stroma cell sig-
nature as an independent prognostic factor predicting
clinical outcome more precisely than signatures from
whole tissue [15].

In view of these central roles of CAFs for the biology of
cancer it seems likely that CAFs are also important for the
survival of tumor cells following treatment with DNA
damaging agents. Stromal fibroblasts can influence chem-
osensitivity of tumor cells indirectly by producing and
activating extracellular matrix (ECM) molecules. This acti-
vated ECM confers chemoresistance by integrin-mediated
adhesion to fibronectin [16,17]. Only limited data on the
response of CAFs to chemotherapy and their potential

impact on therapy outcome are available. Using a
xenograft prostate tumor model, El Hilali et al. demon-
strated a chemotherapy induced loss of overall tumor
mass without reduction of the total number of tumor cells
[18]. In addition, co-culture experiments and Xenograft
models demonstrated that the efficacy of chemotherapy-
induced cell cycle arrest or senescence in stromal fibrob-
lasts is critical for the sensitivity of the tumor compart-
ment [19]. These observations support the view that the
response of stromal cells to toxic stress contributes to
resistance or sensitivity of the tumor to chemotherapy and
might contribute to clinical outcome. We therefore inves-
tigated short-term effects of chemotherapy on tumor
stroma ex vivo in primary tissues derived from newly diag-
nosed breast cancer and lung cancer specimens and in iso-
lated CAFs from breast and lung.

Methods
Patients
The database of the Robert Bosch Hospital was reviewed
to select women with invasive breast carcinomas referred
between 2004 and 2006. Sections for 22 patients were
available both from pre-treatment biopsies and post-treat-
ment surgery specimens. Patients' characteristics are given
in additional file 1. They received neoadjuvant chemo-
therapy regimens (as also described in additional file 1)
followed by surgery. Pathologic diagnosis as well as tumor
and stromal cell grading were performed on a tumor tis-
sue sample obtained by a core needle biopsy before treat-
ment and from the same tumor after surgery. Paraffin-
embedded tissue sections (3 μm) were stained with hema-
toxylin and eosin (H&E).

For isolation of primary cancer associated fibroblasts
(CAFs) and tissue slice preparation, fresh material from
primary breast and lung tumors were obtained from
patients newly diagnosed for breast cancer at the Robert
Bosch Hospital (n = 17 for tissue culture and n = 9 for cul-
ture of isolated CAFs) and for lung cancer at the Klinik
Schillerhöhe (n = 16 for tissue culture and n = 28 for CAF
culture) immediately after resection. The investigation
was approved by the local ethics committee (project
number 396/2005V) and informed consent was obtained
from the patients.

Tissue slice preparation and culture
Tissue slice preparation and culture was performed as
described previously [20]. For breast cancer tissue cultiva-
tion, we used Mammary Epithelial Cell Growth Medium
(PromoCell, Heidelberg, Germany). Tissue slices from
lung cancer were cultivated in Airway Epithelial Cell
Medium (PromoCell, Heidelberg, Germany). Treatment
with paclitaxel started 24 hours after preparation of slices
for additional 72 hours. After treatment, slices were fixed
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in buffered formalin and embedded in paraffin for further
investigation by immunohistochemistry.

Isolation, cultivation, and characterization of carcinoma-
associated fibroblasts (CAFs)
Tumor tissue was enzymatically digested using a Tissue
Disaggregation Buffer (120 mM NaCl, 5.6 mM Glucose,
2.5 mM MgCl2 × 6H20, 5.4 mM KCl, 1 mM NaH2PO4, 20
mM HEPES, pH 7.2) supplemented with collagenase (167
U/ml), DNase (250 U/ml) and protease (0.25 mg/ml) for
90 min at 37°C. The disaggregated tissue was filtered
through a 70 μm cell strainer (BD Falcon) and the flow-
through was seeded in cell culture flasks. The outgrowing
fibroblasts were cultivated with RPMI1640 medium sup-
plemented with 20% FCS.

