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Abstract

Background: Pseudo-nitzschia multiseries Hasle (Hasle) (Ps-n) is distinctive among the ecologically important marine
diatoms because it produces the neurotoxin domoic acid. Although the biology of Ps-n has been investigated
intensely, the characterization of the genes and biochemical pathways leading to domoic acid biosynthesis has
been limited. To identify transcripts whose levels correlate with domoic acid production, we analyzed Ps-n under
conditions of high and low domoic acid production by cDNA microarray technology and reverse-transcription
quantitative PCR (RT-qPCR) methods. Our goals included identifying and validating robust reference genes for Ps-n
RNA expression analysis under these conditions.

Results: Through microarray analysis of exponential- and stationary-phase cultures with low and high domoic acid
production, respectively, we identified candidate reference genes whose transcripts did not vary across conditions.
We tested eleven potential reference genes for stability using RT-qPCR and GeNorm analyses. Our results indicated
that transcripts encoding JmjC, dynein, and histone H3 proteins were the most suitable for normalization of expression
data under conditions of silicon-limitation, in late-exponential through stationary phase. The microarray studies
identified a number of genes that were up- and down-regulated under toxin-producing conditions. RT-qPCR
analysis, using the validated controls, confirmed the up-regulation of transcripts predicted to encode a cycloisomerase,
an SLC6 transporter, phosphoenolpyruvate carboxykinase, glutamate dehydrogenase, a small heat shock protein, and
an aldo-keto reductase, as well as the down-regulation of a transcript encoding a fucoxanthin-chlorophyll a-c binding
protein, under these conditions.

Conclusion: Our results provide a strong basis for further studies of RNA expression levels in Ps-n, which will contribute
to our understanding of genes involved in the production and release of domoic acid, an important neurotoxin that
affects human health as well as ecosystem function.
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Background
The marine diatom Pseudo-nitzschia multiseries Hasle
(Hasle) (Ps-n) produces the neurotoxin domoic acid
(DA), which causes amnesic shellfish poisoning (ASP)
[1-4]. DA is a neuroexcitatory, water-soluble amino acid
that exhibits structural similarity with the neurotransmitter
glutamate [5]. DA binds with high affinity to glutamate
receptors, leading to excitation and ultimately cell death of
neurons exposed to this toxin [6]. Production of DA
by Ps-n, and at least 14 other members of the genus
Pseudo-nitzschia, has been verified in oceanic regions
throughout the world, primarily in coastal and upwelling
zones [7,8]. The documented effects of DA on humans,
birds, finfish, cephalopods, and marine mammals, and
the economic costs of shellfishery closures due to DA
contamination, has generated ongoing interest in un-
derstanding the regulation and control of DA production
in this genus [7,9-11]. Yet, the biosynthetic pathways
leading to DA production and the genes that govern
these pathways remain unresolved [12,13].
Numerous studies on Ps-n growth dynamics have shown

that DA production does not begin until early stationary
phase, i.e. toxin is not typically produced in detectable
amounts during the exponential growth phase (reviewed
in [9]). In other studies that exposed Ps-n to conditions
that slowed cell division during the mid-exponential
phase, cells produced low levels of toxin. Therefore, toxin
production appears to be associated with stages in the cell
cycle when cell division has slowed or stopped due to
some limiting nutrient factor, most notably silicon (Si)
[10,14]. In addition, several bacterial isolates have been
shown to enhance DA production by Ps-n [15-17]. Ps-n
can produce DA in axenic cultures [2,18], yet, reintroduc-
tion of bacteria to axenic cultures results in increased Ps-n
DA production [15-17].
In this study, we developed a Ps-n cDNA library

and used it to construct a microarray in order to
screen for genes that were differentially expressed
under high-toxin-producing versus low-toxin-producing
conditions. A total of 5,265 Ps-n cDNAs were printed
in replicate, and mRNAs from cells that were in late-
exponential growth phase were compared to those
that were in stationary phase in both axenic and non-
axenic cultures. Using these array data, we identified
candidate reference and target genes for further study.
Eleven reference genes were evaluated for stability in
reverse-transcription quantitative PCR (RT-qPCR) analyses
of Ps-n mRNA from Si-limited cultures. We performed a
GeNorm analysis to validate transcripts that did not
vary across conditions. Using the validated reference
transcripts, we then confirmed the differential regulation
of several transcripts whose expression correlates with DA
production. These findings will facilitate future work
aimed at elucidating the DA biosynthesis pathway and
identifying transcriptional biomarkers indicative of DA
production.

Results
Pseudo-nitzschia growth and toxin production for
microarray studies
Samples for microarray analysis were obtained from
three biological experiments using Ps-n strain CL-125.
These trials included one axenic and two non-axenic
cultures, all grown in standard medium f/2. DA production
began at the onset of stationary phase and continued to
increase over time in all three experiments (Figure 1). Final
DA concentrations, expressed on a per mL basis, were ~30
times lower in the axenic growth experiment compared to
the non-axenic growth experiments, as expected based on
previous studies [2,15-18]. Previous studies also indicated
that Si is the limiting nutrient for Ps-n cells grown in batch
cultures with medium f/2 [9,10,14]; therefore, we presume
that the cells in these experiments were Si-limited during
stationary phase. Samples were harvested for microarray
analysis during the late-exponential and stationary phases
to compare gene expression between low-toxin-producing
vs. high-toxin-producing cells. These time points are
indicated by arrows in Figure 1a, 1b.

Identification and validation of reference transcripts
Our initial goal was the identification of transcripts whose
expression levels were stable between late-exponential
and stationary phases, which could then be used for
normalization of other transcripts’ expression levels
under these conditions. We selected eleven candidate
reference genes to evaluate in RT-qPCR studies based
on their stability in the microarray results as well as
their biological roles and use as controls in previous
studies (Table 1; Additional file 1). These included tran-
scripts encoding: dynein, histone H3, cyclophilin, ubiquitin,
elongation factor 1 alpha (EF-1α), phosphoglycerate
kinase 1 (PGK), eukaryotic initiation factor 2 (eIF-2),
a JmjC-domain containing protein (JmjC), an AAA-domain
containing ATPase, glyceraldehyde-3-phosphate dehydro-
genase (GAPDH), and 18s rRNA. RT-qPCR primer sets for
each candidate reference gene were designed and tested,
and exhibited high sequence specificity and PCR efficiency
under our assay conditions with an annealing temperature
of 60°C (Table 2).
To validate the stability of candidate reference genes, bio-

logical triplicates of Ps-n strain GGB1 were grown under
non-axenic, Si-limited conditions. RNA was harvested at
multiple time points during the late-exponential and sta-
tionary phases (Figure 1c). The initiation of DA production
again corresponded with the onset of stationary phase,
which in this study was on day four. Initial silicate concen-
trations were reduced to 37.2 μM in the culture medium
(vs. 107 μM in the standard f/2 medium). The measured
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Figure 1 Change in cell number and DA production as a consequence of growth under non-axenic and axenic conditions. a) Ps-n strain
CL-125, Non-axenic culture experiments 1 (solid) and 2 (open). b) Ps-n strain CL-125, Axenic culture experiment. Cells were harvested for
RNA extraction on the days indicated by arrows. c) Increase in cell number (squares) and in DA concentration (circles) of Ps-n strain
GGB1 in non-axenic, triplicate cultures. Cells were harvested for RNA extraction on days 3–10. d) Nutrient concentrations over time in
GGB1 cultures (nitrite/nitrate, phosphate, silicate). Data for (c) and (d) represent the mean change of triplicate samples (± 1 SD).
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silicate concentration was below 1.0 μM by day four
(Figure 1d), corresponding with the entry into stationary
phase. Nitrate and phosphate appear to be present in
sufficient quantities throughout the experiment (Figure 1d)
[9,10,14], further supporting that growth of these cultures
was Si-limited.
In an initial GeNorm analysis, all eleven candidate

genes were tested for stability across a subset of samples
from the Si-limitation experiment, including replicates
from days 3, 4, and 10 (Figure 2a). The four genes with
the best stability values (M-value), i.e. JmjC (0.33),
dynein (0.33), histone H3 (0.37) and cyclophilin (0.39),
along with EF-1α (0.62), were further evaluated for
stability using GeNorm analysis across the complete set
of expression data for the Si-limitation experiment
(Figure 2b). All five genes showed acceptable stability
(M-value <0.5) when evaluated across the complete set
of data. GeNorm pairwise-variation analysis determined
that only two genes (JmjC, dynein) were necessary for sub-
sequent normalization. However, since the JmjC, dynein,
and histone H3 genes had equivalent M-values and were
matched for 1st rank, we used all three for normalization
of the expression data as described below. The expression
profiles of the reference genes show the stability of these
top-ranked genes, and the slight variability of the EF-1α
and cyclophilin genes (Figure 3).

