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KCNE1 D85N polymorphism — a sex-specific
modifier in type 1 long QT syndrome?
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Abstract

Background: Long QT syndrome (LQTS) is an inherited ion channel disorder manifesting with prolongation of the
cardiac repolarization phase and severe ventricular arrhythmias. The common KCNE1 D85N potassium channel
variant prolongs QT interval by inhibiting IKs (KCNQ1) and IKr (KCNH2) currents and is therefore a suitable candidate
for a modifier gene in LQTS.

Methods: We studied the effect of D85N on age-, sex-, and heart rate-adjusted QT-interval duration by linear
regression in LQTS patients carrying the Finnish founder mutations KCNQ1 G589D (n = 492), KCNQ1 IVS7-2A>G
(n = 66), KCNH2 L552S (n = 73), and KCNH2 R176W (n = 88). We also investigated the association between D85N
and clinical variables reflecting the severity of the disease.

Results: D85N was associated with a QT prolongation by 26 ms (SE 8.6, p = 0.003) in males with KCNQ1 G589D
(n = 213), but not in females with G589D (n = 279). In linear regression, the interaction between D85N genotype
and sex was significant (p = 0.028). Within the KCNQ1 G589D mutation group, KCNE1 D85N carriers were more
often probands of the family (p = 0.042) and were more likely to use beta blocker medication (p = 0.010) than
non-carriers. The number of D85N carriers in other founder mutation groups was too small to assess its effects.

Conclusions: We propose that KCNE1 D85N is a sex-specific QT-interval modifier in type 1 LQTS and may also
associate with increased severity of disease. Our data warrant additional studies on the role of KCNE1 D85N in
other genetically homogeneous groups of LQTS patients.

Background
Long QT syndrome (LQTS) is an inherited arrhythmia
disorder associated with risk of torsades de pointes, ven-
tricular fibrillation, and sudden death. LQTS is caused
by mutations of the ion channel genes controlling the
repolarization phase of the cardiac action potential cycle
[1,2]. The potassium channel KCNE1, also known as
minK, regulates both the voltage-gated slowly activating
IKs potassium channel [3,4], encoded by the KCNQ1
gene, and the rapidly activating IKr potassium channel
[5], encoded by the KCNH2 gene. Mutations in KCNE1
underlie the LQT5 subtype of LQTS [6] and account for
approximately 3% of known LQTS mutations [7]. In
homozygous form, KCNE1 mutations may cause sensor-
ineural hearing loss in association with LQTS, or Jer-
vell-Lange-Nielsen syndrome [8].

A common variant D85N of KCNE1 was originally
detected by Tesson et al. [9]. This variant has subse-
quently been shown to slow IKs potassium channel,
when studied in Xenopus oocytes [10], and to exhibit
significant loss-of-function effects on both the KCNQ1-
and KCNH2-mediated potassium currents, as measured
in Chinese hamster ovarian cells [11]. In general popula-
tion, KCNE1 D85N has a minor allele frequency of
0.8-1.4% [11-13] and is associated with a significant pro-
longation of the electrocardiographic QT interval
[12-14]. Moreover, D85N has been detected in many
LQTS patients as a second variant in addition to a more
severe mutation [10,11], as well as in some individuals
with drug-induced LQTS [15].
These findings prompted us to study whether KCNE1

D85N would also modify the QT interval and/or the
clinical picture in patients with genetically homogeneous
forms of LQTS in which the variability caused by the
disease-causing mutation itself can be controlled for. To
this end, we took advantage of the unique situation in
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Finland where four different mutations account for
approximately 70% of the known spectrum of LQTS
genes [16] and where the prevalence of molecularly
defined LQTS appears to be the highest in the world
[17]. Our results indicate a sex-specific QT-prolonging
effect for D85N in KCNQ1 mutation carriers.