We analyzed CAFs isolated from 16 breast and lung cancer
tissue specimens for fibroblast activation protein (FAP)
and epithelial specific antigen (ESA) expression. Fibrob-
lasts in the tumor stroma synthesize FAP, a type II trans-
membrane protein that functions as a serine protease. FAP
is expressed in more than 90% of stromal fibroblasts asso-
ciated with colon, breast, and lung carcinomas [21]. The
expression of FAP and ESA was investigated in CAFs from
16 breast and lung cancers using a FAP antibody (FAP-
scFv36) or ESA antibody (biomeda, Plovdiv, Bulgaria) by
FACS analysis (data not shown). We further performed
karyotype analysis with the first 4 CAFs (data not shown).
To evaluate 50% growth inhibition values (GI50), we
examined cell viability using MTT assays. For this, 5,000
to 10,000 CAFs were treated with 100, 90, 60, 45, 30, 20,
13.3, 8.9, 5.9, 3, 1.48, 0.74, 0.15, 0.07, 0.01 μM paclitaxel
or 100, 50, 25, 12.5, 6.25, 3.13, 1.57, 0.78, 0.39 μM cis-
platinum for 48 hr in a 96 well plate. All studies using
CAFs were performed within passages 2 to 5. As a refer-
ence, we used a tumor cell line panel consisting of 22 cell
lines from lung carcinoma, breast carcinoma, ovarian car-
cinoma, AML, and CML.

Genotyping of TP53-Arg72Pro and ERCC1-118C/T in
CAFs from lung cancer tissue specimens was performed by
direct sequencing. Mutation analysis of TP53 was done by
sequencing the complete TP53 cDNA. We isolated RNA
from frozen cell pellets using the RNeasy Kit (Qiagen,
Hilden, Germany). RNA was reverse transcribed using the
RevertAid™ H Minus First Strand cDNA Synthesis Kit from
Fermentas (St. Leon-Rot, Germany). The following Prim-
ers were used for cDNA amplification (sense: cgtccagggag-
caggtag; antisense: ccacaacaaaacaccagtgc) and sequencing
(primer 1: cacatgacggaggttgtgag; primer 2: ccacaacaaaacac-
cagtgc). For genotyping of ERCC1 polymorphism, we iso-
lated DNA from frozen pellets using the DNeasy Blood &
Tissue Kit from Qiagen (Hilden, Germany) and per-
formed a PCR with the following primer pair: sense: cctca-
gacctacgccgaata, antisense: gctggtttctgctcataggc.

SNP analysis of Mdm2-309T/G was done with a PCR-
RFLP-based technique using PCR primers: sense: cgcg-
ggagttcagggtaaag and antisense: actacgcgcagcgttcacac. The
PCR product was digested with 5 units of MspA1I (New
England Biolabs, Frankfurt a.M., Germany) at 37°C for 16
h and electrophoresed on a 2% agarose gel stained with
ethidium bromide (a representative example is shown in
additional file 2).

Pathologic examination and immunohistochemistry
Both, tumor and stromal cell response to neoadjuvant
treatment was analyzed by comparing H&E stained tissue
sections from corresponding samples before and after
chemotherapy. We evaluated the regression grade of the
tumor compartment according to Sinn et al. (grade 0: no
effect, grade 1: resorption and tumor sclerosis, grade 2:
minimally focally invasive residues of 5 mm or smaller,
grade 3: only non-invasive tumor residues, grade 4: no
viable tumor cell detectable) [22]. Tumors with regression
grades 2, 3, or 4 were defined as tumors with pathological
response. To estimate the response of the stromal com-
partment to chemotherapy, we established a grading sys-
tem consisting of 4 grading types (representative examples
for the grading types are shown in additional file 3).
Grade 0 represents tumors with less than 10 fibrocytes per
high-power field characterized by small, spindle-shaped
nuclei. This grading type corresponds to complete inactive
stroma with the lowest cellular density in the stromal area.
Grade 1 was defined as mostly inactive stroma with more
than 10 fibrocytes per high-power-field and 1–3 vesicular
cells (fibroblasts or endothelial cells with enlarged vesicu-
lar nuclei). Grade 2 is characterized by intermediate reac-
tive stroma with more than 10 fibrocytes and 3–10
vesicular cells per high-power-field. Tumors with the
highest cellular density in stromal area were classified as
grade 3 (more than 10 fibrocytes and more than 10 vesic-
ular cells per high-power-field). Stromal response was
defined as a change from grade 2 or 3 to grade 0 or 1.

