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Abstract

Background: Clinical researchers have often preferred to use a fixed effects model for the primary interpretation of
a meta-analysis. Heterogeneity is usually assessed via the well known Q and I2 statistics, along with the random
effects estimate they imply. In recent years, alternative methods for quantifying heterogeneity have been proposed,
that are based on a ‘generalised’ Q statistic.

Methods: We review 18 IPD meta-analyses of RCTs into treatments for cancer, in order to quantify the amount of
heterogeneity present and also to discuss practical methods for explaining heterogeneity.

Results: Differing results were obtained when the standard Q and I2 statistics were used to test for the presence of
heterogeneity. The two meta-analyses with the largest amount of heterogeneity were investigated further, and on
inspection the straightforward application of a random effects model was not deemed appropriate. Compared to
the standard Q statistic, the generalised Q statistic provided a more accurate platform for estimating the amount of
heterogeneity in the 18 meta-analyses.

Conclusions: Explaining heterogeneity via the pre-specification of trial subgroups, graphical diagnostic tools and
sensitivity analyses produced a more desirable outcome than an automatic application of the random effects
model. Generalised Q statistic methods for quantifying and adjusting for heterogeneity should be incorporated as
standard into statistical software. Software is provided to help achieve this aim.

Background
Meta-analysis provides a way of quantitatively synthesis-
ing the results of medical studies or trials that target a
particular research question. As shown in a 2005 review
of the clinical research literature [1], it is still most com-
mon to meta-analyse results across clinical studies using
the inverse variance approach, to yield a ‘fixed’ or ‘com-
mon’ effect estimate. By obtaining individual patient
data (IPD) from all trials in a meta-analysis, some
aspects of clinical heterogeneity can be minimised
through data cleaning [2]. However, regardless of
whether the meta-analysis is based on IPD or aggregate
data, substantial statistical heterogeneity between studies
may still remain.

Cochran’s Q statistic has long been used to assess sta-
tistical heterogeneity in meta-analysis. When Q is larger
than its expected value E[Q] under the null hypothesis
of no heterogeneity, the difference Q - E[Q] can be used
to furnish the most popular estimate of the heterogene-
ity parameter, using the DerSimonian and Laird method
[3]. Higgins and Thompson’s I2 statistic [4,5] is also a
simple function of Q and quantifies the proportion of
total variation that is between trial heterogeneity. Unlike
Q, I2 is designed to be independent of the number of
trials constituting the meta-analysis and independent of
the outcome’s scale, so it can easily be compared across
meta-analyses. It is now reported as standard, with or
without Cochran’s Q.
The presence of significant and substantial heteroge-

neity demands some form of action. Ideally, after
exploration of the data, heterogeneity can be explained
by variation in the constituent trial’s characteristics. If
this is not possible then some may feel a meta-analysis
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inappropriate altogether, whereas some would opt for
fitting a random effects model to the data instead.
There is no accepted rule for deciding on when a move
from a fixed to a random effects model is the right
course of action [6]. Clearly, all other things being
equal, the larger the magnitude of the heterogeneity the
stronger the case for a shift. However, as the amount of
heterogeneity increases, so too does the potential impact
of moving from one model to the other. Thus, with
increasingly diverging interpretations, it is sometimes
very difficult to make a satisfactory decision on which
model to choose, or indeed whether to pool the trials in
a meta-analysis at all.
In Methods we review the standard approach to meta-

analysis and heterogeneity quantification based on the Q
statistic. We then introduce a similar approach based on
a ‘generalised Q’ statistic that has recently been pro-
posed. In Results we analyse the summary data from 18
separate IPD meta-analyses to see whether the original
conclusions could have been sensitive to the choice of
fixed or random effects model. A more in-depth analysis
is then conducted on the two meta-analyses with the
largest observed heterogeneity. The 18 meta-analysis are
then used to illustrate the relative performance of the
standard and generalised Q statistics in measuring the
extent of heterogeneity present. Finally, in Discussion
and Conclusions we review the issues raised and offer
recommendations for the future quantification and
reporting of heterogeneity in meta-analysis.