Identification and verification of differentially expressed
transcripts
In the microarray study, only those transcripts that were
up- or down-regulated in all three trials were considered
further (Tables 3 and 4; Additional file 1). Higher
transcript levels in stationary (high-toxin-producing)
as compared to late-exponential (low-toxin-producing)
phase were observed for 12 transcripts, corresponding
to 76 cDNA clones printed on the Ps-n array (Table 3;
Additional file 1); reduced transcript levels under
these conditions were observed for six genes, corre-
sponding to 17 cDNA clones printed on the array
(Table 4; Additional file 1). In addition to those genes



Table 1 Expression data for candidate reference genes from Pseudo-nitzschia multiseries (Ps-n) cDNA microarray analysisa

Fold changeb

Stationary versus late-exponential phase

Ps-n NR
Identifier

JGI Ps-n Genome hit Non-axenic Non-axenic Axenic Predicted gene product

Scaffold:Start-End Expt. 1 Expt. 2 Expt.

53B6 41:203449-205143 1.05 ± 0.01 1.04 ± 0.05 1.05 ± 0.03 JmjC-domain family protein (JmjC)

45E3 55:316954-329784 1.10 ± 0.02 1.24 ± 0.07 1.36 ± 0.05 Dynein heavy chain, cytosolic

177F1 198:180888-181958 1.05 ± 0.02 0.93 ± 0.01 0.81 ± 0.01 Histone H3

PSN0918 2485:4610-6293 1.30 ± 0.00 1.29 ± 0.37 0.99 ± 0.01 Cyclophilin

PSN0001 10:398258-400584 1.37 ± 0.10 1.19 ± 0.07 1.10 ± 0.17 Elongation factor 1-alpha (EF-1α)

PSN0547 210:148023-149837 0.90 ± 0.08 0.78 ± 0.05 1.26 ± 0.03 Phosphoglycerate kinase (PGK)

PSN1327 890:26709-27681 1.00 ± 0.03 1.07 ± 0.00 1.24 ± 0.03 Elongation initiation factor 2 (eIF-2)

PSN0332 2:525315-527491 1.13 ± 0.05 1.29 ± 0.03 1.19 ± 0.17 ATPase with AAA domain

PSN0032 18:343323-346000 0.74 ± 0.04 0.68 ± 0.06 0.44 ± 0.03c Ubiquitin

PSN1138 68:114178-115516 0.87 ± 0.08 0.92 ± 0.09 1.73 ± 0.23c Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
aPotential reference genes for RT-qPCR studies were selected based on their stability in the microarray results or their use as controls in previous studies.
bThe fold-change data presented in Table 1 represents the average differences across all of the cDNA clones that were printed on the array for each transcript.
As follows, the number of independent cDNA clones for each transcript was: 53B6 (1), 45E3 (1), 177F1 (1), PSN0918 (1), PSN0001 (58), PSN0547 (2), PSN1327 (1),
PSN0032 (7), PSN0332 (2), PSN1138 (6). Each clone was printed in duplicate on array. 18s not printed on array.
cTranscript levels showed statistically significant differences between samples.
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identified based on the overall false discovery rate
(FDR), we also included genes predicted to encode
glutamate dehydrogenase and fucoxanthin-chlorophyll
a-c binding protein (FCP) in our results, as both were
of interest in this study, and the local false discovery
rates (LFDR) indicated valid changes in gene expression.
Fold-change differences were consistently lower in the
axenic growth experiment; however, the patterns of
expression were comparable across the three growth
experiments.
Eight genes were selected for further study using

RT-qPCR (Table 5). Of these, six genes had higher
transcript levels during the stationary phase (Figure 4a),
and were predicted to encode a cycloisomerase, an SLC6
transporter, an aldo-keto reductase, glutamate dehydrogen-
ase, phosphoenolpyruvate carboxykinase (PEPCK), and a
small heat shock protein. The cycloisomerase, SLC6 trans-
porter, and aldo-keto reductase genes all had a statistically
significant step-wise increase in transcript abundance from
days 3 to 5 that correlated with the gradual increase in DA
production (Figures 1c, and 4a). The other up-regulated
genes showed similar trends during this time period. FCP
showed decreased transcript levels during the transition
from exponential to stationary phase; the phosphofructoki-
nase (PFK) transcript levels, which were down-regulated in
the microarray experiment, were not statistically different
as measured by RT-qPCR (Figure 4b). Of note, the absence
of DNA contamination in these studies is shown visu-
ally by the parallel results from amplification of
cDNA using both standard and exon-exon spanning
primer sets for the cyclophilin, SLC6 transporter, and
PFK genes (Figures 3 and 4). Potential connections
between these transcripts and DA production are
discussed below.

Discussion
Our data support the validity of the reference genes,
JmjC, dynein, and histone H3, as suitable controls for
normalization of Ps-n mRNAs under conditions of
Si-limitation, as cells transition from late-exponential
to stationary phase (i.e. from minimal to high DA
production). Multiple reference genes are typically
more effective for accurate normalization [19,20];
therefore, we recommend the use of the geometric mean
of these three reference genes for normalization of Ps-n
RT-qPCR expression data under these conditions. The
stability of a histone H3 gene, whose expression often
varies with growth phase in other species, may be attributed
to regulation at the level of translation vs. transcription
[21]. Alternatively, the presence of four histone H3
homologs in the Ps-n genome [22], as revealed by
BLAST analysis, presents the possibility that we have
identified a replication-independent family member, as
shown in other studies [23-27]. Of note, our microarray
data indicate that the standard “housekeeping” genes,
GAPDH and actin, may not be suitable reference genes in
this experimental system as their transcript levels varied
(Table 1, Additional file 1). We tested GAPDH for stability
in the RT-qPCR GeNorm analysis, and it showed the
least stable M-value of the candidate reference genes
tested. Similar results were observed in the diatom
Phaeodactylum tricornutum [28]. These results highlight
the importance of validating reference genes prior to use
for normalization. The primer sets provided in Table 2



Table 2 RT-qPCR reference gene primer sequences and characteristics for all candidate reference genes

