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Abstract
Background: Many cancers preferentially meet their energy requirements through the glycolytic
pathway rather than via the more efficient oxidative phosphorylation pathway. It is thought that
this is an important adaptation in cancer malignancy. We investigated whether use of glycolysis for
energy production even in the presence of oxygen (known as the Warburg effect) varied between
neuroblastoma cell lines with or without MYCN amplification (a key indicator of poor disease
outcome in neuroblastoma).

Methods: We examined ATP and lactate production, oxygen consumption and mitochondrial
energisation status for three neuroblastoma cell lines with varying degrees of MYCN amplification
and MYCN expression.

Results: We found no correlation between MYCN expression and the Warburg effect in the cell
lines investigated.

Conclusion: Our results suggest preferential use of glycolysis for energy production and MYCN
expression may be independent markers of neuroblastoma malignancy in vitro if not in vivo.

Background
Neuroblastoma is a common malignant disease of early
childhood that exhibits a broad spectrum of clinical
behaviour. As it is a disease of the sympaticoadrenal line-
age of the neural crest, tumours can originate anywhere in
the sympathetic nervous system[1]. Risk is stratified based
on age (reduced risk accompanies detection prior to 18
months of age), histopathological features and MYCN
amplification status[1]. MYCN is a member of the MYC

family of oncogenes and is over-expressed preferentially
in tumours of neuroectodermal origin, particularly neu-
roblastoma[2]. MYCN was the first amplified oncogene
with clinical significance identified, and its amplification
is highly correlated with advanced neuroblastoma disease
stage, aggressive growth and poor prognosis[3].

The mechanism by which the MYCN transcription factor
contributes to tumourigenesis remains unclear, although
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it has been shown to require gene amplification or protein
stabilisation rather than mutation of the coding
sequence[4]. In a transgenic mouse model of neuroblast-
oma in which human MYCN (hMYCN) was targeted to
neural crest cells, tumours develop similar to human neu-
roblastoma in respect to their location (primary and met-
astatic), histology, syntenic chromosomal changes and
common amplification of hMYCN[5-7]. Administration
of MYCN antisense oligonucleotides to these mice inhib-
its gene expression (by blocking translation or splicing of
RNA or by degrading target RNA[8]) and results in
decreased tumour incidence, decreased tumour mass and
increased morphological differentiation[9]. However, it
appears MYCN is a conditionally favourable gene in neu-
roblastomas that do not have MYCN amplifica-
tion[10,11] and the effect of MYCN expression in
neuroblastomas from children of different ages or with
disseminated disease may vary[11,12]. Thus, although the
MYCN expression level itself is not a strong prognostic
indicator, MYCN amplification and its attendant increase
in MYCN protein remains one of the strongest indicators
of the neuroblastoma malignant phenotype.

Neuroblastomas, like all tumours, must meet specific
metabolic requirements to fuel their dysregulated growth
and invasion into surrounding tissues. In most mamma-
lian cells, glucose is catabolized to pyruvate that is further
oxidized by mitochondrial oxidative phosphorylation to
produce more than 30 ATP per glucose molecule. In the
presence of oxygen, the catabolism of glucose to lactic
acid and 2 ATP (glycolysis) is inhibited ('Pasteur effect').
However, up-regulation of glycolysis in the presence of
oxygen ('Warburg effect'[13]) has been inferred in many
cancers, including neuroblastomas[14], by the use of
imaging technology to visualise the avid uptake of
18fluorodeoxyglucose. Indeed, up-regulated glycolytic
capability and overall tumour aggressiveness is being rec-
ognised as a common trait of many cancers (for example,
see recent review[15]). Certainly, a limited study of
MYCN-inducible genes in a neuroblastoma cell line trans-
fected with MYCN showed genes involved in glycolysis
were up-regulated compared to the non-transfected
parental neuroblastoma cell[16].