The data
The MRC Clinical Trials Unit has carried out systematic
reviews and IPD meta-analyses, predominantly in cancer
since 1991. Their common primary aim has been to
assess whether treatment interventions have improved
patient survival. Specific areas of focus include cancers
of the brain, lung, cervix, ovaries and bladder. Table 1
shows the summary statistics of 18 such IPD meta-ana-
lyses [7-17]. The usefulness of these meta-analyses is
that they all pre-specified subgroup analyses by trial and
patient characteristics in order to explain potential het-
erogeneity. For illustration these analyses are done
ignoring any pre-specified groupings and are only with
respect to the primary outcome of overall survival. A
two-stage approach was taken for each meta-analysis
treatment comparison. That is, fixed effect hazard ratio
estimates were calculated for each trial using the log
rank method, [18], these estimates were then combined
using fixed and random effects models in the same
manner as for aggregate data. The meta-analyses dif-
fered in terms of their size (from 5-19 studies), their
fixed effect hazard ratio effect estimate (0.65-1.20) and
their heterogeneity (Q statistic p-values from 1.97 × 10-5

to 0.99 and I2 from 0 to 75%).

Methods
Consider a meta-analysis of M studies. When study i
out of M’s effect estimate - denoted by θ̂i - is assumed
to be normally distributed with a known variance σ 2

i ,
then one can think of the study estimates as centered
around a common mean parameter θ as in formula (1):

θ̂i = θ + εi + ui (1)

The �i term relates to the precision of study i’s esti-
mate, and is assumed to follow a N (0, σ 2

i ) distribution.
The ui term is assumed to have zero mean and a variance

of τ2; it is included to represent potential between trial het-
erogeneity. When τ2 equals 0 all studies provide an estimate
of the same mean parameter θ . Under the assumption that
τ2 is 0 the fixed effect (FE) estimate, associated variance and
assumed asymptotic distribution can be obtained:

θ̂FE =

∑M
i=1 Wiθ̂i∑M
i=1 Wi

, Var(θ̂FE) = VFE =
1∑M

i=1 Wi
, θ̂FE ∼ N(θ , VFE) (2)

where Wi = 1/σ 2
i is study i’s precision.

Heterogeneity quantification using the standard Q-
statistic
If the fixed effects assumption is true then Cochran’s
statistic:

Q =
M∑
i=1

Wi(θ̂FE − θ̂i)2 (3)

Table 1 The summary statistics for 18 meta-analyses
carried out by the MAG

Meta-
analysis

#
trials

Q,
P-value

I2DL(%) Fixed Effect HR (CI)
P-value

cervix 1 [15] 18 44.48, 0.00 62 1.05 (0.93-1.19) 0.39

cervix 2 [17] 18 20.83 0.23 18 0.76 (0.67-0.85) 0.00

cervix 3 [15] 5 9.18, 0.06 56 0.65 (0.53-0.80) 0.00

bladder 1 [14] 9 7.27, 0.51 0 0.91 (0.83-1.01) 0.08

bladder 2 [16] 6 2.25, 0.81 0 0.75 (0.60-0.96) 0.02

nsclc 1 [8] 17 28.98, 0.02 45 1.04 (0.96-1.12) 0.33

nsclc 2 [8] 7 3.63, 0.73 0 0.98 (0.83-1.14) 0.76

nsclc 3 [8] 25 22.32, 0.56 0 0.90 (0.83-0.97) 0.01

nsclc 4 [8] 11 39.63, 0.00 75 0.84 (0.74-0.95) 0.01

ovarian 1 [7] 19 21.92, 0.24 18 0.98 (0.91-1.06) 0.69

ovarian 2 [7] 11 12.83, 0.23 22 0.93 (0.83-1.05) 0.23

ovarian 3 [10] 9 14.78, 0.06 46 0.88 (0.79-0.98) 0.02

ovarian 4 [10] 9 10.35, 0.24 23 0.91 (0.80-1.05) 0.21

ovarian 5 [10] 12 2.57, 1.00 0 1.02 (0.93-1.12) 0.66

port [11] 9 13.06, 0.11 39 1.21 (1.08-1.34) 0.00

sarcoma [9] 14 11.80, 0.54 0 0.89 (0.76-1.03) 0.12

oeso [12] 6 10.37, 0.07 52 0.89 (0.78-1.01) 0.06

glioma [13] 12 13.29, 0.27 17 0.85 (0.78-0.92) 0.00
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should follow, asymptotically, a c2 distribution, with
expected value equal to M - 1. However, if τ2 is non
zero so that there is a degree of heterogeneity among
the trials, study i provides an estimate of θ + ui and the
expected value of Q equals

E[Q] =
τ 2 + s2

s2
(M − 1) (4)

where s2 =

∑
Wi(M − 1)(∑
Wi

)2 − ∑
W2

i

, and is referred to as the

‘typical’ within study variance.
The most commonly applied estimate of τ2 is due to

