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Abstract

prophylaxis treatment.

Background: Seasonal variation in the occurrence of cardiovascular diseases has been recognized for decades. In
particular, incidence rates of hospitalization with atrial fibrillation (AF) and stroke have shown to exhibit a seasonal
variation. Stroke in AF patients is common and often severe. Obtaining a description of a possible seasonal variation in
the occurrence of stroke in AF patients is crucial in clarifying risk factors for developing stroke and initiating

Methods: Using a dynamic generalized linear model we were able to model gradually changing seasonal variation in
hospitalization rates of stroke in AF patients from 1977 to 2011. The study population consisted of all Danes registered
with a diagnosis of AF comprising 270,017 subjects. During follow-up, 39,632 subjects were hospitalized with stroke.
Incidence rates of stroke in AF patients were analyzed assuming the seasonal variation being a sum of two sinusoids
and a local linear trend.

Results: The results showed that the peak-to-trough ratio decreased from 1.25 to 1.16 during the study period, and
that the times of year for peak and trough changed slightly.

Conclusion: The present study indicates that using dynamic generalized linear models provides a flexible modeling

approach for studying changes in seasonal variation of stroke in AF patients and yields plausible results.

Background

Epidemiological studies on seasonal variation i.e. cyclic
behavior within a given time period, have been published
for several decades. A variety of statistical methods to
describe seasonal variations have been employed. These
methods range from yx? testing of difference in frequen-
cies to linear regression. In particular, the model derived
by Edwards in 1961 [1] has been employed in epidemio-
logical studies of seasonal variation in frequencies of the
occurrence of diseases [2-5]. In recent years, the Poisson
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regression model has also been employed as an alternative
to Edwards’ model [6-9]. This method facilitates adjust-
ments for possible confounders and straightforward mod-
eling of effect modifiers, as opposed to Edwards’ model
[10].

Data investigated for seasonal variation are often
referred to as time series. Time dependency between data
is an essential characteristic of time series; hence both
Edwards’ model and Poisson regression may provide non-
valid conclusions, due to violation of the model assump-
tion of independent data. Furthermore, underlying risk
factors may change over time, affecting the seasonal varia-
tion, and it is therefore desirable to be able to model grad-
ual changes in covariates over time in time series [11,12].
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This is featured when applying the dynamic generalized
linear models (DGLMs) [13], a generalization of the gen-
eralized linear models (GLMs) introduced by Nelder and
Wedderburn, 1972 [14]. These models enable modeling
of time series with distributions belonging to the natu-
ral exponential family, e.g. Poisson, binomial, and negative
binomial distributions. Specification of the mean value
structure and interpretation of estimated coefficients are
similar to ordinary regression analysis. Other models used
to describe seasonal variation accounting for the depen-
dency between observations have been proposed [15-19].

In the paper by Lundbye-Christensen et al., 2009, a sim-
ilar approach for modeling seasonal variation of discharge
data on acute myocardial infarction in Denmark has been
employed [11]. The authors provide an example of the
use of DGLMs by modeling an overall trend and seasonal
variation present in data and explain the interpretation of
model coefficients and results. However, the correlation
structure and estimation of unknown hyperparameters
are not described in detail despite the essentials of this
issue.

The aim of this study was to illustrate how to model
gradually changing seasonal variation using a DGLM and
to estimate unknown hyperparameters in the context of
epidemiology by analyzing data consisting of weekly fre-
quencies of hospitalizations with stroke in AF patients
in the Danish population from 1977 to 2011. We outline
a specific mean value structure adapted to model sea-
sonal variation of hospitalizations with stroke in patients
with AF and propose an algorithm to estimate variance
parameters and outline estimation of regression estimates
and calculation of model diagnostics. Furthermore, a free
available implementation of the approach is developed
and applied to data.