Here, we investigated whether there was a correlation
between up-regulated glycolytic capabilities and the level
of MYCN expression of three cell lines derived from
patients with neuroblastoma who subsequently died of
the disease. BE(2)-C cells were isolated from a two year
old male who relapsed following intensive multiagent
chemotherapy[17], have significant MYCN amplifica-
tion[18], are highly tumorigenic in nude mice[19] and
appear to represent the classic MYCN-amplified, highly
aggressive neuroblastoma phenotype. SH-EP cells are a
substrate-adherent sub-clone of the SK-N-SH cell line iso-

lated from a bone marrow metastases of a four year old
female[17,20]. SH-EP cells do not show MYCN amplifica-
tion, have barely detectable levels of MYCN[2,21] and are
completely non-tumorigenic in nude mice[22] thus repre-
senting the opposite end of the biological spectrum for
neuroblastoma phenotype in comparison to BE(2)-C
cells. NBL-S cells have an intermediate malignant pheno-
type, showing no amplification of MYCN but having a sig-
nificantly prolonged MYCN half-life, and NBL-S cells are
tumorigenic in nude mice[23]. We found here that in
these three neuroblastoma cell lines elevated MYCN
expression levels did not correlate with up-regulation of
the Warburg effect or a concomitant reduction in cellular
reliance on mitochondrial bioenergetic contribution.

Methods
Cell lines and culture
BE(2)-C and SH-EP cells were generously supplied by Dr.
J. Biedler (Memorial Sloan-Kettering Cancer Centre, New
York, NY). NBL-S cells were kindly supplied by Dr. S.
Cohn (University of Chicago, Chicago, IL). The cell lines
were maintained in Dulbecco's modified Eagle's medium
(DMEM) supplemented with 10% (15% for NBL-S) heat-
inactivated fetal calf serum, 2 mM L-glutamine and 10
mM HEPES.

RT-PCR of MYCN
Real-time (RT) PCR analysis of MYCN gene expression,
using β2-microglobulin as an internal control, was per-
formed on aliquots of cDNA from each cell line corre-
sponding to 50 ng of RNA as previously described[9].

Western immunoblotting of MYCN
1 × 107 cells for each cell line were lysed and 30 μg of pro-
tein resolved by SDS-PAGE, transferred to nitrocellulose
membrane and membranes stained for MYCN as previ-
ously described[11].

ATP production
5 × 105 cells were seeded per well of six well tissue culture
plates and incubated 48 hours. Media covering cells was
replaced with fresh DMEM, DMEM plus 0.2 μM rotenone
(Sigma), DMEM containing pyruvate but no glucose
(PNG media) (JRH Bioscience) or PNG media plus roten-
one for 1 hour prior to cell lysis on ice in 25 mM Tris-
phosphate pH 7.8, 10% glycerol, 1% Triton-X100, 1 mg/
ml BSA, 2 mM EDTA, 2 mM DTT. 100 μl of sample was
added per well of black 96 well plates and 100 μl of D-
Luciferin buffer (90 mM DTT, 20 mM Tricine, 8 mM
MgCl, 0.13 mM EDTA, 1.4 mM D-Luciferin, 0.8 mM
acetyl CoA) added per well. 100 μl of Luciferase buffer (90
mM DTT, 20 mM Tricine, 8 mM MgCl, 0.13 mM EDTA, 20
kU/ml D-Luciferase, 0.8 mM acetyl CoA) was injected and
luminescence per well measured using a Fluostar Optima
plate reader. A set of standards of known ATP concentra-
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tion was assayed simultaneously, allowing ATP quantifi-
cation for each sample.

Protein content determination
Protein content in samples was measured using the Pierce
Biotechnology (Rockford, IL) bicinchoninic acid (BCA)
Protein Assay Kit as per manufacturers instructions.