Predicted gene
product

Primer sequence GC (%) Tm (°C)a Amplicon (bp) Ex-Ex Spanningb Efficiency (%) R2

JmjC F: CCAGTTATGATTTCGGCAATAATGG 40.0 54.5 139 No 96.8 0.991

R: GGTGTCAGTTCATCGTCTTCAG 50.0 55.4

Dynein F: CGAAGCCAGTAGTGGTATCAAGG 52.2 57.1 84 No 98.0 0.991

R: CGAATCAGGTTGTTCTGGAGTCG 52.2 57.6

Histone H3 F: GAAGCCTACCTGGTGGGTCTC 61.9 59.3 151 No 101.4 0.999

R: CGTCCGATCACCTTCCGTCTC 61.9 59.5

Cyclophilin F: GTAGGACAAAGCCAGCACAACAGG 54.2 60.2 83 No 99.0 0.997

R: GAATGAATCGGTGCTCGTAGGAGG 54.2 59.2

Cyclophilin Ex-Ex F: CTGGGTTTCAAGAGCCAACGAC 54.5 58.5 105 Yes 98.3 0.997

R: CATCAATGCCGACGGACTGAAT 50.0 57.7

EF-1á F: GGACTCTCCATCAAGGGTATTGC 52.2 57.3 150 No 98.4 1.000

R: GTATCCAGGCTTGAGGACACC 57.1 57.4

PGK F: GATGCCGAGAAGAAGGGTGTG 57.1 58.0 69 No 98.7 0.996

R: CGAAGGAAATGCTTGTGTTGCGAC 50.0 59.2

eIF-2 F: GTGATGCGTGCTTGATTGCTTG 50.0 57.6 78 No 99.6 0.997

R: CCTTCATGTCGTGGCGAAGC 60.0 59.0

ATPasec F: GGTGGTGATATTGCTCCCTTG 52.4 55.7 164 No 98.4 0.996

R: CGTTGATCTTCACTGATCTTTAGTCG 42.3 55.4

Ubiquitin F: CCTTCGTCGGAACATCACTACC 54.5 57.3 126 No 94.1 0.997

R: CGTCAAGGGTGATAGTCTTGC 52.4 55.5

GAPDH F: GACAACTTCCACAAGGTCATCTCC 50.0 57.5 83 No 100.3 0.999

R: CTGGTGTAGACAGCCAAGTCG 57.1 57.6

18s rRNA F: GTTGCCCGCCACTCTTTACGATTG 54.2 60.6 81 No 98.0 0.998

R: GTATCAGTGCCAAGCCTCTGC 57.1 58.3

β-tubulin Ex-Exd F: CCAAATTCTGGCAGGTCATG 50.0 54.2 114 Yes 100.8 0.998

R: CTTGTCCCTCGTTGAAGTACAC 50.0 55.4
aThe annealing temperature for all standard curve analyses was performed at 60°C to demonstrate the efficiency of the primer sets under our assay conditions;
the calculated Tm values are provided for reference.
b‘Ex-Ex spanning’ refers to primers that span an exon-exon junction; these primer sets did not yield a product using gDNA as a template.
cThe PSN0332 contig sequence had an extra “t” in the reverse primer region as compared to the Pseudo-nitzschia multiseries genome sequence, yet the primer set
demonstrated high efficiency.
dβ-tubulin was not used in the studies presented as it was not printed on the microarray. It is a validated exon-spanning primer set that demonstrated good
efficiency, and may have value as a reference gene for future studies.
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should prove useful for examining changes in Ps-n gene
expression as populations transition from late-exponential
to stationary phase, when DA production is stimulated,
and for testing these candidate genes for use as controls
under other growth conditions.
The overall correlation between the array and RT-qPCR

data in these studies offers proof of concept for the
reliability of these expression data. Also, the differential
expression of these genes was evidenced in two different
Ps-n strains, CL-125 and GGB1, which were isolated from
Atlantic and Pacific coastal regions, respectively. The
down-regulation of an FCP gene during stationary phase,
when photosynthesis and chlorophyll presumably decline
e.g. [29], also supports the validity of these results. The
down-regulation of FCP gene expression has been
correlated with stationary phase and decreases in
light-harvesting pigments in the related pennate diatom
Phaeodactylum tricornutum [30], as well as other marine
algae [31,32]. The pathways leading to chlorophyll and
DA production are both predicted to draw on a pool of
glutamate [12,33], so the down-regulation of FCP in Ps-n
correlates well with the onset of DA production.
Our results provide a framework to further investi-

gate the control of toxin production in Ps-n. Previous 13C-
and 14C-labeling studies suggested a model involving
condensation of an activated glutamate intermediate de-
rived from the citric acid cycle with an isoprenoid inter-
mediate, and subsequent cyclization as a mechanism to
generate DA [12]. These studies allow us to generate
hypotheses regarding the biological function of the



a

b

Figure 2 Average expression stability (M-value) of the reference
genes determined by GeNorm analysis. An individual reference
gene is tested against the other reference genes in a pairwise variation
that serially excludes the least stable genes from the analysis. The most
stable reference genes exhibit the lowest M-values. The accepted cut-
off for stability of reference genes is an M-value of 0.50. a) In the initial
analysis, which tested a subset of mRNA samples under Si-limited con-
ditions for all eleven of our potential reference genes, four reference
genes were determined to be acceptably stable. b) In the analysis of
the Si-limited growth experiment, these four reference genes and EF1-
alpha were tested. All five showed acceptable stability across the
mRNAs, and JmjC, Dynein, and Histone H3 were tied for the 1st rank.
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genes identified in our study relative to DA produc-
tion. For example, up-regulation of a gene encoding a
putative Ps-n cycloisomerase is intriguing as its product
may be directly involved in the proposed cyclization step
leading to the pyrrolidine ring in DA. Alternatively, the
cycloisomerase, similar to other enzymes in the related
pfam20282 group, may be involved in converting aromatic
compounds into citric acid cycle intermediates, proposed
to feed the pathway leading to DA synthesis [34-38]. The
identification of a differentially expressed transcript en-
coding a member of the SLC6 amino acid transporter
family is also interesting. The translated Ps-n open
reading frame aligns most closely with characterized
γ-aminobutyric (GABA) neurotransmitter transporters
[39], suggesting the hypothesis that the Ps-n trans-
porter is involved in movement of DA, or a synthetic
precursor, into or out of cells.
Our discovery of the up-regulation of a predicted

cycloisomerase belonging to the lactonase/lactonizing
family, as well as the SLC6 transporter, entertains the
speculation that these gene products are involved in
communication between Ps-n cells, or Ps-n and bacteria.
The parallels with GABA in plant signaling pathways
[40-42] pose a potential role for DA in Ps-n biology,
which has not yet been defined [7,9]. For example,
GABA produced by wounded plant tissues appears to con-
trol the lactone quorum-sensing signal in Agrobacterium
tumefaciens by regulating the A. tumefaciens lactonase
gene [41]. Bacterial production of lactones in Ps-n cultures
is correlated with increased DA production [16,17,43], sug-
gesting a possible relationship between DA and quorum
sensing [44]. Characterization of the predicted cycloisome-
rase’s enzymatic properties will be of significant interest in
relation to these hypotheses. Similarly, demonstration that
the SLC6 transporter is involved in movement of DA into
or out of the cell would be a valuable contribution to un-
derstanding the role of DA in Ps-n biology. While we have
taken the perspective that DA may function in signaling
pathways, including quorum sensing or pheromone com-
munication [7,8,42], some studies suggest that DA may
function as a chelating agent [45-47]. Hence, studying
the transport of DA into and out of Ps-n cells directly
would contribute to describing the role(s) of DA in
Ps-n biology. A family of four SLC6 transporters was
identified in the recently released Ps-n draft genome
[22,39], so characterization of this entire family should
advance our understanding of Ps-n biology.
Many of the differentially expressed genes in this study

relate to general metabolic pathways. Therefore, further
investigation is needed to resolve the role of these genes
in relation to both the growth state and DA synthesis in
Ps-n. For example, the up-regulation of PEPCK, as well
as the potential down-regulation of PFK, suggests a
change in energy metabolizing pathways as Ps-n cells
transition from exponential to stationary phase, consistent
with a shift to gluconeogenesis and carbon metabolism
through the citric acid cycle [48,49]. Similarly, glutamate
dehydrogenase, which catalyzes the reversible conversion
of glutamate and the citric acid cycle intermediate
α-ketoglutarate, is a key enzyme involved in nitrogen
and energy metabolism [50,51]. In addition, the differen-
tial expression of a predicted acyl-CoA synthetase (Table 3)
suggests the possibility that lipids and fatty acids are being
broken down, and while this may be a physiological
response to growth-limiting conditions, the products



