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Abstract
Background: Population structures are normally determined using genes under minimal
functional selection. In this study we have assessed genes that are not always essential, show
differences in alleles between strains, and are involved in the directly host-selectable phenotype of
LPS biosynthesis.

Results: Eight complete LPS biosynthesis genes, seven of which are associated with phase variation
in some or all strains of Helicobacter pylori, have been sequenced and their divergence analyzed. The
differences observed indicate that recombination within these genes largely reflects exchange
between strains within the population lineages previously determined on the basis of MLST using
housekeeping genes. This indicates that the differences that are used for MLST are likely to broadly
associate with genes under functional selection, and differences in strain behaviour. However,
instances of exchange between the subpopulations were identified, including the hpAfrica2
subpopulation. Further, there were other differences in gene complements and the chromosomal
location of genes indicative of greater diversity within the population than is revealed by the
available genome sequences and comparative genome hybridization studies.

Conclusion: These results indicate that the described population structure based upon MLST is
broadly a good basis for studying the biology of H. pylori, but that individual alleles may not follow
these associations. As a consequence, when working in unsequenced strains, it is necessary to
carefully check the presence, sequence, and distribution of any individual gene of interest.

Background
The LPS of Helicobacter pylori is a primary host-interacting
structure and several lines of evidence indicate that it is
involved in host adaptation and virulence. Strains lacking
the O-antigen have a reduced capacity to colonize the
murine stomach [1], and various alternative extensions
form structural motifs which are identical to human
blood group antigens Lewis X, Y, and b [2-6], which may
be involved in immune evasion and the ability to estab-

lish long term colonization [7,8]. LPS structures are also
the context in which surface proteins are presented and
different LPS phenotypes are capable of affecting the pres-
entation and function of these proteins, for example influ-
encing flagellum-mediated motility and urease activity
[9].

Almost half of the LPS biosynthetic genes of H. pylori are
phase variable. Phase variability is a consistent marker for
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genes involved in niche adaptation and immune evasion
[10,11]. The phase variable repertoire of this species has
been recently re-evaluated in a population-based survey
[12], and the variability of these genes has been studied in
a model of prolonged gastric colonization [13]. These
studies have shown that the LPS biosynthetic genes are
amongst the most abundant phase variable genes, are
amongst those that display the greatest inter-strain differ-
ences in their repeats, and are the most dynamically vari-
able during colonization. The sequencing used to assess
the phase variable status of the genes in these previous
studies was focussed upon the regions containing the
repeats. This revealed that there were additional polymor-
phisms within the sequences flanking the repeats between
strains, suggesting frequent recombination as a significant
additional source of previously uncharacterized inter-

strain variability within these genes, which was the stimu-
lus for the study describe here.

The selection of sequences used for bacterial population
studies and typing is essentially pragmatic. The selected
target must show sufficient diversity to provide discrimi-
nation between unrelated strains. It must also be suffi-
ciently stable to indicate when two strains are related over
a biologically relevant period of evolutionary time. The
dominant methodology used for studies of bacterial pop-
ulation genetics is currently MLST, and this has been
recently applied successfully to H. pylori [14,15] revealing
clear correlations between the population structure of the
bacteria and the human migratory populations with
which they are associated. H. pylori is one of the most
recombinogenic species to have been studied to date [16-

Table 1: Presence and absence of the 8 LPS genes studied among 23 H. pylori strains

Strain name Population HP0651 HP0379 HP0093 HP0619 jhp0562* HP0208 jhp0820 HP0217