Oxygen consumption
Oxygen consumption was measured as previously
described[24]. 1 × 106 neuroblastoma cells were incu-
bated 48 h prior to collection by trypsinisation and resus-
pension in fresh, aerated Tris-based, Mg2+-, Ca2+-deficient
(TD) buffer (137 mM NaCl, 5 mM KCl, 0.7 mM
Na2HPO4, 25 mM Tris·HCl pH 7.4, at 25°C). 300 μl of
each sample was loaded into a 37°C water-jacketed oxy-
graph chamber containing a small magnetic stirrer and
connected to a circulating water bath at 37°C and a bio-
logical oxygen monitor (Strathkelvin Instruments, Scot-
land). Samples were read directly or after addition of 1
mM sodium azide for determination of azide-corrected
oxygen consumption[25]. Oxygen consumption was
recorded over time and normalised to mg of protein
(determine by BCA assay) for each sample.

Determination of mitochondrial energisation status
Cellular content of mitochondria and changes in mito-
chondrial membrane potential (Δψm) were determined
as previously described[26]. 1 × 106 neuroblastoma cells
were incubated 48 h prior to collection by trypsinisation
and resuspension in DMEM plus 150 nM tetramethyl
rhodamine methyl ester (TMRM; Invitrogen). Cells were
incubated at 37°C for 20 min, washed in DMEM and
incubated for a further 20 min in DMEM plus 100 nM
MitoTracker Green (MTG; Invitrogen). Cells were washed
and resuspended in PBS prior to analysis by flow cytome-
try (Becton Dickinson FACSCalibur with CellQuest soft-
ware).

Extracellular lactate levels
Extracellular lactate levels were measured as previously
described[27]. 2 × 106 cells were seeded in 10 cm2 tissue
culture dishes and incubated for 48 hours. Culture media
was replaced with DMEM plus HEPES with or without
rotenone and incubated one hour. The media was
removed, cell debris pelleted and 150 μl of each cell
supernatant added per well of 96 well plate. 150 μl of gly-
cine-hydrazine buffer (0.64 M glycine, 0.64 M hydrazine,
4.8 mM NAD+, 2 U/ml LDH) was injected per well and
reduction of NAD+ by lactate dehydrogenase was moni-
tored spectrophotometrically at 340 nm using a Fluostar
Optima plate reader. A set of standards of known lactate
concentration was assayed simultaneously, allowing
quantification of lactate for each sample.

Results
Neuroblastoma cell lines BE(2)-C, NBL-S and SH-EP have 
different levels of MYCN expression
MYCN is an oncogene that is critical in the pathogenesis
of neuroblastoma. MYCN mRNA and protein levels for
BE(2)-C, NBL-S and SH-EP neuroblastoma cell lines were
investigated using RT-PCR and Western immunoblotting
(Figure 1). The MYCN-amplified BE(2)-C cell line had the
highest MYCN mRNA content of the neuroblastoma cell
lines investigated, being approximately 30 times greater

Constitutive expression of MYCN in BE(2)-C, NBL-S and SH-EP neuroblastoma cell linesFigure 1
Constitutive expression of MYCN in BE(2)-C, NBL-S 
and SH-EP neuroblastoma cell lines. (A) Levels of 
MYCN mRNA in neuroblastoma cell lines. mRNA from neu-
roblastoma cell lines was examined using real-time PCR for 
MYCN levels. β2-microglobulin was used as a control gene. Rel-
ative (rel) value represents the abundance of MYCN tran-
script relative to control gene. (B) BE(2)-C, NBL-S and SH-EP 
cell lines express different levels of MYCN. Lysates from 
neuroblastoma cell lines were analysed by Western immuno-
blotting using an anti-MYCN antibody. α-tubulin was used as 
a protein loading control. Ratio represents intensity of 
MYCN relative to α-tubulin.
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than the next highest, NBL-S (Figure 1A). BE(2)-C cells
also expressed more MYCN than the other cell lines, hav-
ing a MYCN:α-tubulin protein ratio of 0.66 compared
with a ratio of just 0.07 for NBL-S and < 0.01 for SH-EP
(Figure 1B). The low level (by RT-PCR) of MYCN in SH-
EP cells appears to account for the minimal MYCN expres-
sion in this cell line (which is not amplified for the MYCN
gene).