Clinical assessment of chemotherapy was done by com-
paring tumor size before and after therapy. This included
both sonography and MRT. A clinical partial response
(cPR) was defined as a >50% reduction in the product of
the two longest perpendicular tumor dimensions. Patients
not achieving a 50% reduction were considered to be clin-
ical non responders (cNR). Patients without any residual
tumor were defined as clinical complete responder (cCR).

KI67 (anti-human KI67 Antigen, Clone MIB-1, 1:50,
Dako) staining was performed using the Dako Envision
Kit on a DakoCytomation Autostainer (both DakoCyto-
mation) according to the manufacturer's manual. TUNEL
staining was done in compliance to the manufacturer's
manual (ApopTag® Kit S7100, Chemicon, Göttingen, Ger-
many). Immunohistochemical assessment was performed
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independently by two observers (MS, PF). The percentage
of TUNEL and KI67 positive cells was assessed using an
×40 objective. 3–7 randomly selected fields were exam-
ined for each slice. Discrepancies were resolved by simul-
taneous examination using a double headed microscope.

Statistics
Statistics were performed using GraphPad Prism 4.0 Soft-
ware (GraphPad Prism Software Incorp., San Diego, CA,
USA). Different groups were compared using the Mann-
Whitney test. Correlation between tumor cell response
and stroma cell response in tissue culture was calculated
using Fisher's exact test.

Results
Neoadjuvant chemotherapy effects on the stromal 
compartment of breast cancer in vivo
We investigated the reaction of CAFs on neoadjuvant
chemotherapy in a retrospective analysis of breast cancer
patients by comparing H&E sections from needle biopsy
obtained before treatment with those from the corre-
sponding surgical breast cancer specimen. In 9 of 22 nee-
dle biopsies we detected a high cell density in the stromal
area before chemotherapy (stroma grade 2 or 3). These 9
cases revealed a significant decrease in stroma cell density
after chemotherapy (additional file 1; representative
results in Fig. 1a). Pathological tumor cell response was
detected in 10 of the 22 cases (regression grade 2, 3, and
4; additional file 1). In 5 cases with stromal response, no
change in the tumor cell compartment was observed indi-
cating that stromal response is independent of tumor cell
regression (Fisher's exact test: P = 0.67; additional file 1).

To determine whether the pathological response of
stroma and/or tumor correlates with clinical outcome we
compared clinical responders (more than 50% reduction
in tumor size) and non-responders (less than 50% reduc-
tion or tumor progression). In this small patient cohort, a
total of 12 patients showed clinical response including 2
patients with complete tumor regression. Of the 12
tumors with clinical response, 6 showed a significant
pathological stromal cell response and 7 responded in
their tumor cell compartment with an overlap of 4 cases
(Fig. 1b). Three tumors with clinical response showed no
pathological response in their stromal nor tumor com-
partment. These findings suggest that the magnitudes of
the reduction for both stroma and tumor cell compart-
ments after cessation of chemotherapy do not correlate
with clinical tumor response. However, due to the limited
number of patients included in this study, no final conclu-
sion can be drawn.

Cytotoxic chemotherapy effects on isolated CAFs in vitro
We analyzed the acute effects of paclitaxel and cisplati-
num on isolated CAFs from primary tumors to evaluate

whether CAFs are a direct target of cytotoxic chemother-
apy. We isolated CAFs from 9 breast and 28 lung cancer
specimens and cultivated them ex vivo for up to 10 pas-
sages. All CAFs tested were shown to be positive for FAP
and negative for the epithelial specific ESA antigen (not
shown) indicating that the isolated fibroblasts were
highly homogenous with minimal contamination of
other cell types. None of the CAFs investigated for karyo-
type showed any detectable loss or gain of chromosomal
material (not shown).

Notably, CAFs from lung cancer turned out to grow faster
than CAFs isolated from breast tumors (not shown). All
CAFs exhibited constant proliferation rates for at least 10
passages (not shown). CAFs were treated with increasing
dosages of cisplatinum and paclitaxel for 48 hours (see
materials and methods) with cell viability analyzed by
means of MTT assay. We compared the 50% growth inhi-
bition (GI50) values from these CAFs to those observed in
22 tumor cell lines. Both CAFs from breast and lung can-
cer specimens showed a significantly lower sensitivity to
paclitaxel than the tumor cell line panel (Fig. 2, left
panel). In contrast, the sensitivity to cisplatinum in CAFs
was highly variable. CAFs isolated from breast carcinomas
were significantly less sensitive than CAFs from lung can-
cer specimens (GI50 = 22.6 ± 6.8 μM for breast vs. GI50 =
11.4 ± 6.7 μM for lung). The variability of the response of
lung CAFs to cisplatinum was comparable to that
observed in the cancer cell line panel (GI50 = 13.3 ± 8.7
μM; Fig. 2, right panel). Importantly, the sensitivity to
chemotherapeutic drugs did not change significantly
when tested in early and late passages (not shown).