αα

Figure 3 RT-qPCR analysis of candidate reference genes for normalization from Pseudo-nitzschia multiseries. Bars represent the mean
change (± 1 SD) in expression relative to Day 3. Open bars represent measurements using primers that spanned an exon-exon junction; grey bars
represent measurements using standard primers that did not span an exon-exon junction. Means were not significantly different (p < 0.05), except
EF-1α. Means with different letters were significantly different (p < 0.05). Statistical analyses were performed using a general linear model ANOVA
with Bonferroni post-hoc test, 95% confidence intervals.
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could then be channeled as precursors into DA synthesis.
Previous studies have shown that Ps-n lipid content
decreases in response to Si deficiency during stationary
phase [9,52]. Acyl-CoA synthetases are also involved in
amino acid acylation, so could be directly involved in
the condensation of the glutamate and isoprenoid-like
moieties [13,53,54].
A small heat shock protein gene was most highly

up-regulated later in the stationary phase as determined
by RT-qPCR, suggestive of its expression relative to
physiological stress. The aldo-keto reductase transcript
levels showed a step-wise progression from the exponen-
tial into the stationary phase, with the highest expression
levels later in stationary phase, as well. The expression
patterns of these genes may be useful for monitoring the
physiological state of Ps-n cells. The aldo-keto reductase
may also have a functional role in DA synthesis, as the
labeling studies indicated that the C7’ in DA is selectively
oxidized to a carboxyl group [12]. Several of the genes that
were identified as being up-regulated in this study
have not been previously characterized from diatoms
and represent potential targets for further studies of
DA synthesis.
The enhancement of DA production by co-existing

microbes is a complex and fascinating aspect of DA biology
[7]. A limited number of genes in our study indicated
significantly different expression patterns between the
non-axenic vs. axenic growth experiments. For example,
a subtilisin-like gene, predicted to encode a secreted pro-
tease, was up-regulated in the non-axenic cultures relative
to the axenic culture (Additional file 2). In addition, mi-
crobes may influence the metabolic pathways predicted to
be involved in fatty acid production. Ramsey et al. [12]
suggested that the principal pathway to the isoprenoid
portion of DA is via an alternative glyceraldehyde 3-
phosphate (G3P)-independent route, and it is interesting
to note that glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) was up-regulated only in the axenic growth ex-
periment (Table 3), suggesting that bacteria may influence
this pathway. Future studies will focus on the specific roles
that co-existing microbes play in the regulation of Ps-n
genes and domoic acid production.



Table 3 Transcripts at higher levels in stationary (high-toxin-producing) as compared to late-exponential (low-toxin-
producing) phase in Pseudo-nitzschia multiseries (Ps-n) as determined by cDNA microarray analysis

Fold changea

Stationary versus late-exponential phase

Ps-n NR
Identifier

JGI Ps-n Genome hit Non-axenic Non-axenic Axenic Predicted gene product

Scaffold:Start-End Expt. 1 Expt. 2 Expt.

PSN0011 481:47438-49830 3.99 ± 0.96 3.46 ± 1.90 2.19 ± 0.37 Cycloisomerase (pfam10282 lactonase/lactonizing enzyme),

COG2706 (3-carboxymuconate cyclase)

PSN0072 269:13929-16593 3.40 ± 0.38 3.39 ± 0.32 2.01 ± 0.24 SLC6, Sodium and Chloride-dependent amino acid transporter

PSN0014 2396:2127-4845 4.64 ± 0.89 4.10 ± 0.89 2.14 ± 0.27 Acyl-CoA synthetase with transit peptide

PSN0016 37:106113-109070 3.78 ± 0.27 3.01 ± 0.29 3.11 ± 0.50 Phosphoenolpyruvate carboxykinase, ATP-

dependent with transit peptide (PEPCK)

PSN0025 155:75271-76268 6.65 ± 1.56 7.07 ± 1.75 4.18 ± 0.57 Small heat shock protein with alpha-crystallin

domain, chloroplastic (sHSP)

PSN0052 70:256654-258177 3.89 ± 0.59 2.61 ± 0.21 1.57 ± 0.01 Mitochondrial carrier protein

PSN0015 66:296511-298386 3.19 ± 0.57 3.15 ± 0.43 1.86 ± 0.17 Aldo-keto reductase with signal peptide

PSN0042 21:457033-458813 5.47 ± 0.75 7.52 ± 1.69 3.37 ± 0.50 Predicted protein with signal peptide

6H1 117:15135-16102 5.45 ± 0.55 3.76 ± 0.00 2.57 ± 0.04 Predicted protein with signal or transit peptide

73D12 1312:10048-11278 3.45 ± 0.11 4.01 ± 0.03 1.63 ± 0.07 Ps-n specific, no hits in NR or Swissprot

46A5 447:56474-57752 4.36 ± 0.00 4.61 ± 0.11 1.73 ± 0.02 Ps-n specific, no hits in NR or Swissprot

17F11 303:41858-44529 5.42 ± 0.18 6.02 ± 0.85 2.07 ± 0.06 Predicted protein with glycosyltransferase domain

PSN1428b 95:293619-297233 2.22 ± 0.26 1.86 ± 0.20 1.81 ± 0.37 NAD-specific glutamate dehydrogenase (GDH)
aThe fold-change data presented are the average of all of the cDNA clones that were printed on the array for each transcript. The number of cDNA clones for each
transcript was: PSN0011 (21), PSN0072 (3), PSN0014 (14), PSN0016 (14), PSN0025 (5), PSN0052 (4), PSN0015 (7), PSN0042 (4), 6H1 (1), 73D12 (1), 46A5 (1), 17F11 (1),
PSN1428 (2). Each clone was printed on the array twice.
bPSN1428 was included as a gene of interest in RT-qPCR analysis, below, although it did not meet our statistical criteria for the original microarray analysis. Please
see Methods for statistical analysis, and Additional file 1 for FDR and LDFR data.

Table 4 Transcripts at lower levels in stationary (high-toxin-producing) as compared to late-exponential (low-toxin-
producing) phase in Pseudo-nitzschia multiseries (Ps-n) as determined by cDNA microarray analysis

Fold changea

Stationary versus late-exponential phase

Ps-n NR
Identifier

JGI Ps-n Genome Hit Non-axenic Non-axenic Axenic Predicted gene product

Scaffold:Start-End Expt. 1 Expt. 2 Expt.

PSN0100 32:397085-398987 0.34 ± 0.01 0.33 ± 0.05 0.39 ± 0.01 Pyrophosphate-dependent phosphofructokinase (PFK)

PSN0060 133:16659-18505 0.20± 0.02 0.16 ± 0.03 0.44 ± 0.04 Predicted protein with signal or transit peptide

PSN0048 188:179178-180986 0.36± 0.08 0.25 ± 0.06 0.52 ± 0.05 Predicted protein with signal or transit peptide

PSN0080 461:123066-124152 0.32 ± 0.02 0.33 ± 0.03 0.57 ± 0.07 Predicted protein with mitochondrial transit peptide

135E4 1441:17433-18891 0.17 ± 0.00 0.19 ± 0.02 0.45 ± 0.02 Predicted protein

165G9 8:175639-176910 0.37 ± 0.02 0.37 ± 0.02 0.62 ± 0.04 Tetratricopeptide repeat protein

135H6b 214:78592-7971 0.41 ± 0.00 0.22 ± 0.02 0.59 ± 0.00 Fucoxanthin-chlorophyll a-c binding protein,

chloroplastic (FCP)
aThe fold-change data presented are the average of all of the cDNA clones that were printed on the array for each transcript. The number of cDNA clones for each
transcript was: PSN0100 (2), PSN0060 (5), PSN0048 (5), PSN0080 (3), 135E4 (1), 165G9 (1), 135H6 (1), and each clone was printed twice.
b135H6 was included as a gene of interest in RT-qPCR analysis, below, although it did not meet our fold-change cut-off for the original FDR microarray analysis
(yet, all LFDRs were <10%). Please see Methods for statistical analysis, and Additional file 1 for FDR and LDFR data.
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Table 5 RT-qPCR target gene primer sequences and characteristics

Predicted gene
product

Primer sequence GC
(%)

Tm
(°C)a

Amplicon
(bp)

Ex-Ex
Spanning b

Efficiency
(%)