ATP production by glycolysis and oxidative 
phosphorylation in neuroblastoma cell lines
Unregulated growth and survival is an energy-demanding
process of tumourigenesis, yet malignant cancers often
down-regulate oxidative phosphorylation in favour of less
efficient glycolytic energy production. We investigated the
energy production capacity of the three neuroblastoma
cell lines to determine if they displayed elevated glycolytic
capacity. Neuroblastoma cells were incubated under con-
ditions inhibiting either oxidative phosphorylation
(rotenone treatment) or glycolysis (glucose-free, pyruvate-
supplemented media)[28] for one hour prior to measure-
ment of ATP levels (Figure 2). SH-EP and NBL-S cells
appeared as capable of producing ATP in experimental

conditions restricting oxidative phosphorylation or glyco-
lysis as they were under normal culture conditions (where
both oxidative phosphorylation and glycolysis can con-
tribute to ATP production). BE(2)-C cells, however,
showed a marked reduction in their ability to produce
ATP (from that seen under normal culture conditions)
when oxidative phosphorylation was inhibited, although
they showed enhanced capacity to generate ATP when
supplied with excess pyruvate as an energy substrate in the
presence of oxygen. Thus the MYCN-amplified BE(2)-C
cells appeared reliant on oxidative phosphorylation to
meet their energy requirements.

Lactate production by neuroblastoma cell lines as a 
measure of glycolytic capability
Pyruvate generated from glucose catabolism can be
reduced to lactic acid in the absence of oxygen (glycolysis)
or further metabolised by the mitochondria in the pres-
ence of oxygen. BE(2)-C, NBL-S and SH-EP cell cultures
were examined for extracellular lactate levels as an indica-
tor of glycolysis (Figure 3). Measurements were taken
from cells incubated under normal culture conditions or
cultured with rotenone to inhibit oxidative phosphoryla-
tion. All cell lines showed an increase (above untreated
levels) in lactate after one hour rotenone treatment, with
the biggest increase observed for NBL-S cell lines where
lactate levels increased by over 30%. These results support
our findings that while the three neuroblastoma cells

ATP synthesis in neuroblastoma cells utilising glycolysis or oxidative phosphorylationFigure 2
ATP synthesis in neuroblastoma cells utilising glycol-
ysis or oxidative phosphorylation. The ATP content per 
mg of total cell protein under different energy substrate 
restriction conditions was determined spectrophotometri-
cally using a luciferase-based reporter assay. Cells were cul-
tured in � normal culture medium (DMEM);  conditions 
inhibiting oxidative phosphorylation (DMEM plus rotenone); 
n conditions inhibiting glycolysis (DMEM containing pyruvate 
but no glucose (PNG media));  conditions inhibiting both 
oxidative phosphorylation and glycolysis (PNG plus roten-
one). BE(2)-C cells produced significantly different (*p < 0.01, 
#p < 0.05) levels of ATP under conditions inhibiting oxidative 
phosphorylation or glycolysis compared to that produced in 
normal culture media.
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could use glycolysis when oxidative phosphorylation was
inhibited, they did so with varying degrees of efficiency.

Oxygen consumption as a measure of oxidative energy 
production capacity correlated with MYCN expression 
level in neuroblastoma cell lines
The final stages of energy production via oxidative phos-
phorylation involves the direct consumption of molecular
oxygen[29]. Oxygen consumption (as a measure of total
oxidative ATP production) was measured for the three
neuroblastoma cell lines using polarography and result-
ant data were expressed per milligram of protein for each
cell line (Figure 4). Results were adjusted for the oxygen
consumption specifically inhibited by sodium azide (i.e.
mitochondrial). Of the neuroblastoma cell lines investi-
gated, BE(2)-C cells had the highest oxygen consumption
rate, followed by NBL-S. SH-EP cells consumed the least
amount of oxygen per minute per milligram of protein,
being significantly lower than NBL-S (p < 0.05) and
BE(2)-C (p < 0.005). These results suggest BE(2)-C cells
produced the majority of their energy via the oxygen-
dependent, complete catabolism of glucose whereas SH-
EP cells, and to a lesser extent NBL-S cells, had a lower
dependency on oxygen when meeting their energy
requirements.

