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Abstract
Background: Nuclear genes determine the vast range of phenotypes that are responsible for the
adaptive abilities of organisms in nature. Nevertheless, the evolutionary processes that generate
the structures and functions of nuclear genes are only now be coming understood. The aim of our
study is to isolate the alcohol dehydrogenase (Adh) genes in two distantly related legumes, and use
these sequences to examine the molecular evolutionary history of this nuclear gene.

Results: We isolated the expressed Adh genes from two species of legumes, Sophora flavescens Ait.
and Wisteria floribunda DC., by a RT-PCR based approach and found a new Adh locus in addition to
homologues of the Adh genes found previously in legumes. To examine the evolution of these
genes, we compared the species and gene trees and found gene duplication of the Adh loci in the
legumes occurred as an ancient event.

Conclusion: This is the first report revealing that some legume species have at least two Adh gene
loci belonging to separate clades. Phylogenetic analyses suggest that these genes resulted from
relatively ancient duplication events.

Background
The alcohol dehydrogenase (Adh) genes encode a glyco-
lytic enzyme and have been characterized at the molecular
level in a wide range of flowering plants [1-3] as well as in
Pinus banksiana, a conifer species [4]. The ADH enzyme is
essential for anaerobic metabolism [5-7]. In both Arabi-
dopsis thaliana and maize, oxygen stress and cold stress
induces transcription from the Adh promoters; in addi-

tion, dehydration induces Adh transcription in A. thaliana
[5-7]. Flowering plant species generally possess two or
three isozymes [8], although A. thaliana has a single Adh
locus [9].

The Adh genes in Arabidopsis thaliana [10], Arabidopsis gem-
mifera [3] and Leavenwortia [11] in Brassicaceae, cottons
[2], and grasses [12-15] have been subjected to molecular
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evolutionary studies. However, the broader evolutionary
histories of the Adh genes in the angiosperms remain
unclear since few studies have investigated the evolution
of the Adh genes in a wide range of angiosperms. Recently,
Small and Wendel [2] suggested that some Adh gene
duplications may have predated the origin of each of the
flowering plant families. However, the details of the gene
duplications and deletions experienced by the Adh genes
of most groups of the angiosperms remain unclear. Addi-
tional studies are needed to understand the evolutionary
history of the Adh genes in various plant groups.

In the legume family (Fabaceae), the Adh genes have only
been investigated in crop species such as Glycine max and
Pisum sativum. The purpose of these studies was to deter-
mine the ADH structures and functions rather than to
explore the evolutionary processes of the Adh genes [e.g.,
[16,17]], although these studies suggested that these leg-
ume species contained only a single Adh gene locus
[16,17]. Previous phylogenetic analyses of the Adh genes
from various flowering plants have revealed that all of the
Adh genes in legume plants characterised to date consti-
tute a monophyletic group [1,2]. In contrast, the Adh
genes in Rosaceae, a family that is closely related to the
Fabaceae [18,19], appear in two separate lineages of the
gene tree, suggesting that a gene duplication event had
occurred before the Rosaceae evolved [2]. Although these
observations hint that the legume family may actually
bear other Adh gene copies, this has not yet been investi-
gated. Consequently, it remains unclear whether Adh gene
duplication occurred during the evolution of the legume
family.

Here, we report the isolation of Adh genes from two quite
disparate legume species. We found that both of these spe-
cies contain another Adh gene locus in addition to the
locus that was identified in legume species previously. We
also investigated the molecular evolutionary history of the
Adh genes in this family to gain further understanding of
the evolutionary dynamics of nuclear gene families.

Results
Isolation of the Adh genes in legume plants
Two Adh sequences were isolated from each of the two leg-
ume species examined in this study. The Adh genes iso-
lated from Sophora flavescens Ait. were denoted SfADH1
and SfADH2 while the isolates from Wisteria floribunda
DC. were denoted as WfADH1 and WfADH2. For these
genes, 708 bp were sequenced. As shown in Fig. 1, this
resulted in a predicted amino acid sequence consisting of
236 residues. The sequences determined in this study have
been submitted to the DDBJ / EMBL / GenBank nucle-
otide sequence databases (Table 1). At the amino acid
level, the homology among the Adh genes in the legume
plants ranged from 70.7% to 91.8%.