Methods
Patient cohort
The study sample consisted of all available (n = 712)
carriers of the Finnish LQTS founder mutations, includ-
ing 492 carriers of KCNQ1 G589D (5 of them also
carried KCNH2 R176W, 1 KCNH2 L552S, and 1 a non-
founder nonsense mutation KCNQ1 Y171X), 66 carriers
of KCNQ1 IVS7-2A>G (1 of them also carried KCNH2
R176W), 73 carriers of KCNH2 L552S (2 of them homo-
zygous), and 88 carriers of KCNH2 R176W. These four
founder mutations account for 70%, and KCNQ1 G589D
alone 50%, of all Finnish LQTS patients with an estab-
lished molecular diagnosis of LQTS [16]. The collective
prevalence of these four founder mutations in the gen-
eral Finnish population is as high as 0.4% [17].
Subjects taking any known QT-prolonging medication at

the moment of electrocardiogram (ECG) recording were
excluded from the study. QT intervals were measured
manually by a single cardiologist (H.S.) using the mean of
two consecutive QT intervals in lead II in standard 12-lead
ECG. Heart rate-corrected QT (QTc) was calculated using
the Bazett’s formula (QT/√RR). The study was performed
in accordance with the Declaration of Helsinki and written
informed consent was obtained from all participants. The
Ethics Review Committee of the Department of Medicine,
University of Helsinki, approved the study.

Molecular genetic analyses
KCNE1 253G>A (D85N, rs1805128) was genotyped in
DNA from venous blood samples using polymerase chain
reaction with primers 5’-GAGATTGGAGTGGTG-
GATGGA-3’ and 5’-CACCCCTTACAACAGCCAAAA-
3’ followed by Lwe I digestion (Fermentas, Ontario,
Canada) and agarose gel electrophoresis. Previously iden-
tified heterozygous and major and minor homozygous
samples served as controls in the assay.

Statistical analyses
Normality of continuous distributions was reviewed
visually. Non-normally distributed age was normalized by
Blom’s method. The effect of KCNE1 D85N on age-, sex-,
and heart rate (RR interval) -adjusted QT interval was stu-
died by linear regression analysis using 1-df additive
model (genotype coded as D85D = 0, D85N = 1, N85N =
2). Because gender differences were detected, an additional
model included also a multiplicative interaction term
between KCNE1 D85N genotype and sex. In KCNQ1

G589D carriers, association of D85N with proband/family
member status (information available for all 492 G589D
carriers), appearance of syncope (information available, n
= 488), use of beta blocker medication (information avail-
able, n = 347), and occurrence of pacemaker or implanta-
ble cardioverter-defibrillator (information available, n =
349) was studied by Fisher exact test. Statistical analyses
were performed with SPSS 17.0 (Statistical Package for
Social Sciences, SPSS Inc., Chicago, IL, USA). A p value <
0.05 was considered statistically significant.

Results
Effect of KCNE1 D85N on QT interval in LQTS founder
mutation carriers
Of the 712 LQTS founder mutation carriers, 689 had
the KCNE1 genotype D85D, 21 had the heterozygous
genotype D85N, and 2 were minor homozygotes
(N85N) (Table 1). The frequency of the N85 allele was
1.8%, which is slightly higher than the corresponding
frequency in the general Finnish population (1.4%) [12]
and in other reported populations (0.8-1.0%) [11,13]. Of
the 21 D85N heterozygotes, 15 had the KCNQ1 G589D
mutation, 2 had KCNH2 L552S, 3 had KCNH2 R176W,

Table 1 The clinical characteristics of the study sample

D85D major
homozygotes

D85N
heterozygotes

N85N minor
homozygotes

All subjects

n (%) 689 (96.8) 21 (2.9) 2 (0.3)

Age (years) 29.7 ± 20.0 28.7 ± 20.2 7.0 ± 4.2

Males (%) 280 (40.6) 8 (38.1) 2 (100)