Malignant phenotype of neuroblastoma is associated with 
elevated mitochondrial energisation status
Studies in tumour cells have demonstrated a link between
the use of glycolysis for energy production and attenuated
mitochondrial bioenergetic capabilities[30,31]. This
attenuation most likely occurs as a result of a decrease in
the number of mitochondria per cell or reduction in the

activity of mitochondrial respiratory complexes and ATP
synthase[32]. Using flow cytometry[33], we examined the
three neuroblastoma cell lines for mitochondrial mem-
brane potential and mitochondrial mass per cell, using
TMRM and MTG staining, respectively. The uptake of
TMRM by mitochondria occurs in a membrane potential
(Δψm)-dependent manner and is a measure of mitochon-
drial respiratory capacity. Mitochondrial abundance was
measured by staining cellular mitochondrial content with
MTG (signal intensity is independent of membrane
potential). The ratio of mitochondrial Δψm to organelle
mass per cell was used to determine the overall mitochon-
drial energisation status of the cell lines. Mitochondrial
energisation differed between the three cell lines (Figure
5). SH-EP cells had relatively high mitochondrial abun-
dance but low Δψm. NBL-S cells had a low number of
mitochondria per cell and NBL-S mitochondria had a rel-
atively low Δψm. BE(2)-C cells had a similar abundance
of mitochondria to SH-EP cells but BE(2)-C mitochondria
had significantly higher Δψm, correlating with the higher
oxidative phosphorylation capacity of BE(2)-C cells (Fig-
ure 2). Thus, BE(2)-C cells had the greatest mitochondrial
energisation capacity with SH-EP and NBL-S cell lines dis-
playing a lower, but similar, capacity. This may leave NBL-
S and SH-EP cells more reliant on an alternative to oxida-
tive phosphorylation for their energy needs.

Discussion
Otto Warburg first posited that a critical notion for the
understanding of tumourigenesis is the increased prefer-
ence for glycolysis in the presence of oxygen which he
observed in cancer cells[13]. For many decades since then
other researchers have tried to determine why this is so.
Studies applying fluorodeoxyglucose positron emission
tomography (FDG-PET) have identified increased glucose
uptake, critical in ensuring adequate generation of fuel to
meet cellular energy requirements via inefficient glycoly-
sis, as a hallmark of metastatic cancers in humans. This
phenotype, namely elevated glucose uptake, irrespective
of oxygen availability, correlates with the aggressiveness
of non-small cell lung carcinoma[34], lymphoma[35], gli-
oma[36] and gastrointestinal[37] tumours. One may infer
from the commonality of the phenomenon that such a
phenotype confers a significant competitive advantage in
carcinogenesis. Hypotheses for the preferential use of gly-
colysis regardless of oxygen availability by cancer cells
include: ensuring ATP production in environments with
limited oxygen (such as that occurring when tumour
growth outpaces vascularity[38]) to fuel cell functions
such as proliferation; production of reducing equivalents
to mitigate reactive oxygen species (ROS) stress (ROS is
produced by inefficiently respiring mitochondria)[39]; or
generation of a toxic environment[40] which selects for
cells with abrogated death signalling. We have examined
here three neuroblastoma cell lines (derived from patients

BE(2)-C cells consumed more oxygen than NBL-S or SH-EP cell linesFigure 4
BE(2)-C cells consumed more oxygen than NBL-S or 
SH-EP cell lines. Oxygen consumption, as a measure of 
total oxidative ATP production, was measured using polarog-
raphy and the azide-corrected oxygen consumption of each 
cell line per mg of protein was determined. Levels of oxygen 
consumption were statistically different (*p < 0.05, #p < 
0.005) between the various cell lines.
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who ultimately died from the disease) for their glycolytic
capacity, in order to determine whether increased aerobic
glycolysis (Warburg effect) correlated with expression lev-

els of MYCN, a factor implicated in the pathogenesis of
neuroblastoma.