Phylogenetic analyses
We conducted phylogenetic analyses of the Adh genes
using seven sequences from Pinus banksiana (Pinaceae) as
outgroups [4]. To determine the phylogenetic position of
the legume Adh genes isolated in this study, we subjected
their sequences to ML analysis by employing a data set
including the previously published Adh gene family
sequences from various phylogenetic groups [e.g., [1,2]].
Our resulting Adh gene tree roughly consisted of two
monophyletic groups that we denoted "Clade I" and
"Clade II" (Fig. 2). Clade I contains only Adh genes from
dicots, while Clade II contains Adh genes from both dicots
and monocots. The legume Adh genes isolated in this
study appeared in two separate clusters, one in Clade I and
the other in Clade II (Fig. 2). For convenience, we call
these clusters " Legume-clade I" and " Legume-clade II".
Legume-clade I contained the SfADH1 and WfADH1
sequences as well as previously published Adh genes
sequences from the legumes Glycine max, Pisum sativum,
Phaseolus actifolius and Trifolium repens (Fig. 2). Legume-
clade II consisted of only the SfADH2 and WfADH2
sequences and was located far from the other legume Adh
sequences (Fig. 2). None of the other legume Adh
sequences that have been published previously fell into
Legume-clade II. However, the Adh gene in Pyrus communis
(Rosaceae), which belongs to the family that is closely
related to the Fabaceae [e.g. [18,19]], occurred at the sister
position to Legume-clade II.

GeneTree analysis using the Adh gene sequences suggested
that the legume Adh genes were duplicated before and
after the angiosperms diversified (Fig. 3). This indicates
that the Adh genes in Clade II have undergone more dupli-
cation events than those in Clade I (Fig. 3).

Discussion
Molecular phylogeny of the Adh sequences in legume 
plants
Although a previous study detected a monophyletic group
of Adh genes in legumes [1], we found additional legume
Adh genes that were related more distantly to the previ-
ously detected legume Adh genes. This is the first report
showing that there are two Adh lineages in legume plants,
each of which belongs to quite separate clades denoted as
Legume-clade I and II, which themselves fall into distinct
clades denoted as Clade I and II (Fig. 2). Notably, the Adh
genes belonging to Legume-clade I are closely related to
the Arabidopsis thaliana gene in Clade I (Fig. 2). Arabidopsis
thaliana has a single Adh locus and transcription from its
promoter increases under cold and oxygen stress [5-7].
Thus, the legume Adh genes in Legume-clade I may have
similar functions to that of the A. thaliana gene. Our study
also revealed that the legume Adh genes belonging to Leg-
ume-clade II form a sister group to the Adh gene isolated
from Pyrus communis in Rosaceae (Fig. 2), which is a
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Alignment of the predicted amino acid sequences from selected Adh gene representativesFigure 1
Alignment of the predicted amino acid sequences from selected Adh gene representatives. The lines indicate the 
groups that correspond to those in Figure 2.
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Table 1: List of accession numbers used in this study. List of taxa and source of this study.

Phylogenetic group
Family

Species ADH locus Acc. No. References

Gymnosperms
Pinaceae

Pinus banksiana PbADHC1 U48366 Perry and Furnier 1996
PbADHC2 U48373 Perry and Furnier 1996
PbADHC3 U48368 Perry and Furnier 1996
PbADHC4 U48369 Perry and Furnier 1996
PbADHC5 U48370 Perry and Furnier 1996
PbADHC6 U48371 Perry and Furnier 1996
PbADHC7 U48372 Perry and Furnier 1996

Angiosperms
Dicotyledon
Rosid

Paeoniaceae
Paeonia humulis PhADH1 AF126226 Sang and Zhang 1999

PhADH2 AF126232 Sang and Zhang 1999
Paeonia lutea PaelADH1 AF009042 Sang et al. 1997

PaelADH2 AF009057 Sang et al. 1997
Brassicaceae

Arabidopsis thaliana AtADH D63464 Miyashita et al. 1996
Arabidopsis lyrata AlADH AJ251284 Savolainen et al. 2000
Arabis hirsuta AhADH AB015502 Miyashita et al. 1998