DerSimonian and Laird [3]. This simply replaces E[Q] in
formula (4) with its observed value in formula (3) and
solves τ2 to give what we term τ̂ 2

DL. This estimate is
truncated to zero if negative and then used to provide
re-weighted overall mean estimate (and variance VRE) by
replacing Wi in (2) with W∗

i = (σ 2
i + τ̂ 2

DL)
−1. The ‘RE’

subscript denotes ‘random effects’. This method has
become synonymous with random effects meta-analysis,
because of its ease of use - it does not require statistical
maximisation software and does not impose constraints
on the distribution of the random effects ui [19].
Furthermore, τ 2

DL can be used to furnish the most popu-
lar measure of the extent of heterogeneity - Higgins and
Thompson’s I2 value [4,5] - since

τ 2
DL

τ 2
DL + s2

=
Q − (M − 1)

Q
= I2

when Q > M - 1.
From a philosophical perspective, fixed effect and ran-

dom effects estimates target very different quantities.
Fixed effect models estimate the weighted mean of the
study estimates, whereas random effects models estimate
the mean of a distribution from which the study esti-
mates were sampled. However, if model (1) is correct and
we are additionally willing to assume that the ui terms
are independent of the �i terms, then they should both
provide estimates of the same parameter θ. Another con-
sequence of this independence assumption is that the
individual study estimates θ̂i should be independent of
the �i terms, and hence we do not expect the magnitude
of the effect estimate to be correlated with its precision.

Heterogeneity quantification using a ‘generalised’ Q-
statistic
τ 2
DL is very easy to calculate but may itself be a mislead-
ing estimate of the true heterogeneity present. More
sophisticated likelihood-based methods - such as
‘REML’ [20], or Bayesian methods using MCMC [21] -
may be preferred, but are more computationally
demanding to calculate and also impose distributional

assumptions on the random effects. Recently, a method
has been championed that combines some of the com-
putational simplicity of the DerSimonian and Laird
method, with the rigor and accuracy of likelihood based
approaches. DerSimonian and Kacker [22] (and others
[23-25]) have noted that a generalisation of the Q statis-
tic in equation (3) can be written as:

Q(τ 2) =
M∑
i=1

W∗
i (θ̂i − θ̂RE)2 (5)

where W∗
i = (σ 2

i + τ 2)−1 and where θ̂RE is also calcu-
lated from equation (2) by replacing Wi with W∗

i . Like
the standard Q statistic in equation (3), this also follows
a χ2

M−1 distribution under the null hypothesis of no het-
erogeneity. Paule and Mandel [23] (PM) and DerSimo-
nian and Kacker [22] propose to estimate τ2 by iterating
equation (5) until Q(τ2) equals its expected value of M-
1; this estimate will be referred to as τ 2

PM. DerSimonian
and Kacker recommend using τ 2

PM since it is still very
easy obtain, is guaranteed to have at most one solution
and provides a more accurate estimate of τ2 that closely
mirrors both the REML estimate and the generalized
Bayes estimate [24], which are both much harder quan-
tities to obtain computationally.
Viechtbauer [25] suggests that equation (5) can addi-

tionally be used to provide an a-level confidence set for
τ 2
PM, by finding the values of τ2 that equate Q(τ2) with
the a/2th and 1- a/2th percentiles of the χ2

M−1 distribu-
tion. He showed that this method performed very well
in a simulation study that evaluated its coverage proper-
ties compared to a range of other methods - such as
Biggerstaff and Tweedie [26] and Sidik and Jonkman
[27] - primarily because it is based on an exact c2 distri-
bution, rather than a distributional approximation.
A criticism one might therefore have of I2 is that its

standard definition is intertwined with the commonly
applied DerSimonian and Laird estimate τ 2

DL. A general-
ised I2 statistic, say I2x, could easily be defined for a
meta-analysis with typical within study variance s2 as

τ 2
x

τ 2
x + s2

for any estimate of the between study variance τ 2
x .

From now on we will refer to Inconsistency statistics
specifically utilising the DL method as I2DL and those
specifically utilising the PM method as I2PM. The term I2

will be reserved for discussing the general concept of
Inconsistency.