TP53 somatic mutations and analysis of Mdm2, ERCC1, 
and TP53 polymorphisms
The p53 tumor suppressor protein is a central player in the
cellular reaction to genotoxic stress [23]. A high frequency
of somatic mutations in the TP53 gene has been reported
in the stromal compartment of breast cancer [11,24]. As
we observed a highly variable sensitivity to the DNA dam-
aging agent cisplatinum, we investigated if this variability
selectively observed in CAFs from lung cancer is due to
genetic changes in genes coding for regulators of DNA
damage response. We therefore performed mutation anal-
ysis in primary cultured CAFs from lung cancer tissue
specimens. No somatic exon mutation was detected in
any of the 28 CAFs from lung (not shown).

The single nucleotide polymorphisms (SNPs) TP53-
Arg72Pro, Mdm2-309T/G, and ERCC1-118C/T have been
implicated in the clinical response to cisplatinum [25,26].
We therefore tested whether these polymorphisms explain
the variable sensitivity to cisplatinum observed in CAFs
from lung cancer. As shown in figure 3 (left panel) and
additional file 4, the TP53 Arg/Pro G>C showed a non-sig-
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Stromal cells are target of neoadjuvant chemotherapy in vivoFigure 1
Stromal cells are target of neoadjuvant chemotherapy in vivo. (a) Representative H&E stained sections from corre-
sponding breast cancer samples before (left panel) and after (right panel) chemotherapy. (b) Clinical response and pathological 
response of stromal cells (upper panel) and tumor cells (lower panel). Before chemotherapy and before surgery, the two long-
est perpendicular diameters of the tumor were measured either by MRT or sonography. The product of these diameters was 
used as a measure of tumor size. Partial clinical response (cPR) was defined as reduction of tumor size of more than 50%; 
tumors with a reduction of less than 50% or induction of size were defined as non responders (cNR). Tumors with pathological 
stroma response (characterized by a reduction from stromal grade 2 or 3 to grade 0 or 1; upper panel) and tumors character-
ized by pathological tumor cell response (tumors with regression grade 2, 3, or 4; lower panel) are displayed as black columns.
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nificant trend towards decreased sensitivity in the pres-
ence of the variant genotype and neither the Mdm2 nor
the ERCC1 polymorphisms were associated with sensitiv-
ity to cisplatinum in these cells (Fig. 3, middle and right
panel; additional file 4).

Impact of cytotoxic chemotherapy on proliferation and 
cell death of stromal cells within tumor tissue in vitro
To evaluate if the sensitivity of CAFs is also determined by
the tumor microenvironment, we performed ex vivo exper-
iments with tissues from 17 patients with newly diag-
nosed breast carcinoma and 16 lung cancer patients.

Tissue slices obtained from breast cancer specimens were
incubated with or without paclitaxel and analyzed for
proliferation and cell death both in stromal and tumor
cells using KI67 and TUNEL immunohistochemistry (rep-

resentative examples are given in Fig. 4a for KI67 (left
panel) and for TUNEL (right panel)). Paclitaxel-induced
induction of TUNEL positive cells and reduction of KI67
positive cells was observed both in the tumor and stromal
cell compartments. Most of the cases showed a reduction
in their KI67 index of more than 10% both in their tumor
and stromal cells following paclitaxel treatment. Moreo-
ver, an increase of TUNEL positive cells of more than 20%
was observed in 7 of 14 cases both in tumor and stromal
cells. Reduction of both proliferation and increase of cell
death was correlated in tumor and stromal cells following
paclitaxel treatment (Fig. 4b; P = 0.015 and P < 0.001,
respectively).