Rosaceae
Fragaria x ananassa FaADH X15588 Wolyn and Jelenkovic 1990
Pyrus communis PcADH3 AF031899 Chervin et al. 1999

PcADH4 AF031900 Chervin et al. 1999
Fabaceae

Glycine max GmADH1 AF079058 Preiszner et al. unpubl.
GmADH2 AF079499 Preiszner et al. unpubl

Phaseolus acutifolius PaADH Z23171 Garvin et al. 1994
Pisum sativum PisaADH X06281 Llewellyn et al. 1987
Sophora flavescens SfADH1 AB191335 This study

SfADH2 AB191336 This study
Wisteria floribunda WfADH1 AB191337 This study

WfADH2 AB191338 This study
Malvaceae

Gossypium raimondii GrADHA AF182116 Small and Wendel 2000
GrADHB AF226635 Small and Wendel 2000
GrADHC AF036568 Small and Wendel 2000
GrADHD AF250203 Small and Wendel 2000
GrADHE AF250208 Small and Wendel 2000

Asterid
Scrophulariaceae

Antirrhinum majus AmADH AB191334 This study
Solanaceae

Solanum tuberosum StADH1 M25154 Matton et al. unpubl.
StADH2 M25153 Matton et al. unpubl.
StADH3 M25152 Matton et al. unpubl.

Asteraceae
Lactuca sativa LaADH D44449 Toyomasu et al. 1995
Monocotyledon

Trilliaceae
Trillium camtschatcense TrcADH AB191339 This study

Arecaceae
Washingtonia robusta WrADHA U65973 Morton et al. 1996
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closely related family to the Fabaceae in the angiosperm
phylogeny [20,21].

The function of the Adh gene in maize is also similar to
that of A. thaliana [5-7]. Thus, our phylogenetic result sug-
gests that function is the plesiomorphic character of the
Adh gene family (Fig. 2). On the other hand, Clade II con-
sists of many genes of both monocots and dicots, suggest-
ing that the functions of the Adh genes in this clade may
be more diversified due to the accumulation of many
mutations during the course of angiosperm diversification
that alter the primary structure of the ADH proteins. How-
ever, our phylogenetic analyses failed to indicate whether
the genes in the Legume-clade II are orthologues or para-
logues of the Adh gene in maize (Fig. 2). Thus, the func-
tion of the Adh genes in Legume-clade II remains unclear.

Gene duplication of Adh genes in legume plants
This study revealed the complicated evolution of the Adh
gene family that occurred during the course of plant diver-
sification. In our study, the phylogenic tree resulting from
GeneTree analysis showed that some Adh genes in flower-
ing plants evolved in complex manner that included sev-
eral duplication events (Fig. 3). Duplication events in Adh
genes have also been detected in other plant groups at var-
ious evolutionary levels. For example, Sang et al. [22]
showed that diploid species of Paeonia (Paeoniaceae) had
two or three Adh sequences and that repeated duplication
or deletion events occurred after the diversification of this
genus. Small and Wendel [2] analyzed Adh genes in Gossy-
pium (Malvaceae) in great detail and found that these Adh
sequences (denoted as GrADHA, GrADHB, GrADHC,
GrADHD, and GrADHE) had experienced duplication
events both before and after the divergence in Gossypium.
Consistent with this, our GeneTree analysis revealed that
in legumes, duplication of Adh genes occurred before the
legume diverged, since the two quite distinct legumes Wis-
teria floribunda and Sophora flavescens have paralogous
genes in each of two clades (Fig. 3), although all previ-
ously known Adh genes in legume plants such as Glycine

max, Pisum sativum and Phaseolus actifolius belong only to
Legume-clade I.

Why were additional Adh loci not found in other leg-
umes? It is possible that the expression of the Legume-
clade II Adh genes in Glycine max, Pisum sativum and Pha-
seolus actifolius Adh genes is limited to a specific develop-
mental period or organ. Further analysis of Adh mRNA
expression during various developmental phases and in
different organs of these plants, such as roots, stems and
fruits, may reveal the presence of an additional Adh gene
in these species. Another possibility is that orthologues of
the Legume-clade II Adh gene in the previously examined
species have lost their function. Additional investigations
throughout the legume family are needed to test this
hypothesis.