JP9 hpEastAsia ❍ ● ● ● + ● absent ●

GU17 hpEastAsia ● ❍ ● missing missing ● EMPTY ●

GU5 hpEastAsia ● ❍ ● absent + ● EMPTY ●

RE12001 hpEastAsia ● ❍ ● ● + ● EMPTY ●

L133 hpEastAsia ● ❍ ● ● + ● ●

L7 hpLadakh ❍ ❍ ● missing missing absent EMPTY ●

L72 hpLadakh ● ❍ ● ● + absent EMPTY ●

L67 hpLadakh ❍ ❍ ● absent + absent EMPTY ●

B225 hpEurope ● ● ● ● + ● absent ●

26695 hpEurope ● ● ● ● absent ● absent ●

SS1 hpEurope ❍ ● ● ● + ● ● ●

H1413 hpEurope ● ● ● ● + ● EMPTY ❍

NQ367 hpEurope ❍ ● ● ● + ● ● EMPTY
111UK hpEurope ● ● ● ● + ● EMPTY ●

VZ21 hpEurope ● ❍ ● absent + ● ● ●

105UK hpEurope ❍ ● ● ● + ● ● ●

LSU2003-1 hpAfrica1 ❍ ● ● ● + ● ● ●

J99 hpAfrica1 ❍ ● ● ● + ● ● ●

C164 hpAfrica1 ❍ ● ● ● + ● ●

CC31C hpAfrica1 ❍ missing ● ● + ● ● ●

CC42C hpAfrica1 ❍ ● ● missing missing ● ❍ EMPTY

129 hpAfrica2 ❍ ● ● ● + ● ● ●

162 hpAfrica2 ❍ ● ● ● + ● absent ●

Status of the genes is coded as followed:
● , gene present and harbouring the repeat
❍, phase variable gene present but repeat absent or stabilized (i.e. repeat interrupted by one or more bases or a homopolymeric tract < 7 bp or 
dinucleotide tracts with < 5 repeats)

, phase variable gene harbouring a repeat, whereas a stabilized repeat was found previously [12]
EMPTY, empty site, i.e. the phase variable gene was found using primers designed within the coding sequence in regions immediately adjacent to the 
phase variable tract [12], but the site is found to be empty in this study
missing, missing data, i.e. the PCR product was obtained but could not be sequenced absent, gene absent
* jhp0562 is a non phase variable homologue of HP0619 (+: jhp0562 present)
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18] in which relatively small sections of DNA are
exchanged. The MLST studies focus upon genes associated
with core metabolic processes which are believed to be
under minimal selective pressure for change.

What is currently undefined is the degree to which these
sequences, which have been selected as a basis for strain
typing because of their relative stability, reflect the pat-
terns of exchange and recombination of more diverse
genes that are potentially subject to functional selection
for change. It may be that the population divisions do not
reflect functional barriers to the free exchange of other
genes in the global population, and that sequences
directly affecting strain behaviour move more freely
through the population. Equally, it may be the case that
these populations that have been relatively geographically
isolated are broadly similar in other ways and that this
would be reflected in their allelic-variant gene comple-
ments as a whole. While the latter possibility is generally
assumed to be more likely, it is important to specifically
address this issue, because when strains are selected for
functional and mutagenesis-based experiments it is neces-
sary to know to what extent the findings are likely to be
applicable to the wider bacterial population, especially in
a highly panmictic species such as H. pylori. In this study,
we have focussed upon eight LPS biosynthetic genes in
which we have previously seen polymorphisms, seven of
which are phase variable, to determine their diversity and
the extent to which they are mobile within and between
the major population subdivisions, using strains repre-
sentative of the previously defined population structure.

Results and Discussion
Variations in gene complement and gene location
Our previous study of H. pylori phase variable genes used
primer pairs designed to amplify repeats mediating phase
variation that were located within and immediately adja-
cent to the coding sequences. This revealed some differ-
ences in gene complement between the strains and the
presence of polymorphisms indicative of recombination
[12]. The current study sought to investigate the diversity
within the whole of the coding regions of the selected
genes, and primers were designed to locations in the
flanking regions of these genes – normally within the cod-
ing sequences of the adjacent genes. This led to the unan-
ticipated finding that some of these genes, whilst
previously shown to be present, are located in different,
yet to be determined, chromosomal locations. This is not
a consequence of failed amplification due to polymor-
phisms in primer target sites, or local reorganizations,
because in some instances the sites in which the genes are
located in the sequenced strains can be amplified,
sequenced, and shown to be 'empty'. The data on gene
complements and locations is summarized in Table 1.