Tissue slices from lung carcinomas were incubated with or
without cisplatinum. Figure 5a shows representative
examples of tumors with (left panel) or without (right

Sensitivity of CAFs to cytotoxic chemotherapy in vitro is highly variableFigure 2
Sensitivity of CAFs to cytotoxic chemotherapy in vitro is highly variable. Primary CAF cell strains from 9 breast and 
28 lung tumors and a panel of 22 tumor cell lines as a reference were cultivated in the presence or absence of different doses 
of paclitaxel (left panel) or cisplatinum (right panel). Cell growth was measured by means of MTT. Each dot represents the drug 
concentration to achieve 50% inhibition of cell growth (GI50) in one CAF cell strain or cell line.
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panel) cellular response to cisplatinum as analyzed by
KI67 and TUNEL staining. With respect to cell growth, the
stromal compartment was less active in lung cancer tissues
compared to that observed in breast cancer tissues. Conse-
quently, in lung cancer a cisplatinum-dependent reduc-
tion of KI67 positive cells was unique to tumor cells and
was observed in 9 of 16 cases (Fig. 5b, left panel). An
increase of TUNEL positive cells was observed only in a
minority of lung cancer specimens. In 2 cases both the
stromal and the tumor cells responded to cisplatinum
(Fig. 5b, right panel).

Discussion
Despite its wide clinical use, the exact mechanisms caus-
ing tumor regression after treatment with chemotherapeu-
tic agents are poorly understood. Successful
chemotherapy leads to death of malignant cells as well as
carcinoma associated fibroblasts and endothelial cells.
Whether death of the cancer cell itself is the primary event
in the cascade leading to tumor regression remains
unclear. In addition, the contribution of the stromal cells
to treatment outcome is yet not understood. Our data
demonstrate for the first time that not only tumor cells
but also CAFs are targeted by cytotoxic chemotherapy
both in vitro and in vivo. Additionally, we found that

response to treatment of CAFs from different tumors is
highly variable.

Several classification systems have been used to assess the
pathological response of tumor cells to neoadjuvant
chemotherapy [reviewed in 27]. Anecdotal evidence has
also been published for chemotherapy-induced changes
of the stromal compartment [28,29]. However, studies
focusing on the effects of chemotherapy on stromal cells
are not available. In our in vivo studies, a stromal response
to neoadjuvant chemotherapy was detected in those cases
with a reactive stroma before treatment. This stromal
regression was independent of tumor cell response imply-
ing that both of the tumor compartments can be targeted
by chemotherapy despite a lack of response of the other
compartment. However, because of the time lag between
neoadjuvant chemotherapy cessation and surgery, it is not
possible to examine direct effects of chemotherapeutic
agents on the different cell compartments in this in vivo
study setting. We therefore performed in vitro experiments
with primary cultivated CAFs isolated from newly diag-
nosed breast and lung carcinomas allowing a comparative
study of the cytotoxic response of CAFs to different chem-
otherapeutic agents.

Sensitivity to cisplatinum is not significantly correlated to polymorphisms in TP53, Mdm2 and ERCC1 in CAFs from lung cancerFigure 3
Sensitivity to cisplatinum is not significantly correlated to polymorphisms in TP53, Mdm2 and ERCC1 in CAFs 
from lung cancer. Relationship between cisplatinum sensitivity (GI50 values) and genotype distribution of the polymorphisms 
TP53-Arg72Pro (left panel), Mdm2-309T/G (middle panel), and ERCC1-118C/T (right panel) in 28 CAF cell strains from lung can-
cer specimens (solid circles).
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Figure 4 (see legend on next page)
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Orimo et al. demonstrated that isolated fibroblasts from
tumors maintain their CAF specific phenotype and their
capability to proliferate over at least 10 passages in vitro
even if epithelial carcinoma cells are not continuously
present [7]. In line with this, the CAFs used in the present
experiments exhibited a constant proliferation rate over
~10 passages (data not shown). All investigated CAFs
were found to be resistant to paclitaxel when compared to
a panel of 22 well established cancer cell lines. The CAFs
from breast cancer were also mostly resistant to cisplati-
num. Only 1 out of 6 tested CAFs from breast cancer
showed an intermediate response to this agent. In line
with these results, Hawsawi et al. found only 1 of 10 CAFs
from breast cancer to be sensitive to cisplatinum [30]. In
contrast, we found a remarkable variability of response to
cisplatinum in CAFs isolated from lung carcinoma speci-
mens. The GI50 concentrations of cisplatinum ranging
from 2.8 to 28 μM were comparable to those obtained in
the tumor cell line panel (3.3 to 30.6 μM). Altogether, we
conclude that: (1) CAFs respond differently to cisplati-
num and paclitaxel; (2) the response of CAFs to cisplati-
num shows variability similar to different tumor cell lines;
and, (3) CAFs from different organs differ in their
response.