QTc (ms) 458 ± 36.8 472 ± 35.2 468 ± 34.6

Founder mutation
status

KCNQ1 G589D

n 474a 16b 2

QTc 459 ± 36.2 479 ± 31.0 468 ± 34.6

KCNQ1 IVS7-2A>G

n 66b 0 0

QTc 465 ± 30.0 - -

KCNH2 L552S

n 71c 2 0

QTc 464 ± 48.3 490 ± 7.1 -

KCNH2 R176W

n 84d 4e 0

QTc 445 ± 30.6 442 ± 46.5 -

The figures represent the mean ± SD. SD, standard deviation; QTc, heart rate-
corrected QT interval.
aFour subjects carrying also KCNH2 R176W, one KCNH2 L552S, and one KCNQ1
Y171X.
bOne subject carrying also KCNH2 R176W.
cIncludes two KCNH2 L552S homozygotes and one subject carrying also
KCNQ1 G589D.
dFour subjects carrying also KCNQ1 G589D and one KCNQ1 IVS7-2A>G.
eOne subject carrying also KCNQ1 G589D.
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and 1 was a double heterozygote for the KCNQ1 G589D
and KCNH2 R176W mutations. None of the KCNQ1
IVS7-2A>G mutation carriers had the minor N85 allele.
The two N85N minor homozygotes (boys aged 4 and
10) were KCNQ1 G589D carriers and were siblings from
the same family. As a whole, the founder mutation car-
riers were derived from 126 LQTS families. The number
of KCNE1 D85N carriers in type 2 LQTS was too small
for statistical comparisons and therefore the analyses
were confined to KCNQ1 G589D carriers and the com-
bined group of founder mutation carriers.
Patients with KCNQ1 G589D (n = 492) was the lar-

gest group of founder mutation carriers. A QT-
prolonging effect of 26 ms (SE 8.6, p = 0.003) was
detected in males with G589D (n = 213), whereas
D85N did not prolong QT interval in females with
G589D (n = 279) (Table 2, Figure 1). In our cohort,
all male KCNQ1 G589D carriers with KCNE1 N85 (n
= 8) were of age ≤16. To account for the possible
confounding effect of age, male G589D carriers ≤16
years were analyzed also as a separate group. Even in
this analysis, the effect of N85 allele on QT interval
remained essentially the same (+23 ms, SE 8.8, p =
0.010). The majority (9 out of 10) of the female
KCNQ1 G589D carriers with KCNE1 D85N were
adults ≥18 years (median age 34 years, range 0-59
years). In order to further study the gender specificity
of D85N, a multiplicative interaction term for D85N
genotype and sex was introduced into the linear
model. This interaction term received a significance
of p = 0.028, indicating that D85N indeed has a sex-
specific effect for QT interval in KCNQ1 G589D
carriers.
When all founder mutation carriers were considered

together, KCNE1 D85N was associated with a 13 ms (SE
6.0) prolongation of QT interval per each N85 minor
allele (p = 0.028, Table 2). A similar gender-specific ana-
lysis revealed that this association was confined to males
(Table 2).

Association of KCNE1 D85N with selected clinical variables
The clinical importance of the LQTS-modifying effect of
KCNE1 D85N was studied in the largest founder muta-
tion group of KCNQ1 G589D carriers. In these subjects,
the proband/family member status, occurrence of syn-
cope, use of beta blocker medication, and use of pace-
maker or implantable cardioverter-defibrillator were
compared between the D85N heterozygotes and non-
carriers (Figure 2). Of the 16 D85N heterozygotes, 5
(31%) were probands, compared to 58 (12%) of the 474
D85D homozygotes (p = 0.042). The proportion of sub-
jects using beta blocker medication was also higher in
D85N heterozygotes (81%) than in D85D homozygotes
(47%, p = 0.010). The median age at which the medica-
tion was started was 15 years (range 0-58 years) for the
D85N heterozygotes and 8 years (range 5-11 years)
for the N85N minor homozygotes. A similar but non-
significant trend for difference between non-carriers and
heterozygotes was observed in the occurrence of syn-
cope and use of pacemaker or implantable-cardioverter
defibrillator (Figure 2).