Gene jhp820, an rfaJ homologue, is not present in strain
26695, nor in B225, JP9, and 162, which is consistent
with our previous findings. In the current study the gene
was not amplified using the flanking primers from a fur-
ther 8 strains, although we know from our previous study
that these strains possess this gene [12]. In these 8 cases
short PCR products were obtained from this chromo-
somal locus corresponding to an empty site, as was
obtained from strain 26695. Sequences of two represent-
ative products show the expected flanking regions and the
absence of jhp820 in this location. This indicates that
although this gene is present in these strains, it is located
at a different chromosomal position.

In two strains (L133 and C164) sequencing of the com-
plete jhp820-equivalent genes from this genomic loca-
tion, using primers located within the flanking genes,
revealed intact homopolymeric tracts sufficiently long to
mediate phase variation, when in our previous study [12]
these were found to be stabilized with an internal thymi-
dine. This indicates that there are actually at least two cop-
ies of this gene in these strains, and that those from which
the internal region was previously sequenced is located in
a different genomic location. In strain J99 this gene is
located between one of the vacA genes (jhp0819) and fecE
(jhp0821, an iron transport associated gene). The primer
pair used previously extended into the vacA gene because
the homopolymeric tract is located close to the 5' end of
the coding sequence. The vacA gene is present in multiple
copies, with one gene and four and three paralogues
annotated in strains 26695 and J99, respectively. One pos-
sible scenario is that vacA is variably associated with dif-
ferent rfaJ homologues in two or more of its different
locations. Interestingly, the absence of gene jhp0820 in
this location, or its replacement with another allele, is a
feature shared by the strains of the hpLadakh and hpEast-
Asia populations. Because the PCR and sequencing data
for this gene were obtained from only 11 of the 23 strains
selected for this study, jhp0820 was not included in the
population structure analyses that follow.

HP0217, encoding for a transferase involved in LPS bio-
synthesis, was not amplified from the predicted location
in two strains: NQ367 (hpEurope) and CC42C
(hpAfrica1), although we know this gene to be present on
the basis of amplification and sequencing of its repeat-
containing region in our previous study [12]. Primers
located in the flanking genes, which encode hypothetical
proteins, generated short products which did not contain
this gene, indicating that this gene is not located in this
genomic location in these two strains, and is also located
in a different, currently unknown, site.

HP0619 is a homologue of lex2B, which is phase variable.
Adjacent to this gene in strain J99, but not in the pub-
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lished sequence of strain 26695, is a related gene jhp0562
which is not phase variable. The population structure
revealed by the gene jhp0562 is broadly similar to the one
described on the basis of the MLST analysis. At least 16
strains possess both genes, and strain 26695 is unique
within the studied collection in having only HP0619.
Three strains: strains L67 (hpLadakh), VZ21 (hpEurope),
and GU5 (hpEastAsia), only contained an orthologue of
jhp0562. However, the situation in some strains is more
complex. In strain JP9 (hpEastAsia), two PCR products
were obtained. Both products were sequenced, which
revealed the presence of two lex2B homologues in one
locus (HP0619 and jhp0562 homologues), reflecting the
more common reported state, and an additional different
one (a jhp0562 homologue) from the other product. The
sequences of all three genes are clearly distinct on the
basis of polymorphisms. Taken together this indicates
that there are at least two loci containing these homo-
logues, suggesting a potential for substantial diversity in
the synthesis of different LPS structures.