Methods

Study population

The study population consisted of all residents in Den-
mark who were hospitalized in a Danish hospital with
a diagnosis of AF from 1977 to 2011 and was retrieved
from the Danish National Patient Registry. This registry
holds information on hospitalizations in public hospi-
tals in Denmark. Each record includes information on
date of admission and discharge, primary and secondary
diagnoses, hospital department, and identification of the
patient in terms of the Danish civil registry number, which
is a unique identification number given to all Danish res-
idents at birth. For further information we refer to [20].
Diagnoses were registered according to the International
Classification of Diseases (ICD), version 8 from 1977 to
1994 and version 10 from 1994 to 2011. Information on
vital status and emigration was retrieved from the Danish
Civil Registration System. For further information on this
registry we refer to [21].
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Diagnoses of AF were identified according to ICD-8
codes 427.93 and 427.94 and ICD-10 code 148. The study
population was followed until a possible hospitalization
with a diagnosis of stroke (ICD-8: 433, 434, and 436, ICD-
10: 163 and 164), death, emigration, or end of follow-up,
which was set at August 1, 2011, and date of possible
event was registered. Stroke in AF patients was defined as
a first-time hospitalization with stroke for patients having
at least one previous hospitalization with AF. Hospital-
izations with both stroke and AF diagnoses were also
considered as hospitalizations with stroke in AF patients.
To reduce inclusion of prevalent cases of AF and stroke
in AF patients, identified cases before 1980 were excluded
from the analysis.

Statistical methods

The objective of the statistical analysis is to model chang-
ing seasonal variation. Using ordinary Poisson regression,
we may analyze consecutive time periods simultaneously,
e.g. divide the study period into decades. However, sev-
eral problems occur when doing so. First, the change
between time periods is abrupt, which may seem as a
crude assumption. Second, only data within a given time
period are considered when estimating the seasonal varia-
tion. Letting the time periods become shorter and shorter,
the changes from time periods may be less abrupt, and the
amount of data becomes smaller providing larger uncer-
tainty on estimates. Nevertheless, the model assumption
of independent data is violated, causing potentially non-
valid results.

Considering the DGLM from an intuitive perspective,
when analyzing weekly data, the estimation of the sea-
sonal variation is performed for every week by considering
the nearest 52 weeks and estimating the seasonal varia-
tion based on these data. The constraints imposed on the
model ensure that the estimated seasonal variation only
changes slightly when moving the 52-week window one
week forward.

A DGLM consists of three parts. First, the multidimen-
sional state model which specifies how the underlying
unobserved process is generated. Second, the observa-
tion model which specifies the relation between the latent
process and the data, the latter being considered as indi-
rect measurements of the state model, and finally, the
initial state model which specifies the initialization of
the latent process. The dynamic nature of DGLMs origi-
nates in the first-order Markovian evolution of the regres-
sion coefficients, which means that the coefficients are
allowed to change over time. Modeling gradually chang-
ing seasonal variation in incidence rates of hospitaliza-
tions with stroke in AF patients, we assumed that both
the state model and the initial state model were Gaus-
sian distributed and the observation model was Poisson
distributed.
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Denoting the time series of frequencies of hospitaliza-
tions with stroke in AF patients by {y;|¢ = 1,...,n} and
corresponding number of subjects at risk by offset;, the
DGLM is formally denoted

y¢|ne ~ Poisson(offsetsAz)
ne = log(ry) = F, 6,
0r = Gibs_1 + oy,
o ~ N[ mo, Co]

wy ~ N[0, W]

where ;s are serially uncorrelated and zero-mean Gaus-
sian distributed with unknown and constant covari-
ance matrix W. The latent process is denoted by § =
(61, ...,0,) and is initialized by the initial state model. It is
assumed that the matrices F; and G; are known along with
mg and Cp. However, all matrices may depend on a set of
hyperparameters, denoted by the vector ¢.

In case of both state model and observation model
being Gaussian, inference on the latent process is obtained
by use of the Kalman filter which results in conditional
densities. The filter is a recursive updating scheme that
updates the DGLM whenever a new data point is available.
The Kalman smoother is a backward recursive updat-
ing scheme that updates the state model conditional on
all data. Hence, Kalman smoothing is a post estimation
procedure.

When dealing with non-Gaussian observation mod-
els, the Kalman filter and smoother are not immediately
applicable. Given the above model, the derivation of the
Kalman filter breaks down due to the non-normality of
the observation model. As proposed by Durbin and Koop-
man, 2001 [22], the DGLM is linearized by calculating the
first two derivatives of the observation model in a given
trial value of the state vector and identifying an approx-
imating Gaussian observation model. This is performed
iteratively by applying the Kalman filter and smoother on
the approximating Gaussian model to obtain a new trial
value of the state vector until convergence is reached.
Upon convergence, the likelihood function of the approxi-
mating Gaussian model has the same mode and curvature
at the mode as the original DGLM. This procedure is com-
monly referred to as iterated extended Kalman smooth-
ing. All inference procedures assume all matrices being
known, including the covariance matrix W.