Discussion
The KCNE1 D85N variant has been shown to lead to a
substantial QT-interval prolongation in the general
population [12-14]. In fact, we are not aware of any
other gene variant showing a population-based fre-
quency of >1% and an equally large effect on QT inter-
val. In order to test the effect of this variant on cardiac
repolarization in patients with LQTS, we studied the
association of KCNE1 D85N to QT interval in a homo-
geneous group of Finnish LQTS founder mutation car-
riers. We found that the minor N85 allele significantly
prolongs age-, sex-, and heart rate-adjusted QT interval
in type 1 LQTS patients with the mutation G589D. An
interaction between D85N genotype and sex was
detected (p = 0.028), and a sex-specific analysis revealed
that the N85 allele prolongs QT interval by 26 ms in
males but not in females (Table 2). Our material is too
small to draw conclusions of the role of D85N in LQTS
type 2 caused by KCNH2 mutations.
In this study, we detected a gender difference in the

effect of KCNE1 D85N on QT interval in type 1 LQTS.
We reported previously that the occurrence of the N85
minor allele was associated with a 10 ms prolongation
of the QT interval in the general Finnish population
[12]. We carried out a retrospect analysis of our popula-
tion sample [12] and found that the effect of D85N on
QT interval was slightly larger in males (+11.3 ms) than
in females (+10.0 ms). Gender is known to influence
QT interval at the population level, with females in gen-
eral showing longer QT intervals than males [18], and
there are sex- and age-specific differences in risk of
arrhythmias in the different subtypes of LQTS [19,20]. It

Table 2 Effect of KCNE1 D85N on age-, sex-, and heart
rate-adjusted QT interval

Total
n

n with
D85N

Effect
(ms)

SE
(ms)

p
value

All founder mutation
carriers

712 23 +13.1 6.0 0.028

Malesa 290 10 +20.1 7.7 0.010

Femalesa 422 13 +1.6 9.1 0.857

KCNQ1 G589D carriers 492 18 +16.9 6.3 0.007

Malesa 213 8 +25.7 8.6 0.003

Femalesa 279 10 +0.7 9.2 0.935

SE, standard error.
aQT interval adjusted by age and heart rate.
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is of note that also KCNQ1 G589D presents a gender
difference since the female carriers have >20 ms longer
QTc compared to the male carriers [21], a finding repli-
cated in the present study (Figure 1, D85D homozy-
gotes). KCNE1 D85N appears to invert this sex
difference. Interestingly, Friedlander et al. [22] found
that G38S, another polymorphism of KCNE1, was asso-
ciated with QT-interval variation in healthy males but
not in females.
Sex differences in cardiac repolarization appear to

result from both transcriptional and non-transcriptional
regulatory mechanisms. In female mice hearts, KCNE1
mRNA is more abundant compared to males [23]. Dif-
ferences in KCNE1 protein levels may therefore influ-
ence the sex-specific sensitivity to KCNE1 variants. Sex
hormones have also been reported to alter the gating
kinetics of cardiac ion channels and to modulate the
effects of channel blocking agents [24,25]. For example,
17b-oestradiol inhibits IKs [24] and IKr [25] channels
and enhances the effect of a KCNH2 blocker [25]. It is
therefore possible that KCNE1 D85N interferes with the
binding of sex-specific IKs channel regulators, but the
exact mechanisms underlying the sex difference
reported in the present study remain to be explored.
In previous studies, KCNE1 D85N has been found to

associate with congenital LQTS [10,11]. Compound car-
riers of two or more LQTS mutations have a longer heart
rate-corrected QT interval (QTc) and a more severe phe-
notype than carriers of only one mutation [10,26]. KCNE1
D85N has also been proposed to cause LQTS in the
absence of any documented mutation in known LQTS
genes, but the age at onset may be higher and QTc shorter
than in patients with a more severe LQTS mutation [11].