Reference intervals for I2DL and I2PM
Since the Inconsistency statistic is a data derived esti-
mate, it is possible to plot a confidence (or ‘reference’)
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interval around it to highlight its inherent uncertainty.
Higgins and Thompson [4] recommend basing reference
intervals for I2DL using the variance of the related ‘H’
measure, since they are simple functions of one another.
This involves using one of two formulae depending on
the value of Q relative to M. The lower bound of these
intervals, if negative, is curtailed at zero. We will calcu-
late (1-a) level reference intervals for I2PM for each meta-
analysis as(

τ 2
PM,L

τ 2
PM,L + s2

,
τ 2
PM,U

τ 2
PM,U + s2

)
(6)

where τ 2
PM,L and τ 2

PM,U represent the values of τ2 equat-
ing Q(τ2) to the lower a/2 and upper 1-a/2 percentiles
of the relevant c2 distribution.

Results
A standard Q-statistic analysis
Figure 1 shows the I2DL statistics (plus 90% reference
intervals) for the 18 meta-analyses in Table 1. The τ 2

DL
estimates for each study are also shown. In order to
compliment the Inconsistency reference intervals, the 18
trials are coloured according to their assigned Q statistic
status; green for no heterogeneity (Q <M - 1), orange
for non-zero but insubstantial heterogeneity (p-value >
0.1) and red for substantial heterogeneity (p-value <
0.1). We can not plot a meaningful I2DL reference interval
for the ‘Ovarian 5’ meta-analysis [10]. This had the
smallest estimated I2DL value of -3.28. Whilst the point
estimate is curtailed to 0, the upper 90% reference limit
calculated from the exact value is still negative.
One could use the reference intervals around I2DL to

directly test for the presence of heterogeneity, as
apposed to Q; a strategy suggested by Medina et. al.
[28]. From Figure 1 we see that only 3 out of the 7
meta-analyses with significant Q statistics produced sig-
nificant I2DL statistics at the 10% level. Since Q and I2DL
are so closely related it is perhaps surprising to some
reviewers that such differing conclusions could arise.
Figure 2 plots the hazard ratio estimates and asso-

ciated 95% confidence intervals obtained for each trial
under the fixed effect and random effects models. The
random effects estimates are obtained via the two-stage
DL method previously described to highlight their dif-
ferences. The correlation between the two hazard ratio
measures across trials is naturally high. Six out of the 18
meta-analyses exhibit no heterogeneity at all. That is,
the Q-statistic was less than its expected value - provid-
ing an estimate for τ 2

DL of zero and an I2DL of zero. Of
these six, 2 meta-analyses showed a significant fixed
effect estimate at the 5% level and 4 did not. From the

remaning 12 meta-analyses with an I2DL > 0 and so with
distinct fixed and random effects estimates, the clinical
interpretation of the overall results is generally similar
by either approach. For example, only one out of the 18
meta-analyses - Ovarian 3 [10] - do we see the fixed
and random effects estimates with p-values either side
of 0.05, that may lead some to interpret the meta-analy-
sis differently.
From Figure 1, the two meta-analyses with the most

apparent statistical heterogeneity were NSCLC 4 [8] and
Cervix 1 [15]. They also exhibit the most marked differ-
ences between their fixed and random effects estimates,
as highlighted by large deviations from the diagonal -
shown in red in Figure 2. These two meta-analyses are
now discussed further, in order to demonstrate how we
chose to investigate these heterogeneous data sets.
The NSCLC 4 meta-analysis
This meta-analysis compared the effectiveness of sup-
portive care plus chemotherapy versus supportive care
alone for patients with advanced non-small cell lung
cancer. The fixed effect hazard ratio estimate of 0.84
suggests a substantial and highly significant benefit from
the addition of chemotherapy with a p-value for a null
effect of 0.005. The random effects model estimate of
0.77 suggested an even more extreme benefit of che-
motherapy. However, such was the magnitude of hetero-
geneity detected - as revealed by an I2 of 75% - this
estimate is attributed much less certainty, with a p-value
of 0.04.
On a closer inspection of these data, the size of the

study appears to be correlated with its estimated effect -
indeed the largest study (oxford) and the smallest study
(CEP-85) cover the complete range of all the estimates.
Figure 3 (right) shows a funnel plot [29] of the same
data to highlight this more clearly. If the independence
assumption in equation (1) holds, then we would expect
the plot to be symmetrical around the mean estimate.
Although funnel plot asymmetry is not necessarily indi-
cative of dissemination bias (or ‘small study’ effects), the
prevailing, uncontroversial view is that unbiased study
dissemination is more likely to occur for larger studies
than for smaller studies, and it is certainly one possible
explanation for what we see here. Egger’s regression
[30] - which can be thought of as a very general test for
dissemination bias [31] - provides some evidence for a
higher than average correlation between effect size and
precision (p-value 0.098). This correlation is the reason
for the large difference between the estimates θ̂FE and