R2

Cycloisomerase F: TCATAGGTGGCGTCAAGAACGTGT 50.0 60.3 127 No 99.5 0.995

R: TCAGCTTGTCGTGCCGAAATTGTG 50.0 60.3

SLC6 F: TCGGACACTACGGAGACTACG 57.1 57.1 73 No 104.2 0.997

R: ACCAAGGTGAAGGCGACG 61.1 58.0

SLC6 Ex-Ex F: CATGCACGATACTGTCTATTTCG 43.5 53.6 122 Yes 100.0 0.998

R: CGTCCAACCAAAATAAGCCAGC 50.0 57.0

Aldo-keto reductase F: GAATGGGCTACGGAGAGACG 60.0 57.3 114 No 99.5 0.998

R: GTACAGGCGTGAATTTGGTAGC 50.0 56.2

sHSP F: GACGAAGGATTCATCACCGTCG 54.5 57.7 141 No 102.9 0.998

R: GACACCGTTGTCGAGGGTAG 60.0 57.4

PEPCK F: GCATTGCTCTGCAAACGTCG 55.0 57.7 107 No 100.0 0.997

R: CAATCAAGGCTCGGTGAGGATC 54.5 57.7

GDH F: CAATGCCATCAACGCCATCAAGGA 50.0 60.2 128 No 98.4 0.998

R: CAAAGCCGAGGTTGGCAAGAGTTT 50.0 60.3

PFK F: CGAGGTGGCATCCAAACGATTGC 56.5 61.1 84 No 105.1 0.998

R: GCAGCCTGTGTATTGGTATCGTCG 54.1 59.7

PFK Ex-Ex F: GGAGAAAATCCGCTCGAGGTG 57.1 57.9 111 Yes 99.4 0.997

R: CTTTGAGAGAACCGCAGCCTG 57.1 58.4

FCP F: CGTCTCATACCACGGCAC 61.1 55.7 184 No 97.8 0.997

R: CTTGGATTGATGGTCCACGAG 52.3 55.6
aThe annealing temperature for all standard curve analyses was performed at 60°C to demonstrate the efficiency of the primer sets under our assay conditions;
the calculated Tm values are provided for reference.
b‘Ex-Ex spanning’ refers to primers that span an exon-exon junction; these primer sets did not yield a product using gDNA as a template.
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The Ps-n genome is predicted to include 19,703 genes
[22]; thus, the estimated 3,675 non-redundant transcripts
monitored via this microarray represent ~20% of the gen-
ome. Future studies using RNA sequencing methods will
determine if other transcripts related to those highlighted
here are also differentially expressed in correlation with
DA production.

Conclusions
Our study identified a number of significantly up- and
down-regulated genes that provide the basis for future
studies on DA production, growth state, stress, and amino
acid transport in Ps-n. The identified transcripts may be
particularly useful as early indicators of toxin production
and the switch of Ps-n cells to an alternative growth state.
The reliability of RT-qPCR data will be enhanced by use
of the validated internal reference genes presented in this
study. To our knowledge, this is the first identification and
validation of reference genes for RT-qPCR studies in Ps-n.

Methods
Pseudo-nitzschia multiseries strains and culture conditions
Ps-n strain CL-125 was isolated by Claude Léger (Fisheries
and Oceans Canada, Gulf Fisheries Centre, Moncton,
New Brunswick, Canada) from a sample collected on
September 23, 2000, in Mill River (a brackish water es-
tuary), Prince Edward Island, Canada. Cultures for the
microarray studies were grown in 0.2 μm-filtered, auto-
claved seawater (from Woods Hole, MA) enriched with
f/2 nutrients [55] and amended with 10-8 μM Se. These
batch cultures were grown in 15 L of f/2 medium in 19 L
borosilicate carboys, and incubated at 20°C. The irradi-
ance was maintained at 100 μmol photons m-2 s-1, with a
14:10-h light:dark (L:D) cycle for the cDNA library cul-
tures, and continuous light for the experimental cultures.
The cultures were aerated using aquarium pumps with
sterile cotton and activated carbon filters and were con-
stantly mixed with magnetic stirrers. An axenic culture of
CL-125 was obtained by antibiotic treatment for 72 h,
using 1.6:0.8 mg mL-1 penicillin:streptomycin [2]. These
were tested for culturable bacteria by incubation in
Bacto-peptone broth (Difco Laboratories, Detroit, MI,
USA; 1 g L-1 seawater) and 2216 Marine Agar (Difco)
at ~20°C for at least 20 d.
Ps-n strain GGB1 was isolated by Michael Carlson and

Kyle Frishkorn (University of Washington, Seattle, WA,
USA) in July 2010, from Puget Sound, WA, USA. Cul-
tures for the RT-qPCR study were grown in 0.45 μm-



Figure 4 RT-qPCR analysis of Pseudo-nitzschia multiseries genes whose expression was up-regulated (a) or down-regulated (b) in micro-
array analysis. Bars represent the mean change (± 1 SD) in expression relative to Day 3. Open bars represent measurements using primers that
spanned an exon-exon junction; grey bars represent measurements using standard primers that did not span an exon-exon junction. Means with
different letters were significantly different (p < 0.05). Statistical analyses were performed using a general linear model ANOVA with Bonferroni
post-hoc test, 95% confidence intervals.
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filtered, autoclaved seawater (from Portsmouth Harbor,
Newcastle, NH, USA) enriched with f/2 nutrients [55],
except that the initial Si was lowered to 37.2 μM and fer-
ric sequestrene was replaced with Na2EDTA • 2H2O and
FeCl3 • 6H2O (Provasoli-Guillard National Center for
Marine Algae and Microbiota). Before inoculation of
experimental cultures, cells were maintained in exponen-
tial growth for at least two preceding transfers. Triplicate
GGB1 experimental cultures were grown in 2.6 L of f/2
medium in 3-L polycarbonate baffled flasks, and incubated
at 15°C. The irradiance was maintained at ~100 μmol
photons m-2 s-1, with a 16:8-h L:D cycle. Flasks were
aerated by constant mixing supplied by magnetic
stirrers.

Sampling, toxin, and nutrient analysis
The microarray study included three biological repli-
cates: two non-axenic cultures and one axenic culture.
Samples were taken every two to three days for cell
counts and domoic acid (DA) analysis. Cell concentra-
tions were estimated by averaging the number of cells
enumerated by light microscopy, using a Neubauer
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hemacytometer chamber in triplicate counts of individ-
ual samples preserved in Lugol’s iodine. DA was ana-
lyzed in whole-culture samples (cells plus medium [1]),
using HPLC of the FMOC (fluorenylmethoxycarbonyl)
derivative [56]. The lower limit of detection was 15 ng
mL-1 for the first non-axenic experiment, 3 ng mL-1 for
the second non-axenic experiment, and 7.5 ng mL-1 for
the axenic experiment. RNA was prepared from cells
harvested during an initial time point from the late-
exponential (low-toxin-producing) growth phase, and
a final time point during the stationary (high-toxin-
producing) phase (Figure 1a, 1b; RNA extraction
protocol outlined below).
For RT-qPCR evaluation, three non-axenic biological

replicate cultures were sampled daily, from the time of
inoculation until day 10 of growth, for cell counts,
whole-culture DA and nutrients. Cell count samples
were taken by preserving 5 mL of culture with 250 μL
of formalin and stored at 4°C until cells were counted
(400 cells or the entire slide) on a Sedgwick-Rafter
slide. Whole-culture DA samples were taken by freez-
ing 15 mL of culture at −20°C; samples were sonicated
at 50% power on ice for 2 min and filtered through a
0.2-μm filter prior to analysis. DA samples were ana-
lyzed using the Abraxis Domoic Acid ELISA kit ([57],
Warminster, PA, USA). The limit of detection was 0.06
ng mL-1. Filtered samples were stored at −80°C for nu-
trient analyses. Silicate was measured using the molyb-
date method [58-60]; phosphate was measured by the
ascorbic acid-molybdate method [61,62]. Nitrite and
nitrate were measured on an auto-analyzer (Lachat
Instruments, Loveland, CO, USA) using a copper-
cadmium reduction and colorimetric assay [61,63,64].
Total RNA was extracted daily from each flask begin-
ning on day three of growth (Figures 1c, 3, 4; RNA ex-
traction protocol outlined below). One RNA sample
was lost on the initial day of extraction, so this resulted
in two biological replicates for this time point (Day 3).
The remaining RNA samples for the profile through to
Day 10 included three biological replicates for each
time point.