In vitro experiments indicate that KCNE1 N85 signifi-
cantly reduces both IKs and IKr currents, thus delaying
repolarization in mammalian cells [11]. This gene variant
also contributes to loss of IKs function together with a
KCNQ1 mutation in Xenopus oocytes [10]. In another
study of mammalian cells, however, D85N did not affect
IKs current when co-expressed with KCNQ1 [27].
In the present study, we found that the QT-prolonging

effect of KCNE1 D85N is substantially larger in males with
the LQTS mutation KCNQ1 G589D (26 ms) than in the
general population (10 ms). This result suggests that
KCNQ1 and KCNE1 mutations and variants may interact
with each other, at least in males, to produce an even
more pronounced QT-prolonging effect than when occur-
ring separately. This interaction could be caused by the
coassembly of the two proteins to form a functional IKs
channel. However, due to small number of subjects with
the KCNE1 N85 allele and LQT1 mutations other than
KCNQ1 G589D, we cannot draw conclusions on the gen-
eral applicability of this effect in LQT1, nor provide suffi-
cient data on a possible similar relation in LQT2. It should
be emphasized that the association between D85N and
QT interval in type 1 LQTS should be replicated in
another material. However, we realize that this is not an
easy task considering the population prevalence of D85N.
Thus, any replication material should contain hundreds of
genetically uniform patients with type 1 LQTS.
Our study also provides evidence that the KCNE1

D85N variant may be associated with a more severe
phenotype of type 1 LQTS, as the proportions of pro-
bands and users of beta blocker medication were
significantly higher in D85N heterozygotes than in
non-carriers (Figure 2). Indirectly, these associations

Figure 1 QTc-interval duration in different KCNE1 D85N genotype classes in males and females with KCNQ1 G589D. Box plots show
medians and interquartile ranges. The p values in linear regression analyses using additive genotypic model are shown for (A) males and
(B) females separately. For interaction between D85N genotype and sex, p = 0.028. QTc, heart rate-corrected QT-interval.
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suggest that D85N carriers may seek medical help
more often than non-carriers. A similar but non-signif-
icant trend was detected in the occurrence of syncope
and use of pacemaker or implantable cardioverter-defi-
brillator. Paulussen et al. [15] identified 2 carriers of
the N85 allele among 32 patients with drug-induced
LQTS, while no such carriers were observed in the ser-
ies of 34 patients with torsades de pointes studied by
Mank-Seymour et al. [28]. Sotoodehnia et al. [29] sug-
gested that D85N could be associated with a higher
death rate in males but not in females. Clearly, more
extensive population-based studies are required in
which the role KCNE1 D85N variation as determinant
of life-threatening and fatal arrhythmias will be

explored. Polymorphisms in another gene, NOS1AP,
have also been associated with QT prolongation and
cardiac events in LQTS patients [30].

Conclusions
Our study suggests that KCNE1 D85N variation has a
gender-dependent QT-prolonging effect in KCNQ1
G589D mutation carriers and could thus complicate the
symptoms of LQTS. Previously, this variant has not
been studied in vivo in a large cohort of LQTS mutation
carriers. As KCNE1 D85N is relatively frequent occur-
ring in 2-3% of the general population, this interaction
between KCNQ1 and KCNE1 could ultimately have
direct implications in counseling of LQTS patients.
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However, future studies are required to assess the direct
risks of arrhythmias and/or sudden death in LQTS
patients carrying KCNE1 N85.

Acknowledgements
The authors acknowledge Susanna Saarinen, Hanna Nieminen, and Hanna
Ranne for their expert technical assistance. Financial support was received
from The Sigrid Jusélius Foundation, The Academy of Finland, The Finnish
Foundation for Cardiovascular Research, The Finnish Cultural Foundation (to
AML), and The Emil Aaltonen Foundation (to AM).

Author details
1Research Program for Molecular Medicine, Biomedicum Helsinki, University
of Helsinki, Helsinki, Finland. 2Department of Medicine, University of Helsinki,
Helsinki, Finland. 3Department of Cardiology, University of Helsinki, Helsinki,
Finland.