BE(2)-C cells expressing high levels of MYCN appeared to
satisfy most of their energy requirements using oxidative
phosphorylation; they consumed the greatest amount of
oxygen and had the highest mitochondrial energisation
capability. While the consumption of oxygen by BE(2)-C
cells may consume oxygen to fuel ROS production[41]
rather than ATP generation, we believe our data suggests
that highly malignant BE(2)-C cells do not have a glyco-
lytic energy production capacity sufficient to meet their
requirements. Certainly, BE(2)-C cells showed an 85%
decrease in ATP generation and only moderate increases
in lactate production when oxidative phosphorylation
was inhibited. NBL-S cells, by comparison, with a lower
(but still elevated) level of MYCN expression compared to
BE(2)-C, appeared to have up-regulated glycolytic capa-
bilities, possessing the ability to maintain ATP production
capacity and generate significant levels of lactate when
oxidative phosphorylation was inhibited. SH-EP cells,
without MYCN amplification and expressing no detecta-
ble MYCN, showed the lowest energy production capabil-
ity and had no apparent preference for using either
oxidative phosphorylation or glycolysis to meet their
energy requirements. The reduction in use of oxidative
phosphorylation by NBL-S and SH-EP cells may reflect
their reduced reliance on it as the only pathway for energy
generation.

Other groups have transfected cell lines with oncogenes
other than MYCN (Ras or Akt) and have found that
increasing transformation in these cell lines correlates not
only with increasing oncogene expression but also aerobic
glycolysis[42,43]. And transfection of SH-EP neuroblast-
oma cell lines with MYCN has also been shown to induce
the up-regulation of several genes involved in glycoly-
sis[16]. While our results may appear different than previ-
ously published finding, we believe potential
discrepancies are due to the methodology of the studies.
The other studies created situations where the only change
between cells being examined were those experimentally
induced. We, on the other hand, have examined cells
derived from neuroblastomas that evolved into malignant
tumours in vivo and presumably have many other adapta-
tions to their environment than those simply regulating
energy production. Indeed, when Boon et. al. analysed
expression of genes involved in glycolysis (shown previ-
ously to be upregulated in SH-EP cell lines overexpressing
exogenous MYCN) in two other neuroblastoma-derived
cells lines (one with MYCN amplification and one with a
single MYCN copy) there was almost no induction of gly-
colytic genes[16]. Thus, while the upregulation of glyco-
lytic enzymes may be a factor in neuroblastoma
malignancy, it may be independent of MYCN expression.

Mitochondrial content and functionality of neuroblastoma cell linesFigure 5
Mitochondrial content and functionality of neuroblas-
toma cell lines. Neuroblastoma cell lines were examined 
by flow cytometry for (A) MTG (as a measure of mitochon-
drial content) and (B) TMRM uptake (as a measure of mito-
chondrial membrane potential). (C) The ratio of TMRM and 
MTG staining represents the mitochondrial capability of each 
cell line. Cellular uptake of dyes is shown in arbitrary fluores-
cent units (AFU).
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Conclusion
It appeared that there is no correlation between MYCN
expression and glycolytic adaptation in the neuroblast-
oma cell lines investigated. While we acknowledge this
lack of correlation may not reflect in vivo bioenergetic
capabilities of neuroblastoma, we propose that MYCN
expression and an upregulated Warburg effect may be
independent markers of neuroblastoma malignancy. Cer-
tainly, our results suggest PET technology to image ele-
vated glucose uptake (compared with normal
surrounding tissue) and treatments based on inhibiting
tumour glycolysis may be relevant in only a sub-set of
neuroblastomas[44].
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