Potential causes for the variable response of different
CAFs to cisplatinum may be mutations and/or polymor-
phisms affecting genes involved in DNA damage response
mechanisms such as the p53 pathway. Evidence for possi-
ble alterations in p53 pathway in CAFs has been provided
by several recently published studies. Hawsawi et al. dem-
onstrated that irradiation-induced levels of p53 and p21
are diminished in CAFs when compared to fibroblasts
from normal tissues [30]. In addition, several retrospec-
tive studies using paraffin-embedded material as source
for DNA have reported a high frequency of functional
TP53 mutations in the microdissected stromal compart-
ment derived from various carcinomas such as breast,
ovarian and colon [11,24,31,32]. We did not find any evi-
dence for somatic TP53 mutations in the CAFs isolated
from 28 lung carcinoma patients included in our study.
These results indicate that the presence of TP53 mutations

in CAFs is limited to certain tumor entities such as breast
and colon whereas CAFs from other entities such as lung
remain wild type TP53. This would imply that the reaction
of CAFs to cytotoxic agents and their influence on therapy
response are fundamentally different in different organs.
However, since many of the studies reporting on high fre-
quencies of somatic mutations in stromal cells have relied
on formalin fixed and paraffin embedded material, it can
not be ruled out that the identified mutations may be a
reflection of methodological limitations. The latter
hypothesis is supported by recently published studies by
Allinen et al. [3] and Qui et al. [33]. Qui et al. investigated
isolated CAFs and frozen tissues and showed that somatic
mutations in CAFs from breast and ovarian carcinomas
are extremely rare [33]. Allinen et al. separated myofi-
broblasts and epithelial tumor cells from fresh breast
tumor tissues and found no genetic alterations in myofi-
broblasts whereas numerous chromosomal gains and
losses were detected in the epithelial fractions [3]. 

We further examined if the variable sensitivity to cisplati-
num observed in CAFs from lung cancer could be attrib-
uted to functional polymorphisms in genes critical for
cellular response to cisplatinum such as TP53, ERCC1,
and Mdm2. It has been shown that cells with the TP53 Arg/
Arg genotype induce apoptosis significantly better than
with Pro/Pro genotype [34,35]. The ERCC1 Codon 118
polymorphism is associated with different mRNA levels
and high levels have been associated with a shorter overall
survival for colon carcinoma patients treated with plati-
num-based chemotherapy [36]. Various studies have
shown that the G-allele of the polymorphism Mdm2-
309T/G in the promoter of the Mdm2 gene is associated
with high levels of Mdm2 protein and attenuation of the
p53 DNA damage response induced by chemotherapeutic
agents [37]. Our data show that none of these polymor-
phisms is significantly correlated with sensitivity to cis-
platinum in CAFs from lung cancer. However, we
observed a non-significant trend towards decreased sensi-
tivity in the presence of the TP53 variant genotype which
may be one mechanism contributing to the variable
response to cisplatinum in CAFs from lung. Due to the