Authors’ contributions
AML participated in the design of the study, performed the molecular
genetic and statistical analyses, and drafted the manuscript. AM participated
in the design of the study, data analysis, and writing of the manuscript. HS
collected the patient material and participated in the design of the study,
data analysis, and writing of the manuscript. KK participated in the design of
the study, data analysis, and writing of the manuscript. All authors read and
approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 11 November 2010 Accepted: 18 January 2011
Published: 18 January 2011

References
1. Morita H, Wu J, Zipes DP: The QT syndromes: long and short. Lancet 2008,

372:750-763.
2. Hedley PL, Jørgensen P, Schlamowitz S, Wangari R, Moolman-Smook J,

Brink PA, Kanters JK, Corfield VA, Christiansen M: The genetic basis of long
QT and short QT syndromes: a mutation update. Hum Mutat 2009,
30:1486-1511.

3. Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G: K(V)
LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac
potassium current. Nature 1996, 384:78-80.

4. Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS, Atkinson DL,
Keating MT: Coassembly of K(V)LQT1 and minK (IsK) proteins to form
cardiac I(Ks) potassium channel. Nature 1996, 384:80-83.

5. McDonald TV, Yu Z, Ming Z, Palma E, Meyers MB, Wang KW, Goldstein SA,
Fishman GI: A minK-HERG complex regulates the cardiac potassium
current I(Kr). Nature 1997, 388:289-292.

6. Splawski I, Tristani-Firouzi M, Lehmann MH, Sanguinetti MC, Keating MT:
Mutations in the hminK gene cause long QT syndrome and suppress IKs
function. Nat Genet 1997, 17:338-340.

7. Splawski I, Shen J, Timothy KW, Lehmann MH, Priori S, Robinson JL,
Moss AJ, Schwartz PJ, Towbin JA, Vincent GM, Keating MT: Spectrum of
mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1,
and KCNE2. Circulation 2000, 102:1178-1185.

8. Tyson J, Tranebjaerg L, Bellman S, Wren C, Taylor JF, Bathen J, Aslaksen B,
Sørland SJ, Lund O, Malcolm S, Pembrey M, Bhattacharya S, Bitner-
Glindzicz M: IsK and KvLQT1: mutation in either of the two subunits of
the slow component of the delayed rectifier potassium channel can
cause Jervell and Lange-Nielsen syndrome. Hum Mol Genet 1997,
6:2179-2185.

9. Tesson F, Donger C, Denjoy I, Berthet M, Bennaceur M, Petit C, Coumel P,
Schwarts K, Guicheney P: Exclusion of KCNE1 (IsK) as a candidate gene
for Jervell and Lange-Nielsen syndrome. J Mol Cell Cardiol 1996,
28:2051-2055.

10. Westenskow P, Splawski I, Timothy KW, Keating MT, Sanguinetti MC:
Compound mutations: a common cause of severe long-QT syndrome.
Circulation 2004, 109:1834-1841.

11. Nishio Y, Makiyama T, Itoh H, Sakaguchi T, Ohno S, Gong YZ, Yamamoto S,
Ozawa T, Ding WG, Toyoda F, Kawamura M, Akao M, Matsuura H, Kimura T,
Kita T, Horie M: D85N, a KCNE1 polymorphism, is a disease-causing gene
variant in long QT syndrome. J Am Coll Cardiol 2009, 54:812-819.

12. Marjamaa A, Newton-Cheh C, Porthan K, Reunanen A, Lahermo P,
Väänänen H, Jula A, Karanko H, Swan H, Toivonen L, Nieminen MS,
Viitasalo M, Peltonen L, Oikarinen L, Palotie A, Kontula K, Salomaa V:
Common candidate gene variants are associated with QT interval
duration in the general population. J Intern Med 2009, 265:448-458.

13. Newton-Cheh C, Eijgelsheim M, Rice KM, de Bakker PI, Yin X, Estrada K,
Bis JC, Marciante K, Rivadeneira F, Noseworthy PA, Sotoodehnia N,
Smith NL, Rotter JI, Kors JA, Witteman JC, Hofman A, Heckbert SR,
O’Donnell CJ, Uitterlinden AG, Psaty BM, Lumley T, Larson MG, Stricker BH:
Common variants at ten loci influence QT interval duration in the
QTGEN Study. Nat Genet 2009, 41:399-406.