Comparison of the population structures revealed by 
MLST and phase variable LPS biosynthetic gene sequences
The LPS genes are much more diverse than the housekeep-
ing genes (Table 2). Higher genetic distances and lower
nucleotide identities were found for the LPS genes than
for the housekeeping genes. Moreover, the higher rate of
non-synonymous substitution (Ka) found in LPS genes
show that the purifying selection exerted on housekeep-
ing genes is much higher than on the LPS genes. The main
difference observed between the MLST tree, built with the
7 housekeeping genes sequences (total of 3.4 kb of
sequence), and the LPS tree, built on the 7 LPS genes (the

8 LPS genes excluding jhp0820 representing a total of 7.3
kb of sequence), is the depth of the branches. This higher
genetic diversity in the LPS biosynthesis genes is consist-
ent with these genes being under different selective pres-
sures to the housekeeping genes used for MLST.

The general pattern for all of the genes studied is that there
are strong associations between the described MLST-based
population subdivisions (Figure 1) and the differences in
the seven phase variation-associated LPS biosynthetic
genes (Figure 2). This pattern is clearest once the lengths
of the phase variation-mediating repeats have been stand-
ardized and major indels removed, but is consistent for
complete, repeat and indel standardized, and amino acid
based analyses. It should be noted that the MLST tree pre-
sented here is different from the tree published previously
[12] because the vacA sequence has been excluded from
the current analysis. This is in part because we wished to
compare the population structure based upon the core
housekeeping genes under minimal selection, with that
based upon the phase varied LPS biosynthetic genes. It is
also because the vacA gene fragment used for MLST is
strongly biased by the so-called s-region encoding the
gene's leader peptide, and there is a strong correlation
between the s-region (1 or 2) and the cagPAI status (posi-
tive or negative respectively) leading to a false phylogeny
of the resulting supergene (Bodo Linz – personal commu-
nication).

There are clear areas of sequence divergence indicative of
recombination, and the clustering shown within the trees
of this study indicate that the predominant movement of
sequences is within, rather than between, the population

Table 2: Diversity within H. pylori LPS genes and housekeeping genes under study

gene number of 
sequences 
compared

length 
compared (nt)*

nucleotide 
identity (%)

genetic 
distances†

Ks‡ Ka‡ Ka/Ks‡

LPS genes
LPS supergene 23 × 7 7335 75.62 ± 14.62 0.07 ± 0.02 0.27 ± 0.08 0.05 ± 0.01 0.18 ± 0.02

HP0651 23 1065 88.49 ± 3.15 0.12 ± 0.03 0.49 ± 0.16 0.07 ± 0.02 0.15 ± 0.03
HP0379 22 1065 89.15 ± 3.22 0.11 ± 0.03 0.44 ± 0.15 0.07 ± 0.02 0.15 ± 0.03
HP0093 23 873 94.64 ± 1.93 0.05 ± 0.02 0.20 ± 0.08 0.02 ± 0.01 0.12 ± 0.03
HP0619 17 1119 91.29 ± 2.68 0.09 ± 0.03 0.29 ± 0.10 0.05 ± 0.02 0.20 ± 0.06
jhp0562 19 + 1§ 999 92.20 ± 3.45 0.08 ± 0.03 0.26 ± 0.11 0.05 ± 0.03 0.19 ± 0.07
HP0208 20 1128 92.40 ± 2.27 0.08 ± 0.02 0.24 ± 0.08 0.05 ± 0.01 0.21 ± 0.04
jhp0820 11 1110 90.83 ± 8.33 0.10 ± 0.10 0.27 ± 0.24 0.10 ± 0.13 0.37 ± 0.15
HP0217 21 1086 94.40 ± 2.13 0.05 ± 0.02 0.19 ± 0.08 0.03 ± 0.01 0.18 ± 0.06

HK genes
HK supergene 23 3402 95.31 ± 1.47 0.05 ± 0.02 0.21 ± 0.07 0.01 ± 0.01 0.06 ± 0.01