Cytotoxic chemotherapy targets stromal cells in tissues from breast cancer patientsFigure 4 (see previous page)
Cytotoxic chemotherapy targets stromal cells in tissues from breast cancer patients. Tissue slices from 17 newly 
diagnosed breast cancer patients were treated with or without paclitaxel for 72 hours, then fixed in formalin and analyzed for 
proliferation and cell death using KI67 and TUNEL immunohistochemistry, respectively. (a) Representative examples of KI67 
(left panel) and TUNEL (right panel) stained sections from tumor tissue slices from one patient incubated with or without pacl-
itaxel. Scale bar, 50 μm. (b) The percentage of KI67 (left histograms) and TUNEL (right histograms) positive cells of both the 
tumor (upper panel) and the stromal compartment (middle panel) was assessed using an ×40 objective. Three to 7 randomly 
selected fields were examined for each section. The correlation of tumor and stromal response to paclitaxel regarding changes 
in proliferation and cell death is shown in the lower panels of the figure. Response to paclitaxel was defined as a reduction of 
KI67 positive cells by more than 10% (r2 = 0.33; slope = 0.26 ± 0.09; P = 0.015) or induction of TUNEL positive cells by more 
than 20% (r2 = 0.68; slope = 0.76 ± 0.15; P < 0.001).
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Effect of cytotoxic chemotherapy on stroma and tumor cells in tissues from lung cancer patientsFigure 5
Effect of cytotoxic chemotherapy on stroma and tumor cells in tissues from lung cancer patients. Tumor tissue 
slices from 16 patients with primary lung cancer were incubated with or without cisplatinum for 72 hours, then fixed in forma-
lin and analyzed for proliferation and cell death using KI67 and TUNEL immunohistochemistry. (a) Representative examples of 
KI67 and TUNEL stained sections from tissues with cellular response (left panel) and non-response (right panel). Scale bar, 50 
μm. (b) Percentage of KI67 (left histograms) and TUNEL (right histograms) positive cells of both the tumor (upper panel) and 
the stromal compartment (middle panel) was assessed using a ×40 objective. Three to 7 randomly selected fields were exam-
ined for each section. The correlation of tumor and stromal response to cisplatinum regarding changes in proliferation and cell 
death is shown in the lower panels of the figure. Response to cisplatinum was defined as a reduction of KI67 positive cells by 
more than 10% or induction of TUNEL positive cells by more than 20%.
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limited number of CAFs included in our study, a final
conclusion of potential relevant effects of these polymor-
phisms on the sensitivity to cytotoxic drugs can not be
drawn.

Despite the observation that isolated CAFs retain their
cancer promoting phenotype in vitro [7], they may behave
differently with respect to DNA damage response within
the tumor tissue. There is growing evidence that the cellu-
lar environment has an important influence on cellular
viability. Cell-cell and cell-matrix interactions responsible
for this impact have been studied extensively in 2D and
3D in vitro culture models [38-40], in spheroid models
[41,42] and in co-culture experiments using tumor cell
lines and fibroblasts [43]. However, these model systems
have some limitations since cell-cell and cell-matrix inter-
actions are extremely complex and specific for each indi-
vidual tumor in vivo [44]. Therefore, we have used a tissue
slice culture system which allows the examination of short
term effects of chemotherapy on CAFs within their natural
environment of the tumor tissue [20]. In tissue cultures
from breast carcinomas, paclitaxel-related death of the
stromal cell compartment was observed showing an
increase of up to 70% apoptotic cells within 72 hours. An
interesting finding is that this short term exposure to pacl-
itaxel led to a parallel reaction of both tumor and stromal
cells in tissue culture experiments whereas isolated cul-
tured CAFs from breast tumors turned out to be resistant
to paclitaxel. These results indicate that within sensitive
cancer tissues paclitaxel is highly efficient for compromis-
ing the tumor cell compartment and consecutively affect-
ing stroma cells. Within tissue culture, survival of CAFs
may be more dependent on supportive factors provided
by the individual tumor environment. In contrast, opti-
mized single cell culture conditions for isolated fibrob-
lasts may protect the cells in a more artificial manner. The
central role of the microenvironment for response of CAFs
to cytotoxic drugs is also demonstrated by our results
obtained with lung cancer tissues. In lung cancer, CAFs
behave significantly different in cell versus tissue culture.
The KI67 positive fraction of CAFs in tissues was extremely
low whereas isolated CAFs showed a constantly high pro-
liferation. Accordingly, CAFs in tissue turned out to be
much less sensitive to cisplatinum when compared to the
isolated CAFs. These observations indicate that, in addi-
tion to intrinsic factors, the microenvironment deter-
mines the sensitivity of CAFs to cytotoxic therapy.

Conclusion
In conclusion, our in vivo and in vitro data indicate that
stromal reaction is an integral component of tumor
response to cytotoxic chemotherapy. Both intrinsic and
extrinsic mechanisms influence the variable responses of
the stromal compartment to cytotoxic agents. The impor-

tance of this variability on the clinical outcome of the car-
cinoma should be the focus of further investigations.
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