14. Gouas L, Nicaud V, Berthet M, Forhan A, Tiret L, Balkau B, Guicheney P:
Association of KCNQ1, KCNE1, KCNH2 and SCN5A polymorphisms with
QTc interval length in a healthy population. Eur J Hum Genet 2005,
13:1213-1222.

15. Paulussen AD, Gilissen RA, Armstrong M, Doevendans PA, Verhasselt P,
Smeets HJ, Schulze-Bahr E, Haverkamp W, Breithardt G, Cohen N,
Aerssens J: Genetic variations of KCNQ1, KCNH2, SCN5A, KCNE1, and
KCNE2 in drug-induced long QT syndrome patients. J Mol Med 2004,
82:182-188.

16. Fodstad H, Swan H, Laitinen P, Piippo K, Paavonen K, Viitasalo M,
Toivonen L, Kontula K: Four potassium channel mutations account for
73% of the genetic spectrum underlying long-QT syndrome (LQTS) and
provide evidence for a strong founder effect in Finland. Ann Med 2004,
36(Suppl 1):53-63.

17. Marjamaa A, Salomaa V, Newton-Cheh C, Porthan K, Reunanen A,
Karanko H, Jula A, Lahermo P, Väänänen H, Toivonen L, Swan H, Viitasalo M,
Nieminen MS, Peltonen L, Oikarinen L, Palotie A, Kontula K: High
prevalence of four long QT syndrome founder mutations in the Finnish
population. Ann Med 2009, 41:234-240.

18. Rautaharju PM, Zhou SH, Wong S, Calhoun HP, Berenson GS, Prineas R,
Davignon A: Sex differences in the evolution of the electrocardiographic
QT interval with age. Can J Cardiol 1992, 8:690-695.

19. Lehmann MH, Timothy KW, Frankovich D, Fromm BS, Keating M, Locati EH,
Taggart RT, Towbin JA, Moss AJ, Schwartz PJ, Vincent GM: Age-gender
influence on the rate-corrected QT interval and the QT-heart rate
relation in families with genotypically characterized long QT syndrome. J
Am Coll Cardiol 1997, 29:93-99.

20. Priori SG, Schwartz PJ, Napolitano C, Bloise R, Ronchetti E, Grillo M,
Vicentini A, Spazzolini C, Nastoli J, Bottelli G, Folli R, Cappelletti D: Risk
stratification in the long-QT syndrome. N Engl J Med 2003, 348:1866-1874.

21. Piippo K, Swan H, Pasternack M, Chapman H, Paavonen K, Viitasalo M,
Toivonen L, Kontula K: A founder mutation of the potassium channel
KCNQ1 in long QT syndrome: implications for estimation of disease
prevalence and molecular diagnostics. J Am Coll Cardiol 2001, 37:562-568.

22. Friedlander Y, Vatta M, Sotoodehnia N, Sinnreich R, Li H, Manor O,
Towbin JA, Siscovick DS, Kark JD: Possible association of the human
KCNE1 (minK) gene and QT interval in healthy subjects: evidence from
association and linkage analyses in Israeli families. Ann Hum Genet 2005,
69:645-656.

23. Drici MD, Baker L, Plan P, Barhanin J, Romey G, Salama G: Mice display sex
differences in halothane-induced polymorphic ventricular tachycardia.
Circulation 2002, 106:497-503.

24. Busch AE, Busch GL, Ford E, Suessbrich H, Lang HJ, Greger R,
Kunzelmann K, Attali B, Stühmer W: The role of the IsK protein in the
specific pharmacological properties of the IKs channel complex. Br J
Pharmacol 1997, 122:187-189.