LPS supergene combines sequencing data of 7 LPS genes (i.e. the 8LPS genes under study except for jhp0820)
HK supergene combines sequencing data of the 7 housekeeping genes studied by MLST
* Lengths of the phase variation mediating repeats have been standardized and major indels removed
† Molecular distances were based on Kimura two-parameter estimates [28]
‡ Synonymous substitutions (Ks) and non-synonymous substitutions (Ka) were determined using the methods of Nei and Gojobori [25]
§ in strain JP9, two PCR products were obtained, showing that jhp0562 was present in two different loci
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Neighbour-joining tree based on MLST dataFigure 1
Neighbour-joining tree based on MLST data. All distances are based on Kimura two-parameter estimates and are to 
scale (scale bar, lower left). Population are coded such as: ▲ hpEastAsia; ▼ hpLadakh; ● hpEurope; ■ hpAfrica1 and � 
hpAfrica2.
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Neighbour-joining tree based on LPS biosyntheticgenes sequencing dataFigure 2
Neighbour-joining tree based on LPS biosyntheticgenes sequencing data. All distances are based on Kimura two-
parameter estimates and are to scale (scale bar, lower left). Population are coded as in Figure 1.
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subdivisions. This indicates that the population struc-
tures, as defined using MLST, are likely to be broadly asso-
ciated with relatively conserved similarities and
differences between the strains with regard to their general
characteristics, and that these subdivisions do, indeed,
form a sound basis for the investigation of biological dif-
ferences between different H. pylori strains.

The housekeeping gene-based MLST tree distinguishes 5
populations: hpEastAsia (boostrap value = 100), hpLa-
dakh (bootstrap value = 90), hpAfrica1 (bootstrap value =
93), hpAfrica2 (bootstrap value = 100) which is rooted in
hpEurope (Figure 1), which is consistent with the previ-
ous findings using these sequences. The tree based upon
the combined LPS biosynthesis gene sequences group the
strains from the previously defined sub-populations sim-
ilarly (Figure 2), although the branch orders differ, and
generally associates strains in the previously assigned sub-
populations most closely. However, there are some differ-
ences between the two trees. Specifically, in the LPS bio-
synthesis gene-based tree, hpLadakh appears as a
subpopulation of hpEastAsia as illustrated by the relative
position of strain JP9, and hpAfrica2 is rooted between
hpAfrica1 and hpEurope, rather than from the midst of
the hpEurope population. From both trees, based upon
the Maynard-Smith et al. model [19], H. pylori has a pop-
ulation consistent with a clonal epidemic structure, with
clonal groupings (hpEastAsia, hpLadakh, hpAfrica1 and
hpAfrica2) and a recombinant structure in hpEurope.
When the sequence data of the 7 LPS genes and the 7
housekeeping genes were combined the resulting Neigh-
bour-Joining tree had the same overall shape as the tree
obtained with the MLST data combining the sequence of
the 7 housekeeping genes with the vacA gene fragment.

With the exception of HP0379, all of the single gene-
derived trees indicate that the hpAfrica2 population is the
most divergent from the others, and that the hpEurope
and hpAfrica1, and the hpEastAsia and hpLadakh popula-
tions are the most closely associated pairs of population
subdivisions. This contrasts with the previously described
attribution of the hpLadakh strains as part of the hpEu-
rope population [14].

The behaviour of individual genes in the population
The orthologues of HP0651, an alpha-1,3-fucosyltrans-
ferase, shows inter-strain differences in the presence of a
long homopolymeric cytidine repeat, or a shorter hex-
amer which is not predicted to mediate phase variation.
The presence of the longer and shorter repeats shows a
clear division (bootstrap value = 100) within the popula-
tion. This indicates that the emergence of longer repeats
mediating phase variation is probably a relatively uncom-
mon evolutionary event. It may also reflect the gene com-
plements of a specific group of strains, in which phase

variation of a particular gene may be less adaptively
advantageous. The separation of the different alleles
remains after the variable length repeats have been
adjusted to a uniform length. The population grouping
roughly follows the population grouping obtained with
the MLST study, with hpAfrica1 strains constituting a clus-
ter (bootstrap value = 80) and hpAfrica2 strains constitut-
ing a different cluster rooted in the hpEurope population.