Microarray and cDNA library construction
Ps-n strain CL-125 cells from non-axenic cultures were
harvested during the late-exponential through mid-
stationary phases, under predominantly toxin-producing
conditions. Cultures were split into 250–500 mL ali-
quots that were centrifuged for 15 min at 1000 g. The
loose pellets were pooled, and centrifuged again briefly
to remove any residual culture medium. Total RNA
was extracted immediately by homogenizing the cells in
TRIzol® (Invitrogen Corporation, Carlsbad, CA, USA).
Insoluble material was removed by low-speed centrifu-
gation of the samples, which increased quality and yield
of the resulting total RNA. Precipitating twice with salt
and ethanol also contributed to high-quality total RNA,
as indicated by both 260/280 O.D. ratios and gel elec-
trophoresis. Poly (A)+ RNA was then isolated from
total RNA using a biotin-labeled oligo(dT)20-streptavi-
din kit (Roche Molecular Biochemicals, Indianapolis,
IN, USA) following the manufacturer’s instructions.
First-strand cDNA was prepared from 5 μg poly (A)+

RNA using Superscript II (Invitrogen, Grand Island, NY,
USA), NC-p7 (an RNA chaperone), and oligo pd(TZ)
(an oligo-dT primer with some of the internal thymidine
residues replaced with 3-nitropyrrole to minimize mis-
priming to internal A-rich sequences). Double-stranded
cDNA was generated using RNase H, E. coli DNA poly-
merase I, and E. coli ligase. The ends of the cDNAs were
polished with T4 DNA polymerase, and BstXI adaptors
were ligated to the cDNA ends. The cDNAs were then
fractionated on sucrose gradients, ligated into pMD1
(a pUC-based vector) and transformed, by electropor-
ation, into E. coli DH10B cells [65]. Following an initial li-
brary plating, 19,200 individual colonies were picked and
stored at −80°C in 15% glycerol for further analysis.

EST sequencing, assembly, and annotation
2,220 cDNA inserts were sequenced to verify the quality
of the library and to begin gene discovery. Many of the
cDNAs were sequenced more than once in the 5′- and
3′- direction, yielding a set of 3,533 Ps-n ESTs. These se-
quences are deposited in the NCBI dbEST database
[GenBank accession numbers FD476666-FD480212].
(Note: Of the sequenced cDNAs, 1,889 were a subset of
the 5,265 Ps-n cDNAs printed on the microarray (see
below)). Sequence reactions were run on an automated
DNA sequencer (ABI 3700 with dye terminators); and
selected cDNAs were sequenced at ACGT, Inc. (Wheeling,
IL, USA). ESTs were edited using Seqman (DNAStar, Inc.,
Madison, WI, USA), and ContigExpress (VectorNTI,
Carlsbad, CA, USA), as well as manually edited to remove
low quality data, poly (A) tails, and vector sequence. The
Ps-n ESTs were assembled into consensus or contig se-
quences, using a criterion of 95% identity over more than
50 nucleotides (Seqman, DNAStar). Average sequence
length of the individual reads was 639 bp (after editing).
The ESTs were assembled into 1,550 non-redundant (NR)
sequences, indicating a redundancy of ~43% within our
Ps-n library. From this, we estimate that approximately
3,675 unique genes were printed on the Ps-n micro-
array since 5,265 Ps-n cDNAs from the Ps-n library
were printed on the microarray. The ESTs, final assem-
bled NR sequences, and annotations are provided in
Additional files 2, 3, 4 and 5.
Assembled sequences were compared against NCBI’s

NR and Swissprot databases using the Basic Local Align-
ment Search tools, blastx and tblastn, via theBlast2Go
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application [66-68]. The Ps-n sequences from this study
were also compared against the unpublished Pseudo-
nitzschia multiseries CLN-47 genome sequence, Assem-
bly v1 (October 2011), sequenced by the US Department
of Energy Joint Genome Institute (JGI) [22]. The refer-
ence and target genes specifically discussed in this paper
were further annotated using NCBI’s ORF Finder [69]
and BlastP [66,67], and the Center for Biological
Sequence Analysis’ (Technical University of Denmark)
ChloroP 1.1, TargetP 1.1, and SignalP 4.1 [70], as well as
searching for the conserved diatom AFAP chloroplast
targeting domain [71-73].

Microarray construction
cDNA preparation: 5,265 clones from the Ps-n cDNA
library were grown overnight in Luria broth with carbe-
nicillin (50 μg mL-1) at 37°C on a shaker table. Three
“vector-only” and twelve Homo sapiens cDNA control
clones (J. Pelletier) were also grown under these condi-
tions. Ten microliters of bacterial culture were used in
100-μL PCR reactions with primers T7 forward (TAA
TACGACTCACTATAGGG) and M13 reverse (CAG
GAAACAGCTATGAC), which flanked the cloning site
of the pMD1 vector. PCR amplification was performed
using HiFI Taq polymerase (Invitrogen Corporation). An
initial DNA denaturation step at 94°C for 2 min was
followed by 35 amplification cycles (0:30 melting at 94°C,
0:30 annealing at 55°C, 1:00 extension at 68°C). PCR prod-
ucts were purified using MultiScreen size-exclusion filter
plates (Millipore, Billerica, MA, USA). The DNA was then
resuspended in 100 μL of nuclease-free de-ionized water
and transferred to clean plates using a mechanical pipet-
ting station. DNA quality was verified by 1% agarose gel
electrophoresis for eight samples per 96-well plate; DNA
concentration was determined by PicoGreen fluorescent
staining [63]. Fifty μL of each PCR product was dried by
vacuum centrifugation and then resuspended in 10 μL of
1.5 M Betain /3X SSC print buffer, yielding an average
final concentration of 600 ng μL-1.
Ps-n cDNA probes were printed onto CMT-GAPS

slides (Corning, Corning, NY, USA), using a MicroGrid
610 TAS array printer (Biorobotics, Woburn, MA, USA)
with quill pins. A total of 5,169 Ps-n cDNAs were
printed in duplicate, and 96 were printed in quadrupli-
cate; in addition, 3 “vector-only” cDNAs, 12 H. sapiens
control cDNAs, and 10 control cDNAs from the SpotRe-
port Alien Array Validation System (Stratagene, La Jolla,
CA, USA) were printed in duplicate, resulting in a final
chip that included 10,772 features. Spots were printed
with a 32 print-tip head, producing a lay-out represented
by 8 × 4 grids. Each grid was sub-divided into two sec-
tions, representing replicate spots. Individual features
were 13 μm in diameter and were separated by 130 μm
(from one spot to the next). 0.005 μL of ~600 ng μL-1
DNA (2–3 ng) was transferred to each spot. Final Ps-n ar-
rays displayed a strong signal-to-noise ratio, with virtually
no background, as demonstrated visually (Figure 5). Ex-
perimental hybridization results also confirmed the high
degree of reproducibility between replicate spots on the
Ps-n chip (See Additional files 1 and 2; and, the corre-
sponding Gene Expression Omnibus (GEO) [74] file, ac-
cession number GSE46845).

RNA preparation and microarray hybridizations
RNA was prepared from cells harvested during both the
late-exponential (low-toxin-producing) and stationary
(high-toxin-producing) phases for all three biological
replicates. Eight liters of culture were harvested at an
initial time point during the mid- to late-exponential
growth phase and the remaining 7 L were harvested at a
final time point during the stationary phase (Figure 1a,
1b). Cell suspensions were centrifuged in 0.5-L aliquots
for 15 min at 1,000 g, which resulted in loose pellets that
were pooled, split among 2–4, 50-mL conical tubes and
spun again briefly to remove any remaining liquid. Ten
to 20 mL of TRIzol (depending on cell pellet volume)
were added to the conical tubes, and the pellets were
homogenized for 60 s, frozen in liquid N, and stored
at −80°C until RNA extraction. Total RNA was ex-
tracted, as above, cleaned with RNeasy columns (Qiagen,
Valencia, CA, USA) and run on formaldehyde agarose gels
to confirm the quality of the RNA.
Ten micrograms of Ps-n RNA from each harvest were

spiked with mRNA from the SpotReport Alien Array
Validation System, incubated for 10 min at 65°C with
oligo-dT and then cooled at 25°C for 5 min. Four micro-
liters of 1 mM Cy3- or Cy5-conjugated dUTPs were
added to each RNA sample and the mixtures were incu-
bated at 42°C for 2 min. A master mix, including 4.5 μL
of 0.2 M DTT, 18 μL of 5X 1st strand buffer, 1.8 μL of
25 mM dATP, dGTP and dCTP, 1.8 μL of 10 mM dTTP,
and 2 μL of Superscript II reverse transcriptase, was added
to each RNA mixture and incubated for 1 h at 42°C. After
1 h, an additional 1 μL of Superscript II was added to each
and the reactions were incubated at 42°C for another
hour. Starting RNA was degraded by addition of stop so-
lution (3 μL of 0.5 M EDTA, pH 8; 3 μL of 1 N NaOH)
and incubated for 30 min at 60°C. Labeled cDNA was
cleaned using RNeasy columns (Qiagen); Cy3-labeled
cDNA and the corresponding Cy5-labeled cDNA that
were to be compared were combined and loaded onto the
same column. The labeled target cDNA pools were then
hybridized to the probe cDNAs on the Ps-n cDNA micro-
arrays (construction described above). Ps-n microarrays
were processed before hybridization by holding them
face-down over a steaming water bath for a few seconds,
and then snap-drying them on a 95°C heat block. The
DNA was immobilized onto the slides by UV cross-linking