25. Kurokawa J, Tamagawa M, Harada N, Honda S, Bai CX, Nakaya H,
Furukawa T: Acute effects of oestrogen on the guinea pig and human
IKr channels and drug-induced prolongation of cardiac repolarization. J
Physiol 2008, 586:2961-2973.

26. Fodstad H, Bendahhou S, Rougier JS, Laitinen-Forsblom PJ, Barhanin J,
Abriel H, Schild L, Kontula K, Swan H: Molecular characterization of two
founder mutations causing long QT syndrome and identification of
compound heterozygous patients. Ann Med 2006, 38:294-304.

27. Nielsen NH, Winkel BG, Kanters JK, Schmitt N, Hofman-Bang J, Jensen HS,
Bentzen BH, Sigurd B, Larsen LA, Andersen PS, Haunsø S, Kjeldsen K,

Lahtinen et al. BMC Medical Genetics 2011, 12:11
http://www.biomedcentral.com/1471-2350/12/11

Page 6 of 7

http://www.ncbi.nlm.nih.gov/pubmed/18761222?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19862833?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19862833?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8900282?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8900282?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8900282?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8900283?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8900283?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9230439?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9230439?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9354802?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9354802?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10973849?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10973849?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10973849?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9328483?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9328483?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9328483?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8899564?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8899564?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15051636?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19695459?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19695459?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19019189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19019189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19305408?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19305408?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16132053?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16132053?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14760488?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14760488?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15176425?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15176425?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15176425?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19160088?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19160088?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19160088?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1422988?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1422988?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8996300?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8996300?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8996300?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12736279?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12736279?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11216980?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11216980?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11216980?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16266404?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16266404?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16266404?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12135952?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12135952?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9313924?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9313924?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18440994?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18440994?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16754261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16754261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16754261?dopt=Abstract


Grunnet M, Christiansen M, Olesen SP: Mutations in the Kv1.5 channel
gene KCNA5 in cardiac arrest patients. Biochem Biophys Res Commun
2007, 354:776-782.

28. Mank-Seymour AR, Richmond JL, Wood LS, Reynolds JM, Fan YT,
Warnes GR, Milos PM, Thompson JF: Association of torsades de pointes
with novel and known single nucleotide polymorphisms in long QT
syndrome genes. Am Heart J 2006, 152:1116-1122.

29. Sotoodehnia N, Vatta M, Lemaitre RN, Rautaharju P, Durda P, Towbin JA,
Friedlander Y, Tracy RP, Manolio T, Burke GL, Kuller LH, Siscovick DS: KCNE1
Gene D85N Variant, QT Interval, and Risk of Mortality [abstract].
Circulation 2005, 111:e231.

30. Tomás M, Napolitano C, De Giuli L, Bloise R, Subirana I, Malovini A,
Bellazzi R, Arking DE, Marban E, Chakravarti A, Spooner PM, Priori SG:
Polymorphisms in the NOS1AP gene modulate QT interval duration and
risk of arrhythmias in the long QT syndrome. J Am Coll Cardiol 2010,
55:2745-2752.

Pre-publication history
The pre-publication history for this paper can be accessed here:
http://www.biomedcentral.com/1471-2350/12/11/prepub

doi:10.1186/1471-2350-12-11
Cite this article as: Lahtinen et al.: KCNE1 D85N polymorphism — a sex-
specific modifier in type 1 long QT syndrome? BMC Medical Genetics
2011 12:11.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Lahtinen et al. BMC Medical Genetics 2011, 12:11
http://www.biomedcentral.com/1471-2350/12/11

Page 7 of 7

http://www.ncbi.nlm.nih.gov/pubmed/17266934?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17266934?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17161064?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17161064?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17161064?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20538168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20538168?dopt=Abstract
http://www.biomedcentral.com/1471-2350/12/11/prepub

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Patient cohort
	Molecular genetic analyses
	Statistical analyses

	Results
	Effect of KCNE1 D85N on QT interval in LQTS founder mutation carriers
	Association of KCNE1 D85N with selected clinical variables

	Discussion
	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References
	Pre-publication history