The other alpha-1,3-fucosyltransferase sequenced, the
orthologues of HP0379, shows the only example in this
study of integration of alleles from hpAfrica2 with
another part of the population. In this case the hpAfrica1
and hpAfrica2 alleles cluster together (bootstrap value =
100) indicating an exchange of this allele between these
two populations, and that opportunities for exchange,
either directly or indirectly, with this most-divergent of H.
pylori populations do occur. HpLadakh strains constitute
a cluster (bootstrap value = 100) distinct from the hpEast-
Asia population and the hpEurope population. This illus-
trates that even though the previous MLST-based
population study robustly demonstrated that this popula-
tion had a prolonged genetic isolation from the rest of the
H. pylori population [14], these strains still have a degree
of genetic connectedness with the wider H. pylori gene
pool.

When data for the genes HP0651 and HP0379 are com-
bined (Figure 3), the comparatively recent transfer of
HP0379 within the African populations is readily appar-
ent. While in the wider non-African populations both
genes have been present for sufficient time for their distri-
bution to show a common strain-associated pattern of
divergence, the strain associations break down in the Afri-
can populations, where these genes are clustered primarily
on the basis of the similarities between the genes rather
than on their divergence since acquisition by individual
strains. HpAfrica1 and hpAfrica2 strains are part of a sin-
gle cluster (bootstrap value = 100), hpEastAsia strains
constitute a cluster (bootstrap value = 97) distinct from
hpLadakh (bootstrap value = 94), whereas hpEurope
strains are placed all around the tree, without forming a
true group. It is usually, but not always, the case that one
of the two alpha-1,3-fucosyltransferase genes is phase var-
iable, while the other is not. Among the 8 strains of the
hpAfrica1 and hpAfrica2 populations, HP0379 is not
phase variable and HP0651 is phase variable. In two
strains of hpLadakh population (L7 and L67) neither of
these genes is phase variable, and in four strains of hpEu-
rope population (26695, B225, H1413, 111UK) both are
phase variable. The functional consequences of which, or
both, of these genes is phase varied has yet to be deter-
mined.
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Neighbour-joining tree based on combined sequencing data of the two alpha-1,3-fucosyltransferase genes (HP0651 and HP0379)Figure 3
Neighbour-joining tree based on combined sequencing data of the two alpha-1,3-fucosyltransferase genes 
(HP0651 and HP0379). All distances are based on Kimura two-parameter estimates and are to scale (scale bar, lower left). 
Population are coded as in Figure 1; Solid shapes indicate phase variable alleles and empty shapes indicate non-phase variable 
alleles.
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The neighbour-joining trees for HP0651 and HP0379
show different patterns of evolution in the hpAfrica1 and
hpAfrica2 populations compared to the patterns observed
in the other populations. In order to better understand the
differences, these populations were studied separately.
Considering the relatively small number of strains used in
this study from each population, hpEastAsia and hpLa-
dakh were grouped together (referred to as "hpEastAsia-
Ladakh"), which was suggested to be reasonable by trees
built using the other LPS genes sequences. On the same
basis, hpAfrica1 and hpAfrica2 populations were grouped
together (referred to as "hpAfrica1-2"). The genetic dis-
tances in the "hpAfrica1-2" and "hpEastAsia-Ladakh"
groups are shorter than those in the hpEurope popula-
tion, suggesting that the strains in the so-called hpEurope
population are more divergent than the strains from
hpEastAsia and hpLadakh, or than the strains from
hpAfrica1 and hpAfrica2. The genetic distances in hpEu-
rope (dHP0619-HP0379 = 0.11 ± 0.03) are as high as the
genetic distances in all of the populations considered
together (dHP0619-HP0379 = 0.12 ± 0.03). This is consistent
with a recombinant population structure for hpEurope,
whereas the shorter genetic distances in both hpAfrica1-2
(dHP0619-HP0379 = 0.09 ± 0.04) and hpEastAsia-Ladakh
(dHP0619-HP0379 = 0.09 ± 0.03) groupings are consistent
with clonal populations. Nearly identical synonymous
substitutions (Ks) frequencies were found for HP0651
and HP379 in hpEurope (KsHP0619 = 0.46 ± 0.07; KsHP0379
= 0.42 ± 0.16) and hpEastAsia-Ladakh (KsHP0619 = 0.34 ±
0.07; KsHP0379 = 0.35 ± 0.09), suggesting that the interval
since their divergence from an ancestor is similar. In con-
trast, the different Ks frequencies found in hpAfrica1-2
(KsHP0619 = 0.37 ± 0.20; KsHP0379 = 0.29 ± 0.17) suggest
that HP0651 and HP0379 have a different pattern of evo-
lution. Non synonymous/synonymous substitution rate
analysis of HP0651 and HP0379 suggests that hpAfrica1-
2 has undergone a higher purifying selection than hpEu-
rope and hpEastAsia-Ladakh (Figure 4). Ka/Ks analysis
also shows that, in the hpAfrica1-2 population, the selec-
tive pressure is greater on HP0379, the phase variable
alpha-1,3-fucosyltransferase gene, than on HP0651, the
non-phase variable allele, whereas in hpEurope and
hpEastAsia-Ladakh the selective pressure exerted on
HP0651 and HP0379 is similar.