θ̂RE. As the contributing trials spanned 30 years, the
types of chemotherapy used varied considerably and
consequently the pre-specified main analysis sub-divided
trials into chemotherapy categories. This was indeed
helpful in resolving the issue before any further, more
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subjective analyses were attempted. Of the 11 relevant
trials identified, it was found that 2 trials used long term
alkylating agents, 1 trial used a Vinca alkaloid/etoposide
agent and 8 used a Cisplatin based regimen. The results
of this subgroup analysis are shown against the results
across all trials in Table 2. Among the 8 Cisplatin trials
we saw a slight decrease in the estimated magnitude of
heterogeneity with I2DL down to 68%. The homogeneity
p-value from the standard Q-statistic was also far less
significant, but is arguably due in some degree to a loss
of power resulting from splitting the data. The main
effect was however a clear reduction in the amount of
funnel plot asymmetry (Egger’s regression p-value 0.38)
and consequently much better agreement between fixed
and random effects model estimates.
The Cervix 1 meta-analysis
This meta-analysis compared neoadjuvant chemotherapy
plus local treatment versus local treatment alone for

patients with Cervical cancer. Both the fixed and ran-
dom effect estimates indicated a slight benefit in the
experimental treatment but neither estimate is Signifi-
cant (Table 1). Significant heterogeneity was present in
the 18 trials with a reported I2DL of 62%. In the original
research process, clinical advice influenced a pre-
planned decision to split the studies into two groups,
depending on whether chemotherapy was given in cycles
lasting longer than, or less than, 14 days. The results for
these subgroups are shown in Figure 4 (left) and Table
2. No evidence of heterogeneity was apparent in the
trials using longer chemotherapy cycles. Furthermore,
for this subgroup both the fixed effect and random
effects estimates suggest a highly Significant and sub-
stantial detrimental effect of neoadjuvant chemotherapy.
Significant heterogeneity persisted in the results of

trials using shorter chemotherapy cycles. The fixed
effect result suggested a modest benefit from short cycle
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chemotherapy, whereas the random effects model sug-
gested less of an effect and a much wider confidence
interval overlapping the null effect of 1. However our
conclusions were also guided by a sensitivity analysis of
the shorter duration trials, excluding the MRC CeCa
trial. Figure 4 (right) shows a Baujat plot [32,33] of the
data; on the horizontal axis is the contribution of each
study to the overall Q statistic in equation (3), on the
vertical axis is the difference between the fixed effect
estimate θ̂FE with and without each study, standardised
by the total variance of the fixed effect estimate without
that study. If the fixed effects model is correct, each
point’s horizontal component should be approximately
χ2
1 distributed. The CeCa trial is way out on its own,

whereas the other trials all fall within the 95th

percentile of this distribution. Thus the total heteroge-
neity present is very much a product of this single trial.
Furthermore, the CeCa trial’s large vertical component
shows that its inclusion Significantly alters the fixed
effects estimate too. Excluding the CeCa trial gave a
fixed-effect result still favouring short cycle chemother-
apy (HR = 0.76, 95%CI = 0.62-0.92) and heterogeneity
was much reduced. Repeating the sensitivity analysis
using a random effects model gave very similar results
(HR = 0.75,95%CI = 0.58-0.95).

A generalised-Q analysis
Figure 5 (left) shows the generalised estimation proce-
dure enacted on the NSCLC1 meta-analysis. From
Figure 1 this meta-analyses, along with NSCLC 4 and
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outliers

Figure 2 A comparison of the hazard ratio estimates (with 95% CI) obtained for the 18 meta-analyses in Table 1 under fixed and
random effects (DL) models.
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Cervix 1, exhibited such strong heterogeneity that its
90% I2DL reference interval did not contain 0. It contains
17 studies and hence an estimate for τ 2

PM is obtained by
equating Q(τ2) to a c2 statistic with 16 degrees of free-
dom. We plot the τ 2

PM estimate corresponding to its
mean of 16. We also plot two more solutions that have
not been considered so far; setting Q(τ2) to the median
or 50th percentile of the c2 distribution (which seems
consistent with the approach of Viechtbauer), and also
to the mode of M - 2. The spread of these solutions,
determined by the skewness of the c2 distribution
makes clear how the uncertainty as to the value of τ2 is
heavily dependent on the number of studies. The
DerSimonian and Laird estimate τ̂ 2

DL is equal to 0.024.
When this is plugged into Q(τ2) it would equate to a c2

statistic with approximately 19 degrees of freedom.
Viechtbauer’s 95% confidence set for τ2 is (0.004-0.147).
Figure 5 (right) shows, for all 18 meta-analyses, how the

estimates for τ 2
PM based on the generalised Q statistic

compared to the original estimates - τ 2
DL, the original

traffic light colour markings are retained.
Figure 6 (left) plots Higgins and Thompson’s I2DL plus

90% reference interval (as in Figure 1) versus equivalent
reference intervals for I2PM - as shown in equation (6).
We additionally highlight the mean, median and modal
values of I2PM, to indicate the spread of even these cen-
tral measures.