The matrices F; and G; operate as design matrices for
the observation model and the state model and are com-
monly specified by the modeler for all . In contrast,
the covariance matrix W which specifies the correla-
tion structure both over time and between coordinates
in the evolution of 6, may be unknown and has to be
estimated. Given that this covariance matrix is param-
eterized by some hyperparameters, the objective is to
estimate these. Estimation of hyperparameters ina DGLM
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has been recommended to be performed using the EM
algorithm [23] initially followed by an iterative numerical
optimization algorithm [24-26].

The EM algorithm is a two-step numerical iterative
estimation procedure based on maximization of the like-
lihood function, with the characteristic that for each step
the likelihood function does not decrease and that con-
vergence to a stationary point for DGLMs is obtained
[24]. We applied the EM algorithm initially to estimate the
hyperparameters in order to reach the region of maximum
of the likelihood function [26]. A convergence criterion,
in terms of either a maximum number of iterations or a
given threshold, has to be provided by the modeler and
may depend on the context.

Upon convergence of the EM algorithm, the estima-
tion procedure is switched to another iterative numerical
optimization method in order to pinpoint the actual max-
imum by maximizing the log likelihood function, since
convergence of the EM algorithm may be rather slow
[26]. However, the log likelihood function of a DGLM is
not obtainable on closed form; hence, estimation based
on sampling may be utilized. As proposed by Durbin
and Koopman, 2001 [22], we calculated the exact log
likelihood value by use of importance sampling. This sam-
pling technique is a variance reduction simulation scheme
which ensures efficient computation time. For further
description we refer to [22].

For the purpose of this study, we specified the linear
predictor, 7, as a sum of two terms: a secular trend, T}
and a seasonal variation, S;. The secular trend was mod-
eled as alocal linear trend which, in the context of DGLM,
is not restricted to only increase or decrease constantly.
In fact, the trend is allowed to change in both directions
due to the dynamic nature of the model. The seasonal
variation is modeled as a sum of two sinusoids with peri-
ods of 12 and 6 months, respectively. This specification
allows for some asymmetry of the seasonal variation.
The choice of the numbers of sinusoids to describe the
seasonal variation is a trade off between having a flex-
ible model and reducing the complexity of the model,
i.e. keeping the number of parameters low. We aggre-
gated the data to seven-day intervals in order to elimi-
nate a possible week-day-effect and analyzed data from
1980 to 2011. The person-time at risk was used as off-
set, and incidence rates per 100 person-years of stroke
in AF patients were analyzed, The peak-to-trough (PTT)
ratios were calculated. This PTT ratio is often reported
as a measurement of the intensity of seasonal variation
in incidence rates and is an incidence rate ratio. Adjust-
ment for possible confounding factors and modeling effect
modifiers may be performed with these models, but is,
however, beyond the scope of this paper, as we out-
line the basic usage of the DGLMs in modeling seasonal
variation.
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Imposing a specific structure on the evolution covari-
ance matrix, W, we may ensure separation and interpre-
tation of the coefficients in the state vector [27]. This
structure needs contextual considerations and may not be
trivial to determine. For this study, we assumed that the
two terms, the trend and the seasonal variation, were inde-
pendent, and hence, W became a block diagonal matrix.
Imposing only strictly positive variances, all parameters of
the model were allowed to change over time. No structure
was assumed for the first block matrix corresponding to
the covariance matrix of the trend, for which reason the
variance of the level was determined without regard to the
variance of the slope, and, in addition, the level and slope
were allowed to be dependent, meaning that the covari-
ance was non-zero. We denote the variance of the level by
¢1, and the variance of the slope by ¢. The covariance of
¢1 and @, is denoted by ¢3.