HP0208 shows a different pattern of subpopulation
exchange, in that it has a pattern which indicates recombi-
nation of this gene between the hpAfrica1 and hpEurope
lineages. This gene is absent from the hpLadakh strains,
but otherwise has a pattern reflecting the general popula-
tion subdivisions, with hpEastAsia (bootstrap value = 98)
and hpAfrica2 constituting two clusters whereas hpAfrica1
and hpEurope strains constitute a background popula-
tion. Similarly, HP0217 and HP0093 show a generally
typical pattern, but with some evidence of exchange from

the hpEastAsia and hpLadakh populations to some hpEu-
rope strains. HP0619 and jhp0562 when considered inde-
pendently show a generally typical pattern as well, but
when these two genes are considered together, they show
evidence of genetic exchange between hpLadakh and
hpEastAsia.

Considering the overall patterns of all of the genes (Figure
2), and the different patterns illustrated by HP0379,
HP0208, HP0217, and HP0093, there is a general picture
in which these populations, hpEurope, hpEastAsia, hpLa-
dadh, hpAfrica1 and hpAfrica2, are genuinely ecologically
separate in many regards and as reflected by their general
allelic compositions, but there are occasional bridging
points which have allowed for the exchange of genes
between these subpopulations. The nature of these
exchanges, and that they differ on a gene-by-gene basis is
of relevance to those designing and interpreting func-
tional studies, and highlights the need to specifically
address these issues of relatedness at both a population
and gene-specific level when selecting representative
strains for such projects.

Conclusion
The MLST-based population subdivisions appear to
broadly represent the allelic gene complements of the
population in other genes outside of those associated with
core 'housekeeping' metabolic functions. Therefore the
described population subdivisions are a good basis for
studying the biology of H. pylori, although the relatedness