Conclusion
Duplicated genes arise frequently in eukaryotic genomes
through local events that generate tandem duplications,
large-scale events that duplicate chromosomal regions or
entire chromosomes, or genome-wide events that result in
complete genome duplication [23]. Indeed, the existence
of multigene families is evidence of the repeated gene
duplication that has occurred over the history of life. One
of the examples of the comprehensive analysis of gene
duplication events in plants is the study of the MADS-box
gene family. This gene family, which plays a central role in
the morphogenesis of plant reproductive organs such as
ovules and flowers, had experienced duplication events
before the origin of angiosperms [24]. Moreover, some
specific functions were gained through duplication events
that took place after the diversification of flowering plants
[24]. Thus, gene duplication has long been recognized as
an important mechanism for the creation of new gene
functions [25-27]. It is likely that each of the Adh genes in
the legumes that were identified in the present study
would have been subjected to different selective pressures
over a long period. To determine whether this resulted in
new functions, functional analyses of the legume Adh

WrADHB U65972 Morton et al. 1996
Poaceae

Hordeum vulgare HvADH1 X07774 Good et al. 1988
HvADH2 X12733 Trick et al. 1988

Oryza sativa OsADH1 X16296 Xie and Wu 1989
OsADH2 X16297 Xie and Wu 1989

Pennisetum glaucum PgADH X16547 Bui et al. 1990
Zea mays ZmADH1 M32984 Osterman and Dennis 1989

ZmADH2 X02915 Dennis et al. 1985

Table 1: List of accession numbers used in this study. List of taxa and source of this study. (Continued)
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The phylogenetic tree based on Adh gene sequences obtained by the maximum-likelihood methodFigure 2
The phylogenetic tree based on Adh gene sequences obtained by the maximum-likelihood method. The log-like-
lihood of the best ML tree is -3981.05. The numbers below the branches are the bootstrap values of 50% or more support. 
The Adh genes from legumes roughly fall into two monophyletic clades that we denoted as Clade I and Clade II.
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Part of the simplest reconciled tree that has the lowest number of duplication and deletion eventsFigure 3
Part of the simplest reconciled tree that has the lowest number of duplication and deletion events. The recon-
ciled tree involves 24 gene duplications and 44 gene losses for a total cost of 68, and requires 40 deep coalescenses. The solid 
boxes indicate gene duplications that were inferred on the basis of mismatches between the gene tree and the species tree. 
The open boxes indicate those duplications that required multiple copies of Adh genes within the same species. The gray lines 
indicate the lineages that are presumed to be lost after the duplications or were not found in our analysis.
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genes in each clade will have to be performed in the
future.

Methods
Plant materials
In this study, we chose Sophora flavescens Ait. and Wisteria
floribunda DC. from the legume family (Fabaceae). They
belong to different subfamilies or tribes in the traditional
classification [28]. They also fall into different phyloge-
netic groups in the phylogenetic tree constructed using
legume rbcL sequences [29,30]. We also used tissues from
Antirrhinum majus L. (Scrophulariaceae) and Trillium
camtschatcense Ker-Gawl. (Trilliaceae). Flowers and leaf
tissues were collected from the experimental garden of
Tohoku University and native individuals of these species
in the field. Vouchers for all species used in this study are
listed in Table 2 and have been deposited in the Herbar-
ium, Graduate School of Science, Tohoku University
(TUS).

Isolation of RNA
Total mRNA was isolated according to the modified pro-
tocol of Hong et al. [31]. Thus, 3 g of flowers and leaf tis-
sues were homogenized for 2 min with 3 volumes of
detergent buffer containing 10 mM Tris-HCl (pH8.8), 50
mM NaCl, 6% (w/v) p-aminosalicylic acid, 2% (w/v) tri-
isopropylnaphtalensulfonic acid, and 6% (v/v) 1-butanol.
The homogenates were extracted three times with an
equal volume of phenol/chloroform/isoamyl alcohol
(25:24:1, v/v/v) with vigorous shaking. The final aqueous
phase was collected and the total RNA was precipitated
with ethanol and 3 M sodium acetate on ice for 1 hr. The
total RNA was then treated with Oligotex-dT30 (TAKARA,
Japan) to purify the poly(A) RNA.