Figure 5 Scanning fluorescence image of the Pseudo-nitzschia multiseries (Ps-n) cDNA microarray hybridized with Cy3- and Cy5-labeled
cDNAs from non-toxin-producing vs. toxin-producing cells. 5,169 individual Ps-n cDNAs and 25 control cDNAs were printed in replicate, and
96 Ps-n cDNAs were printed in quadruplicate, yielding a final chip including 10,772 features. A representative grid is enlarged to illustrate the sub-
division of each 8 × 4 grid into two replicate sections, differentiated by the arrowed lines.
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at 65 mJoules. Cross-linked slides were soaked for 15 min
in freshly prepared succinic anhydride/sodium borate so-
lution with gentle agitation, soaked for 2 min in boiling
nuclease-free, de-ionized water and finally, rinsed in 95%
ethanol, and spun dry. Processed microarrays were pre-
hybridized at room temperature for 1 h. Pre-hybridization
solution was composed of 50% formamide, 5X SSC, 0.1%
SDS, and 1% BSA. Hybridization buffer was composed
of 50% formamide, 10X SSC, 0.2% SDS, and 0.26% sal-
mon sperm. Labeled cDNA was denatured prior to
hybridization by heating for 2 min at 80°C, while the
cassette and microarray were pre-warmed at 42°C. The
cDNA was then loaded onto the array, and arrays were
hybridized for 16 h at 42°C in humidified chambers.
Hybridized arrays were washed successively in 1X SSC,
0.03% SDS, 0.1X SSC, 0.01% SDS, and 0.1X SSC, and
dried by brief centrifugation.
Replicate hybridizations were repeated within each

biological experiment and dye-swapped to account for
differences in dye labeling and detection efficiencies.
Non-axenic experiments 1 and 2 each included six tech-
nical replicates, while the axenic experiment included
four technical replicates.

Microarray image analysis and normalization
Dual-channel arrays were scanned at 595 nm (Cy3) and
685 nm (Cy5) on ArrayWoRx scanners (Applied Precision,
Inc., Issaquah, WA, USA). The scanning system converts
signal from fluors to “pixel” values, which allows the
data to be saved as tiff files. DigitalGenome software
(MolecularWare, Cambridge, MA, USA) was then used
to integrate annotated chip information with the tiff
files and to visualize, edit and export the data for
normalization. A loess algorithm was applied to the spot
mean intensity values across replicate arrays within each
biological experiment to correct for systematic biases
using S+ArrayAnalyzer software (Insightful Corp., Seattle,
WA, USA) [75,76]. Quality control included analyzing
final intensity ratios for the control set of data after
normalization. The normalized intensity data for each
control spike that corresponded to time zero (T0) and
time final (TF) experimental mRNAs in the labeling reac-
tions were analyzed using linear regression analysis to ver-
ify that the mean integrated intensity across the control
spots was equal (slope ≈ 1). The slope of the linear regres-
sion of T0 to TF control intensity values averaged across
arrays approached 1 for all three biological experiments:
Non-axenic experiment 1 = 0.95, R2 = 0.97; Non-axenic
experiment 2 = 0.91, R2 = 0.95; Axenic experiment = 0.91,
R2 = 0.98. Any negative values, outliers (defined as two
standard deviations away from the mean for individual
spots), and any spots that did not include data for at
least three replicate arrays within each dataset, were re-
moved from further analysis. These parameters resulted
in the removal of data for <1.5% of the original 10,772
features printed on array (final datasets: Axenic experiment
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1 = 10,723; Axenic experiment 2 = 10,614; Non-axenic
experiment = 10,630).

Microarray statistics
Significance analysis of gene expression was performed
using a t-test algorithm modified for multiple tests:
Significance Analysis of Microarrays (SAM) [77] [http://
www-stat.stanford.edu/~tibs/SAM/]. SAM reports those
genes with statistically significant differences between
treatments based on an overall false discovery rate
(FDR). A score d(i) is assigned to each gene based on
changes in gene expression relative to the standard devi-
ation of repeated measurements. The FDR is an estimate
of the percentage of genes identified by chance that
would have an observed relative difference d(i) greater
than the expected relative difference dE(i) set by an ad-
justable threshold, delta. An FDR of 1% estimates that
for every 100 genes called significant, less than one
would be identified incorrectly. The FDR may be ad-
justed by changing the delta and fold-change thresholds.
While SAM does not report individual p-values, each
gene is assigned its own “local FDR” (LFDR), which is
the comparable statistical measurement to identify indi-
vidual genes with changes in expression. LFDR can be
used to review the data beyond the defined set of differ-
entially expressed genes based on FDR. Hong et al. [78]
demonstrated an LFDR of 10% as a reliable cut-off to
successfully identify changes in expression for specific
genes. While the FDR is considered the most reliable
measure of the statistically accurate gene list within an
experiment, the LFDR offers a second method for
reviewing the statistical likelihood of changes in expres-
sion for a particular gene. In our study, we used the
overall FDR to define the initial set of differentially
expressed genes. We used the LFDR to confirm the
overall change in gene expression for those transcripts
that had multiple cDNAs printed on the microarray.
Initially, each dataset in our study was analyzed inde-

pendently. Non-axenic experiments 1 and 2 were ana-
lyzed for statistical significance using a relatively strin-
gent fold-change cut-off of 2.5 to target genes that
were substantially up- or down-regulated during the
transition to stationary phase, when toxin was pro-
duced. A delta value of 0.275 resulted in overall FDRs
that were <1% in both of these experiments. Expression
levels were consistently lower in the axenic experiment
as compared to the non-axenic experiments. For ex-
ample, the cDNAs with positive fold-change differences
averaged 4.07 ± 0.97 in Non-axenic experiment 1, 3.85 ±
1.17 Non-axenic experiment 2, and 1.92 ± 0.54 in the
Axenic growth experiment. Therefore, a lower fold-
change cut-off of 1.5, and a delta value of 0.275, resulted
in a comparable FDR that was <2.5% for the Axenic ex-
periment. Only those transcripts that were determined to
be significantly up- or down-regulated in all three bio-
logical experiments were further analyzed.
Two layers of replicates (replicate cDNAs on the array

and replicate hybridizations) were accounted for by first
analyzing the replicates spots as uncollapsed, independ-
ent data points using the normalization and statistical
analysis described above. Then, replicate spots were av-
eraged and collapsed, accordingly, depending on whether
or not they fell into a greater contig. For singletons, both
replicate spots were required to be statistically signifi-
cant in all three biological experiments to be further
considered. In this case, replicate spots were averaged
for a final expression ratio and standard deviation. For
cDNA features that fell into a larger contig, 90% of the
cDNAs that fell within the contig were required to be
significantly differentially expressed (based on initial
SAM analysis or LFDR) to further consider the overall
contig as up- or down-regulated. In this case, the repli-
cates were collapsed by averaging the mean ratios of all
cDNAs for a final fold-change ratio and standard devi-
ation for the overall contig. The individual cDNAs within
contigs served as additional replicates for these tran-
scripts, and the results confirmed the consistent change in
gene expression (see Additional file 1). The final fold-
change values for those transcripts that were statistically
higher or lower in stationary (toxin-producing) as com-
pared to late-exponential (low-toxin-producing) growth
phase are presented in Tables 3 and 4. Additional data
files complying with MIAME format [79] were depos-
ited at the GEO [74] data repository, accession number
GSE46845.