A simulation study
The point estimates and confidence intervals for I2PM dif-
fer from the original I2DL - in particular the confidence
intervals for I2PM are noticeably wider. In order to see if
this extra width truly reflected the uncertainty in the
estimation of I2PM, or instead if it was over-conservative,
we conducted twelve simulation studies, each one based

Figure 3 Left: Forest plot of the NSCLC 4 meta-analysis; Right: funnel plot of the NSCLC 4 meta-analysis.

Table 2 Subgroup analyses for the two examples

Trial Group # trials Q, P-value, I2DL(%) Fixed Effect HR (CI) P-value Random Effects HR (CI) P-value

NSCLC data

all 11 39.6 (1.97e-05) 74.8 0.84 (0.74-0.95) 5.42e-03 0.77 (0.59-0.99) 0.042

Cisplatin 8 22.2 (2.34e-03) 68.5 0.73 (0.63-0.85) 6.63e-05 0.70 (0.53-0.93) 0.014

Qint = 39.62 - (22.20 + 8.72) = 8.70 (p = 0.003)

all* 11 0.84 (0.61-1.16) 0.21

Cervix data

>14 days 11 12.76 (0.24) 22 1.25, (1.07,1.46) 0.005 1.27 (1.06,1.53) 0.0099

≤ 14 days 7 20.74 (0.002) 71 0.83, (0.69,1.00) 0.046 0.87 (0.60,1.25) 0.44

Qint = 44.48 - (12.76 + 20.74) = 10.98 (p = 9e-04)

Qint denotes the subgroup interaction test statistic. * denotes the Henmi-Copas analysis: which puts a ‘random effects’ confidence interval around the fixed
effects estimate.
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on the characteristics of a meta-analysis which exhibited
some heterogeneity (from ‘Glioma’ to ‘NSCLC 4’). From
each one we took the number of studies M, within
study variances s2 and the DL heterogeneity estimate
τ 2
DL. For meta-analysis j, j = 1, ..., 12, we then simulated
10,000 new meta-analyses of Mj study estimates

θ̂i ∼ N
(
θ = 0, σ 2

i + τ 2
DL

)
for i = 1, ... Mj . The choice of

θ = 0 is clearly unimportant. Since the within study var-
iances and the true τ2 values were held fixed, the true
value of I2 stayed fixed at the original value reported in
Table 1, and I2DL = I2PM. We then calculated the propor-

tion of 95% reference intervals for I2DL and I2PM that

Figure 4 Left: Funnel plot of the Cervical cancer trial data; Right: Baujat plot showing, for the ≤ 14 day subset of trials, the influence
of each trial on the overall Q statistic and fixed effect estimate.

Figure 5 Left: Point estimates (and lower/upper bounds) for the between trial variance parameter of the NSCLC1 meta-analysis, using
the Q-profile approach; Right: τ 2

PM versus τ 2
DL for all 18 meta-analyses.
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contained the true value. Figure 6 (left) shows the
results. Higgins and Thompson’s I2DL reference interval
appears to exhibit sub-optimum coverage, which is espe-
cially clear when the true value of I2 is large. Reference
intervals for I2PM based on equation (6) appear to well
maintain the desired coverage across all 12 simulation
scenarios.