Cloning and sequence analysis
Single-stranded cDNA was synthesized by priming with
the random 9-mer or the oligo-dT adaptor primer
(TAKARA). The cDNA was amplified by PCR in a 50 µL
reaction volume containing approximately 50-ng total
DNA, 10-mmol/L Tris-HCl buffer (pH 8.3) with 50-
mmol/L KCl and 1.5-mmol/L MgCl2, 0.2-mmol/L of each
dNTP, 1.25 units Taq DNA polymerase (TAKARA) and

0.5-µmol/L of each primer. The primers used have been
published previously and are denoted as ADH-F1, ADH-
R1 and ADH-R2 [22]. A degenerate primer was also used
(LADH-1F1: 5'-ATATTTGGTCAYGAAGCTGG-3'). This
primer was designed on the basis of the conserved region
of Adh, which was determined by comparing the pub-
lished sequences of Adh [22]. We carried out PCR with the
following thermocycle protocol: (94°C, 2 min) × 1 cycle;
(94°C; 30 sec, 50°C; 30 sec, 72°C; 120 sec) × 45 cycles;
(72°C; 15 min) × 1 cycle. After the amplification, the reac-
tion mixtures were subjected to electrophoresis in 1.5%
low-melting-temperature agarose gels and the amplified
products were purified. The purified PCR products were
then cloned using the TA cloning kit (Invitrogen). Plas-
mids containing the cloned fragments were isolated by
the alkali method and digested with EcoRI. Plasmids con-
taining fragments less than 1.5 kb in size were selected
and sequenced using the Thermo Sequence II dye termi-
nator cycle sequencing premix kit (Amersham Pharmasia
Biotech) or the BigDye Terminator cycle sequencing
premix kit (Applied Biosystems) with the Model 373A or
310 automated sequencer (Applied Biosystems) accord-
ing to the manufacturer's instructions.

Phylogenetic analysis
The sequences of the Adh genes used in this study were
obtained from the GenBank/EMBL/DDBJ database (Table
1). The predicted amino acid sequences were aligned
using CLUSTAL X [32] based on the GONNET protein
weight matrix. The phylogenetic relationships between
the genes were analyzed using the maximum-likelihood
(ML) method. For the ML analyses, we used the PROTML
program of PHYLIP version 3.6 [33]. We employed the
JTT model of amino acid substitution. All indels were
counted as missing. We performed ten random sequence
addition searches using the J option and global branch
swapping using the G option to isolate the ML tree with
the best log-likelihood. In addition, we performed boot-
strap analysis with 100 replications.

To infer the evolutionary events affecting the Adh genes,
an analysis using GeneTree ver. 1.3 [34] was conducted, as
described by Fukuda et al. [35]. The fully-resolved species

Table 2: List of taxa from which Adh was isolated in this study and source of plant materials. List of taxa that Adh was isolated in this 
study and source of plant materials.

Taxa Family Locality Collecters

Sophora flavescens Fabaceae Japan: Miyagi Pref., Sendai Fukuda 99081
Wisteria floribunda Fabaceae Japan: Miyagi Pref., Shiroishi Fukuda and Yoshida 99051
Antirrhinum majus Scrophulariaceae cultivated in Tohoku University Fukuda 98031
Trillium camtschatcense Trilliaceae Japan: Hokkaido Pref., Hidaka, 

Shizunai
Fukuda and Yokoyama 0404301
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tree used in the analysis was constructed on the basis of
the previously published rbcL sequences in chloroplast
DNA; the tree is considered to indicate the evolutionary
relationships of the plants from which the Adh genes stud-
ied in this study were isolated [28]. The ML tree with the
highest log-likelihood was used for the gene tree. Both
gene duplications and losses were considered to reconcile
the gene tree with the species tree. Gene lineages that do
not coalesce on each branch of the species tree were
counted as deep coalescence [36].
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