Contrarily, we assumed a specific structure for the sec-
ond block matrix, corresponding to the covariance matrix
of the seasonal variation. Acknowledging that the cosine
function is merely an appropriate phase shift of the sine
function, the two coefficients of each sinusoid have equal
variances but are allowed to differ between the two sinu-
soids. The variance of the first sinusoid is denoted by
¢4, and the variance of the second is denoted by gs.
Furthermore, the two coefficients of each sinusoid were
dependent, hence non-zero covariances, denoted by ¢g
for the first sinusoid and ¢; for the second. Conse-
quently, the second block matrix consists of two pairwise
equal variances in the diagonal and two covariances. Fur-
thermore, the four covariances between the four coeffi-
cients of the two sinusoids were assumed equal, denoted
by @8-

These constraints provided a covariance matrix, W,
which was parameterized by an eight-dimensional hyper-
parameter vector, consisting of four variances and four
covariances. The specification of the covariance matrix
ensures that possible overdispersion in the count data is
accounted for, since an additional variance term, besides
the normal Poisson variance, is present. Also, serial corre-
lation in data is modeled by allowing non-zero variances
in W [28].

In order to assess whether the seasonal variation was
changing over time, we also fitted a DGLM with the only
difference being that the covariance matrix of the seasonal
variation contained only zero entries, corresponding to a
static seasonal variation. Akaike’s Information Criterion
(AIC) was calculated for both models, and the model with
lowest AIC was considered parsimonious and in favor of
the data [29].

To identify possible misspecifications of this model, we
performed a residual analysis based on residuals proposed
by Jergensen et al, 1999 [28]. The authors define sev-
eral types of residuals for both the observation model and
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the latent model, based on either the Kalman filter or
smoother, each of which may reveal misspecification of
the corresponding model. We considered the residuals of
the approximating Gaussian model provided by iterated
extended Kalman smoothing.

Statistical software to perform the above calculation is
freely available using R [30]. Specification of the DGLM
is easily performed using the package sspir, which also
includes an implementation of the EM algorithm, specific
to this kind of models, Kalman filtering and smooth-
ing, and iterated extended Kalman smoothing [31,32].
Using the package KFAS, calculation of the exact like-
lihood function is available [33] and, along with stan-
dard non-linear optimization algorithm implemented in
R, the hyperparameters may be estimated. This proce-
dure is implemented in the function rrd in the package
Peak2Trough. For further information we refer to [34].
All analyses were performed using R version 2.13.2 on a
64bit Intel® Core 2 E7300 2.66GHz CPU 4GB RAM with
Ubuntu 11.10.

Results

We identified 270, 017 first-time hospitalizations with AF
(48% females) from January 1, 1980 to August 1, 2011,
corresponding to 1, 648 weeks. In total, 507 subjects were
lost to follow-up due to emigration or registered as miss-
ing persons, whereas 145, 378 subjects died before end of
follow-up.

The median age at AF diagnosis was 79 years for
females, and 72 years for males. During a median follow-
up time of 2.8 years, 39,632 subjects were hospitalized
with a first-time stroke (55% females). Median time to
stroke was 348 days, and one third was diagnosed with
both AF and stroke during the same hospitalization. The
median weekly frequency of AF hospitalizations was 153,
and 23 for stroke in AF patients.

We initialized the DGLM according to a multivari-
ate Gaussian distribution with zero-mean vector and
covariance matrix, Cop = 100Js. For the purpose of esti-
mating the unknown covariance matrix, W, the ini-
tial value of the hyperparameter vector was ¢y =
10-%(10,0.01,0.001,3,3,1,1, 1).

Convergence for the EM algorithm was chosen to be
when either the difference in log likelihood function value
between two steps was smaller than 0.1 or after a max-
imum of 1,000 iterations. The EM algorithm converged
after 334 iterations. The computation time was 16 min-
utes. Switching to a numerical non-linear optimization
algorithm in terms of the n1m function in R, we obtained
a maximum log likelihood value for the DGLM of 98.7
after 3 minutes for hyperparameter values equal to ¢ =
1077(410,0.003, 0.01, 8,0.05,0.4,0.003,0.04). The calcu-
lated AIC for the model with dynamic seasonal variation
component was —169, whereas for the model with a static
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seasonal variation the AIC was —181, favoring the static
model as being parsimonious.