Discussion
NSCLC 4 and Cervix 1
As mentioned in Methods, in the presence of heteroge-
neity we still expect fixed and random effects estimates
to be targeting a single quantity. However, in Results the
two meta-analyses with the largest heterogeneity also
showed that largest empirical differences between θ̂FE
and θ̂RE. The NSCLC 4 data was a good example of this,
being the meta-analysis with the largest outward hetero-
geneity, but with also clear funnel plot asymmetry. If we
had been ignorant as to the type of chemotherapy used
in each study, and therefore had no way of explaining
the heterogeneity, we would perhaps have considered
applying a random effects model, despite suspecting
small study effects. Random effects estimation in this
context can start to look considerably less attractive,
because θ̂RE gives more (rather than less) relative weight
to the smaller studies than θ̂FE since for any study i, Wi

≥ W∗
i , a fact first highlighted by Greenland [34]. This

has lead some to propose bias adjustment procedures to
counteract small study effects [35-37]. Henmi and
Copas [38] have recently advocated an interesting com-
promise; to use the fixed effects point estimate θ̂FE - that
is robust to small study effects - but surrounded by a
confidence interval derived under the random effects

model. As shown in (Table 2), when applied to all stu-
dies in the NSCLC 4 meta-analysis this puts a 95% con-
fidence interval of (0.61-1.16) around θ̂FE = 0.84, with an
associate p-value of 0.21, bringing the treatment’s bene-
fit severely into doubt. Fortunately, we were able to
plausibly explain most of the asymmetry present by the
differing types of chemotherapy regimens used, provid-
ing a much more useful answer with added clinical
insight.
For the Cervix meta-data, stratifying the trials by che-

motherapy cycle duration helped to partially explain the
heterogeneity. Again, in doing so it raised interesting
clinical questions about the effective treatment of this
cancer. The remaining heterogeneity present in the short
cycle chemotherapy trials was removed by excluding an
outlying study in a sensitivity analysis, guided by the
results of a Baujat plot. Throwing data away is generally
frowned upon by statisticians, and more sophisticated
methods for incorporating so called ‘outliers’ have been
proposed [39]. However, for small outlying studies this
strategy is clearly a convenient and effective option. We
could find no explanation for the extreme effect found by
the CeCa trial in its design or patient population, but it is
perhaps worth noting that, along with the PMG and
LGOG trials, its results were never published in a peer
reviewed journal. Clearly, one of the advantages of a
meta-analysis is to bring together the totality of evidence,
including especially trials whose results were not fully
disseminated in the past. We do not know if the extreme
results observed specifically in the CeCa and LGOG trials
influenced their original non-publication, but it is cer-
tainly worrying that the overall picture of evidence is far
easier to interpret in their absence.

Figure 6 Left: point estimates and 90% reference intervals for I2DL and I2PM estimates; Right: Coverage of 95% reference intervals for
the τ 2

DL and I2PM estimates.
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Standard or Generalised Q statistic?
In Methods and Results we described and demonstrated
the use of meta-analytical techniques based on the gen-
eralised Q statistic. Are these worth using? As can be
seen from Figure 5 (right), whenever τ 2

DL is zero so is
τ 2
PM. For non-zero values τ 2

PM is generally greater than
τ 2
DL, the difference between the two appears to increase
as the magnitude of the heterogeneity increases. This
suggests that when a substantial amount of heterogene-
ity is present, τ 2

DL may be systematically underestimating
it because a one-iteration formula is not sufficient to
arrive at an estimate near the truth. This underestima-
tion does not effect in any meaningful way the estimate
for θ. Across the 18 meta-analyses, the random effects
estimates for θ̂RE based on τ 2

PM and τ 2
DL were very similar

(and are therefore not shown) since the overall mean
estimate is fairly insensitive to small changes in τ2

[25,40]. However, the variance of θ̂RE, VRE, and I2 are far
more sensitive to changes in τ2 and hence accurate esti-
mation is important for these quantities.

Conclusions
In this paper we have restricted our focus to the esti-
mation of the meta-analytical quantities τ2, I2 and the
overall mean parameter θ, as well as providing confi-
dence intervals for the latter two. We note that this
does not reflect the state-of-the-art in what can esti-
mated via a random effects meta-analysis; one can for
instance also estimate trial level effect parameters (θ +
ui), predict the likely effects of future studies and test
hypotheses relating to these additional parameters [19].
With this in mind, we make the following tentative
conclusions.
The actual magnitude of the estimate τ2 is often over-

looked as a heterogeneity measure [41], and in keeping
with modern developments the Dersimonian and Laird
estimate is no longer considered to be the best choice
[22,24]. We recommend using the PM estimate for τ2 -
and by extension the θ̂RE it implies - since it is still very
easy to calculate, but shares much of the accuracy and
rigor of more complex methods. Van der Tweel and
Bollen [42] use the PM method to estimate the overall
random effects mean θRE and heterogeneity parameter
within the context of a sequential meta-analysis, but
appear to stick with the original I2DL for other aspects of
their analysis. We recommend that practitioners addi-
tionally make use of the PM estimate in the Inconsis-
tency measure I2PM. R code to estimate τ 2