Non-synonymous/synonymous substitution rate (Ka/Ks) analysis of the two alpha-1,3-fucosyltransferase genes (HP0651, HP0379)Figure 4
Non-synonymous/synonymous substitution rate (Ka/
Ks) analysis of the two alpha-1,3-fucosyltransferase 
genes (HP0651, HP0379). Considering the small number 
of strains in each population, hpAfrica1 and hpAfrica2 popu-
lations were grouped together in a "hpAfrica1-2" cluster, and 
hpEastAsia and hpLadakh populations were together in a 
"hpEastAsia-Ladakh" cluster.
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of the population subdivisions may be slightly different
from those currently reported. The depth of neighbour
joining tree branches are longer for the LPS biosynthesis
genes than for the housekeeping genes reflecting their
faster evolution. The stable association of long and short
repeats within the population suggests that emergence of
phase variable repeats is probably a relatively uncommon
evolutionary event. Exchange of genes between hpAfrica2
and the more closely related populations can occur, or
these populations can acquire genes from or through a
common source. However, there are indications that there
is considerable additional complexity in the repertoire
and number of the LPS biosynthetic genes, and their
genetic locations, which can vary significantly between
individual strains. Notably, this type of diversity is not
reflected in MLST or comparative genome hybridization
studies that have been reported to-date. This diversity is
poorly reflected by the limited number of currently avail-
able genome sequences, and it would be wise to check the
presence, sequence, and distribution of any gene of inter-
est when working in non-sequenced strains.

Methods
Bacterial strains and growth conditions
Twenty-three H. pylori strains were selected representing
diverse ethnic groups and countries of origin [14], includ-
ing the sequenced strains 26695 [20] and J99 [21], and
the mouse-adapted strain SS1 [22] (Table 1). Culture con-
ditions were as described previously [12].

Amplification and sequencing of the phase variable LPS 
genes
DNA was prepared from plate cultures using the
AquaPure Genomic DNA Isolation Kit (BioRad) accord-
ing to the manufacturer's instructions. Seven phase varia-
ble LPS biosynthetic genes, encoding for two alpha-1,3-
fucosyltransferases (HP0651 and HP0379), an alpha-1,2-
fucosyltransferase (HP0093), a glycosyltransferase homo-
logue of Lex2B (HP0619), two alpha-1,2-glycosyltrans-
ferase homologues of RfaJ (HP0208 and jhp0820), and a
beta-1,4-N-acetylgalactoamyl transferase (HP0217), and
a non-phase variable LPS biosynthetic gene (jhp0652,
related to HP0619) were amplified and sequenced. Prim-
ers were designed using the published sequences of H.
pylori strains 26695 [20] and J99 [21] [See Additional file
1]. PCRs were carried out using Taq DNA polymerase (Inv-
itrogen) according to the manufacturer's instructions.
PCR products were cleaned up and sequenced directly on
both strands using the primers used for PCR. Automated
sequencing used ABI Prism BigDye™ Terminator cycle
sequencing, version 3.0 (Applied Biosystems) and was
resolved on an ABI Prism 3100 DNA sequencer (Applied
Biosystems).

Phylogenetic and sequence analysis
Sequences were assembled using the program Gap4 from
the Staden package [23]. Multiple alignments were per-
formed using ClustalW [24], and then, manually edited
using Seqlab from the Wisconsin Package, version 10.2
(Genetics Computer Group, Madison, Wisconsin)
through the Oxford University Bioinformatics Centre.
Analyses of nucleotide identity, genetic distances, and
synonymous/nonsynonymous substitutions [25] were
performed on multiple alignments using Swaap 1.0.0
(Pride, D.T. (2001). Swaap 1.0.0: a tool for analysing sub-
stitutions and similarity in multiple alignments. Distrib-
uted by the author, available at http://
www.bacteriamuseum.org/SWAAP/SwaapPage.htm)
[26]. Neighbour-joining trees [27] based on distances
with Kimura two-parameter estimates [28] were con-
structed, and their robustness was assessed using a boot-
strapping procedure (500 repetitions) [29] using MEGA
version 2.1 [30].

List of abbreviations
LPS = lipopolysaccharides; MLST = multi-locus sequence
typing; HK gene = housekeeping gene.
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