Figures 1 and 2 show the estimated seasonal variation
and trend of incidence rates of stroke in AF patients. To
illustrate the dynamic nature of the model, four instances
of the seasonal variation are shown in Figure 1. The esti-
mated seasonal variation from January to December is
calculated according to the estimated parameters of the
model for the chosen time points. In Figure 2, the esti-
mated trend is shown, indicating a general decrease in
incidence rates over time; however, with periods of local
increase. The observed incidence rates are superimposed
as bullets. Due to the nature of the open cohort design,
where subjects may enter and leave the cohort at all times,
the person-time at risk is relatively small compared with
the numbers of hospitalizations at the beginning of the
study period.

In Figure 3, the changing PTT ratios estimated each
week are shown, represented by the solid line. This plot
indicates that the PTT ratio has been decreasing since
1980, starting at 1.25 in January 1980 and ending at 1.16
in August 2011. The dashed line in Figure 3 represents
the PTT ratio of the seasonal variation when modeled as
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being static. The time of year for trough was in August and
September, and the time for peak was in December and
January. The changes in time for peak and trough is shown
in Figure 4, indicating time for peak drifting towards early
December, whereas time for trough seems to remain in
early August.

The sensitivity of the estimation algorithm in regard
to starting values was assessed by providing different
starting values to the algorithm and comparing the final
estimates with the obtained estimates given above. In gen-
eral, the normed distance from ¢ to the final estimate
obtained by an alternative starting value was small and
the corresponding log likelihood values were close. The
computation time of the EM algorithm increased as the
normed distance between ¢ and the alternative starting
value increased. However, the EM algorithm seemed to
reach the same maximum for all alternative starting val-
ues, and accordingly, the computation time of the nlm
routine did not change.

Based on investigation of residual plots in terms of
autocorrelation plots and scatter plots of residuals versus
fitted values, we identified no systematic deviations which
would indicate misspecifications of the model.
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Discussion

This paper demonstrates an alternative statistical model
to investigate seasonal variation of incidence rates of
stroke in AF patients in Denmark, in terms of state space
modeling, including a procedure to estimate hyperparam-
eters, and propose a specific structure in specifying the
linear predictor and covariance matrix between coeffi-
cients internally and over time. By adjusting for an overall
trend, we were able to describe a changing seasonal vari-
ation during the study period from 1980 to 2011. The
seasonal variation was modeled as a sum of two sinu-
soids with periods of 12 and 6 months, allowing the peak
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Figure 3 Peak-to-trough ratios. Peak-to-trough ratio of the seasonal
variation in incidence rates of stroke in AF patients in Denmark
estimated by a dynamic generalized linear model. The solid line
represents the dynamic peak-to-trough ratio estimated by including
a dynamic seasonal variation component in a generalized linear
model, whereas the dashed line represents a static seasonal variation.

and trough to be non-symmetrically distributed during
the calendar year. The characteristics of the seasonal vari-
ation in terms of the times for peak and trough changed
only slightly during the study period, whereas the PTT
ratio decreased substantially over time. The PTT ratio
decreased from a 25% winter excess risk of being hospital-
ized with stroke having AF in 1980 to a 16% winter excess
risk in 2011. Overall, the incidence rate of stroke in AF
patients decreased from 4 per 100 person-years in January
1980 to 2 in August 2011, adjusted for seasonal variations.

The estimated overall trend indicated a decrease in inci-
dence rates of stroke in AF patients during the study
period. This result seems valid considering that during
the late 1980’s and early 1990’s, several studies on AF and
its consequences were published [35,36] and led to the
introduction of oral anticoagulant treatment for patients
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with AF [37]. This treatment has a prophylactic effect on
stroke in these patients, as also indicated by this study,
where the overall trend in incidence rates of stroke in
AF patients was decreasing since 1980. Furthermore, even
more focus on patients with AF and the treatment of these
patients has led to a constant decrease in the incidence
rates of stroke in AF patients [38,39].

The seasonal variation estimated in the present study
has the same overall characteristics as reported by other
studies of seasonal variation in hospitalizations with
stroke in AF patients in terms of time for peak in winter
and trough in summer [40,41]. Such findings are reported
for other cardiovascular diseases such as acute myocardial
infarction, sudden death, and hypertension [42-45].