PM, θRE and I2PM
(with confidence intervals) is provided below.
An I2 of over 75% has traditionally been considered as

indicating a high level of inconsistency, I2’s of above
50% as moderate and I2’s of below 25% as low. It is
tempting to consider a random effects model when the

I2 is high. However, the range of the reference intervals
shown in Figure 6 (left) highlights the considerable
uncertainty around this measure. The recently updated
Cochrane handbook [6] now gives overlapping rather
than mutually exclusive regions for low, moderate and
high heterogeneity, but when the heterogeneity is mea-
sured with as much uncertainty as in the Cervix 3 meta-
analysis (90% reference intervals for I2PM of 0% to 93%)
any categorisation feels dubious. Inconsistency intervals
based on the I2PM statistic will generally be wider than
those based on the standard I2DL measure but is a more
accurate reflection of the uncertainty present. These
findings are based on a fairly large simulation study for
widely varying τ2, typical within study variance s2 and
trial number M. Although the simulated data were nor-
mally distributed, we do not think the conclusions
would have changed if the study effects had been drawn
from a more non-standard distribution. By plotting I2PM
at the lower and upper reference levels, as well at a
spread of more central measures such as the mean,
median and mode, one can easily and effectively convey
this uncertainty to the analyst. For a comprehensive
comparison of methods for estimating the heterogeneity
parameter τ2 see Biggerstaff and Tweedie [26] or Viecht-
bauer [25].
In the presence of heterogeneity, the naive and auto-

matic application of the random effects model has been
widely criticised. It is sensible to conduct a further
investigation the data [34,43,44], but this may not lead
to the identification of any explanatory factors. If unex-
plained heterogeneity also leads to large differences
between the fixed and random effects estimates, there is
the obvious prospect that conflicting clinical interpreta-
tions could arise. When funnel plot asymmetry is the
predominant cause of this, I2 statistics have a less mean-
ingful interpretation. For this reason Rücker et. al [37]
have recently proposed an alternative ‘G’ statistic, that
expresses the inconsistency between studies after this
asymmetry has been accounted for (through a bias cor-
rection for small study effects). As demonstrated on the
NSCLC meta-analysis, the Henmi-Copas method com-
bining a fixed effects estimate with a ‘random effects’
confidence interval provides an alternative way of deal-
ing with funnel plot asymmetry without making an
explicit bias correction. Both the approaches of Rücker
et. al. and Henmi and Copas appear to offer sensible
and practical solutions to this problem, and merit
further investigation.

R code
This code calculates point estimates and a-level confi-
dence intervals for τ 2

PM, I
2
PM and θ̂RE, given the estimated

effect sizes y within study standard errors s and desired
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type I error Alpha. This code is based on the algorithm
suggested by DerSimonian and Kacker [22].
PM = function(y = y, s = s, Alpha = 0.1){
K = length(y) ; df = k -1 ; sig = qnorm(1-

Alpha/2)
low = qchisq((Alpha/2), df) ; up = qchisq

(1-(Alpha/2), df)
med = qchisq(0.5, df) ; mn = df ; mode =

df-1
Quant = c(low, mode, mn, med, up) ; L =

length(Quant)
Tausq = NULL ; Isq = NULL
CI = matrix(nrow = L, ncol = 2) ;MU = NULL
v = 1/s^2 ; sum.v = sum(v) ; typS = sum(v*

(k-1))/(sum.v^2 - sum(v^2))
for(j in 1:L){
tausq = 0 ; F = 1 ;TAUsq = NULL
while(F>0){
TAUsq = c(TAUsq, tausq)
w = 1/(s^2+tausq) ; sum.w = sum(w) ; w2 =

w^2
yW = sum(y*w)/sum.w ; Q1 = sum(w*(y-yW)

^2)
Q2 = sum(w2*(y-yW)^2) ; F = Q1-Quant[j]
Ftau = max(F,0) ; delta = F/Q2
tausq = tausq + delta
}
MU[j] = yW ; V = 1/sum(w)
Tausq[j] = max(tausq,0) ; Isq[j] = Tausq

[j]/(Tausq[j]+typS)
CI[j,] = yW + sig*c(-1,1) *sqrt(V)
}
return(list(tausq = Tausq, muhat = MU,

Isq = Isq, CI = CI, quant = Quant))
}

List of Abbreviations
IPD: Individual Patient Data; FE: fixed effect; DL: DerSimonian and Laird; RE:
Random effects; PM: Paule-Mandel.
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