Primer design and validation for RT-qPCR
Primers were designed manually to be within a length of
18–26 nucleotides with a GC content between 50-65%.
These values resulted in high sequence specificity and
melting temperatures (Tm) that worked well under our
assay conditions using an annealing temperature of 60°C.
JmjC forward, ATPase reverse and SLC6 Ex-Ex forward
had lower GC contents than the original specifications,
but still worked efficiently under these assay conditions.
All primer sets were designed for PCR amplicons of 50–
200 bp in length. Primers were synthesized by Integrated
DNA Technologies, Inc. (Coralville, IA, USA) and purified
by standard desalting. Efficiencies of amplification were
initially determined for each primer set by running stand-
ard curves with 5-fold serial dilutions of Ps-n cDNA de-
rived from stationary phase cultures, as well as genomic
DNA. PCR conditions are described, below. Primer se-
quences and information can be found in Tables 2 and 5.
Reported efficiencies in the tables correspond with the ini-
tial cDNA standard curve analyses. Standard curves were
also run using 2-fold serial dilutions of pooled cDNA from
the experimental samples combined in equal amounts.

http://www-stat.stanford.edu/~tibs/SAM/
http://www-stat.stanford.edu/~tibs/SAM/
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The primer sets used in the Si-limitation experimental
analyses showed efficiencies >95%, with R2 values >0.99.
Primers that span an exon-exon junction were designed
for one reference and two of the target genes; these primer
sets did not yield a product using gDNA as a template.

RNA isolation, cDNA synthesis and RT-qPCRs
Total RNA was extracted daily from each flask begin-
ning on day three of growth. Cells were collected from
250 mL of culture by filtering onto a 5.0-μm, 47-mm
membrane filter (MF-Millipore mixed cellulose ester).
Filters were transferred to 50 mL conical tubes and 3 mL
of TRIzol were added. Cells were washed quickly and
gently from the filter and homogenized at full speed with
a Polytron homogenizer (Kinematica, Inc, Bohemia, NY)
for 90 s. Samples were incubated at room temperature
for 5 min following homogenization and centrifuged at
3000 g for 10 min at 4°C in order to pellet cellular debris.
200 μL of chloroform was added for every 1 mL of
homogenate and samples were incubated for 3 min
with periodic shaking at room temperature. Samples
were centrifuged at 12,000 g for 20 min at 4°C in order
to separate the aqueous and organic phases. 75-80% of
the aqueous phase was transferred to fresh tubes and
an equal volume of 70% EtOH was added. The RNA-
EtOH mixture was cleaned using RNeasy mini columns
with on-column RNAase-free DNAase digestion (Qiagen).
Clean RNA samples were eluted in 100 μL of DEPC-
treated water, and stored at −80°C until analyzed. RNA
concentrations were analyzed using a Nanodrop 2000
spectrophotometer (Wilmington, DE, USA), and RNA
quality was verified by gel electrophoresis using Lonza
1.2% RNA cassettes (Walkersville, MD, USA). RNA sam-
ples were diluted to 20 ng μL-1. 600 ng of total RNA from
each sample was reverse transcribed using the iscript
cDNA synthesis kit in 50 μL volume reactions, using both
poly A and random hexamer primers (Bio-Rad Laborator-
ies, Inc., Hercules, CA, USA). The reverse transcription
reaction was carried out by incubating at 25°C for 5 min,
followed by 42°C for 30 min. The enzyme was deactivated
by heating to 85°C for 5 min and samples were held at 4°C
until retrieved and stored at −20°C.
RT-qPCR reactions were set up as follows: 10 μL of

SYBR Green PCR mix (Bio-Rad Laboratories, Inc.),
0.75 μL of cDNA, 0.2 μM of forward primer, 0.2 μM of
reverse primer, and nuclease-free water to a final vol-
ume of 20 μL. An exception was that the β-tubulin Ex-Ex
efficiency was within the 95-105% range using 0.4 μM for
both forward and reverse primers. Each experimental
cDNA was amplified in triplicate for each primer set using
the following cycling parameters: 1) 95°C for 3 min; 2) 95°C
for 10 s; 3) 60°C for 15 s; 4) 72°C for 30 s (plate read);
5) repeat 39 more cycles of steps 2–4; 6) 72°C for 10 min;
8) melting curve analysis from 65-95°C in 0.5°C increments
every 5 s; and 9) hold at 4°C. Cq values were deter-
mined for each reaction at 150 relative fluorescent
units.

Evaluation of DNA contamination in RT-qPCRs
qPCR reactions were run on 1 μL of each RNA from the
Si-limitation growth experiment to test for amplification
due to contaminating DNA. The absence of DNA con-
tamination was further confirmed by using both stand-
ard and exon-exon spanning primer sets in parallel for
one control and two target genes in the RT-qPCR reac-
tions (Figures 3 and 4).

Analysis of candidate reference gene expression stability
Cq values were inputted into the GeNorm plus algo-
rithm [20,80] and a stability value (M-value) was calcu-
lated for each gene (Figure 2A, 2B). Genes with the
lowest M-values are considered the most stable; M-
values <0.5 are ideal for use in normalization of qPCR
data. The optimum number of reference genes to use for
normalization is determined by calculating the geometric
average of the two, three, four, and five most stable genes.
The pairwise-variation between subsequent normalization
factors is calculated and when the variation is below 0.15,
the amount of change caused by the addition of the
new control gene is considered negligible, and therefore
unnecessary to include in subsequent normalization
calculations.

Normalization, quantification, and statistics of RT-qPCR
analysis
The arithmetic mean of triplicate technical replicates
was calculated and used for subsequent calculations.
The ΔCq values were calculated by the difference be-
tween each sample and the average Cq of the chosen ref-
erence point, which was the first time point (T3).
Relative quantities (RQ) were calculated by exponenti-
ation of the ΔCqs (2ΔCq). RQ values of the target genes,
for each sample, were divided by the geometric average
of the chosen reference genes’ RQ values, resulting in a
normalized relative quantity (NRQ) [19]. The arithmetic
mean and standard deviation of biological replicate NRQs
were then calculated and plotted (Figures 3 and 4). NRQ
values were log transformed (Log2 NRQ) into Cq’ values
for statistical analysis [81]. Statistically significant changes
in gene expression were determined using a general linear
model analysis of variance (ANOVA) with Bonferroni
post-hoc test. Statistical analyses were performed with 95%
confidence intervals (p < 0.05) using Minitab16 statistical
software (State College, PA, USA). Additional files 6 and 7
contain the complete set of RT-qPCR data and statistical
results. RT-qPCR data analyses and reporting were in ac-
cordance with MIQE guidelines [82,83].
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Availability of supporting data
The microarray data supporting the results discussed
in this paper are included within the paper, and in
Additional files 1 and 2. The microarray data are also
available in the NCBI’s GEO repository, and are ac-
cessible through the GEO Series accession number
GSE46845. The sequence data and annotations are
presented in Additional files 2, 3, 4 and 5. The ESTs
are also available through the NCBI dbEST database
[GenBank accession numbers FD476666-FD480212].
The RT-qPCR data and statistical results are available
in Additional files 6 and 7.

Additional files

Additional file 1: Fold-change data and statistics for cDNA
replicates on the Ps-n microarray for each of the transcripts
discussed in this paper.

Additional file 2: Excel file with the annotation and array data for
the entire set of cDNA clones printed on the Ps-n microarray.

Additional file 3: Fasta file with all of the Ps-n ESTs from this study.

Additional file 4: Fasta file with all of the assembled sequences
from this study.

Additional file 5: Contig alignments in .ace format. A number of the
alignments (46A5, 53B6, 73D12, 135H6, 165G9, 177F1, PSN0011, PSN0014,
PSN0016, PSN0019, PSN0032, PSN0042, PSN0060, PSN0072, PSN0080,
PSN0100, PSN0332, PSN0547, PSN0918, and PSN1327) include sequences
from the JGI Pseudo-nitzschia genome project [22] for comparison; these
sequences are designated within the contig by the JGI modeled gene
name or genome location. Note that contigs corresponding with three
transcripts discussed in the manuscript, PSN0014, PSN0016, and PSN0052,
showed splice variants. Expression of the individual cDNAs within these
contigs were not significantly different in the microarray analysis (see
Additional file 1).

Additional file 6: RT-qPCR data.

Additional file 7: RT-qPCR statistical results.
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