On the contrary, Boari et al., 2007 [46] found inconclu-
sive results regarding seasonal variation of acute myocar-
dial infarction in previous studies, reporting findings of
peak during autumn or even summer, whereas others
have not been able to identify any seasonal variation. Fur-
thermore, inconclusive results have been found for other
cardiovascular diseases [47]. These findings may be due
to the amount and resolution of data and to the statistical
model applied. Inappropriate statistical models for which
one or several model assumptions are violated may pro-
vide invalid conclusions. One essential model assumption
for Poisson regression is that the data is independent over
time and not overdispersed. However, when investigat-
ing seasonal variation, data are expected to be internally
dependent; hence, applying a Poisson regression model
may not be appropriate. Real data assumed to be Poisson
distributed may be overdispersed as well, therefore also
violating the model assumptions for Poisson regression
[12].

In the present study, we propose to apply a class of
models which is a generalization of the GLMs, referred
to as DGLMs. Due to the correlation structure of this
model, both dependency between data and overdispersed
Poisson distributed data may be modeled. These models
generalize the GLMs and are naturally parameterized with
meaningful parameters. When a modeler is used to apply
GLMs, the conversion to DGLMs is rather straightfor-
ward, and interpretation of parameter estimates is familiar
to the modeler. Also, when applying DGLMs in assessing
seasonal variations in frequencies of hospitalisations, as
opposed to GLMs, further details regarding model param-
eters may be provided. In Christensen et al., 2012, an
analysis similar to the analysis proposed in this study and
on the same data was performed [48]. A GLM, assuming
data being Poisson distributed and specifying the linear
predictor as a superposition of a seasonal variation with
periods of 12, 6 and 3 months, and 6 weeks and an over-
all trend specified as a cubic spline, was fitted to the
time series, ¥, t = 1,...,n. This analysis provided a sin-
gle set of parameter estimates and consequently a single
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estimate of the PTT ratio equal to 1.22. This figure may
be considered as an average of the underlying possible
evolvement of the true parameters. By applying a DGLM,
this evolvement may be assessed.

When estimating the covariance structure of a DGLM,
the modeler has to provide starting values for the esti-
mation algorithm which may affect the estimated hyper-
parameters at convergence. We propose to apply the EM
algorithm initially, to ensure convergence towards the
region of the maximum rather fast, and switching to an
iteratively numerical optimization algorithm to pinpoint
the actual maximum. We investigated the robustness of
the estimation scheme by applying different starting val-
ues. This investigation showed that for all given starting
values, the final estimates were similar, indicating that the
estimation procedure is rather robust in terms of starting
values, results not shown.

Other models have been proposed in modeling seasonal
variation, including generalized additive models, intro-
duced by Hastie and Tibshirani, 1994, [12,17,49], and clas-
sic time series analysis [15,16,27,50,51]. As the objective is
to describe the seasonal variation and changes herein over
time exhibited by data, the DGLM is a useful approach
since the correlation structure of the regression param-
eters is estimated explicitly, and is not considered being
nuisance parameters as opposed to generalized estimation
equations [15] and quasilikelihood approaches [16].

By fitting models with and without a dynamic seasonal
variation component, we were able to assess whether
the seasonal variation was in fact dynamic in terms of
AIC. This criterion indicated that a static seasonal varia-
tion component was sufficiently describing the data and
that the corresponding model was the most parsimonious
model of the two models considered. However, when
fitting a model with a dynamic seasonal variation, the
present study revealed that the PTT ratio of hospital-
izations with stroke in AF patients in Denmark changed
from 1.25 to 1.16 during the study period. Considering
this result from a clinical perspective, this change may still
contain crucial information, since an incidence rate ratio
reduction of 9 may seem worth investigating further.

Conclusions

In conclusion, we propose to apply a DGLM when mod-
eling seasonal variation in frequencies of hospitalizations
with stroke in patients with AF. This model is capable of
modeling serially correlated data and allows for param-
eters of the model to change gradually over time. The
interpretation of the model is similar to that of ordi-
nary Poisson regression, and when the modeler is familiar
with ordinary regression analysis, the transition to DGLM
is straightforward. Furthermore, the model may easily
be adapted to other epidemiological contexts, when the
objective is to study changes over time.
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